Нелинейные цепи
Нелинейные цепи постоянного и переменного тока называются нелинейными, если их сопротивление зависит от проходящего через тока. Если сопротивление цепи не зависит от протекающего тока, такая цепь называется линейная.
Электрическая цепь, в которую входят нелинейные элементы, называется нелинейной.
Нелинейный элемент — это элемент электрической цепи, сопротивление которого зависит от протекающего через него тока.
Вольт-амперная характеристика таких нелинейных элементов представляет собою зависимость между током и приложенным к нелинейному элементу (сопротивлению) напряжением. Обычно ВАХ изображается в виде графика или математической формулой.
В различных облостях, связанных с электроникой применяются нелинейные элементы. Они имеют нелинейную вольтамперную характеристику U = f(I).
Электровакуумные, полупроводниковые и газоразрядные приборы, фотоэлементы, терморезисторы, варисторы, бареттеры — нелинейные элементы электрической цепи.
Лекции по ТОЭ
- История электротехники
- ТОЭ и электроника
- Основные сведения
- Основные определения
- Топология цепи
- Преобразование цепей
- Элементы электрической цепи
- Режимы работы
- Постояный ток
- Переменный ток
- Постоянный ток
- Переменный ток
- Мощность
- Магнитное поле
- Постоянная МДС
- Переменная МДС
- Ферромагнитные материалы
- Однофазный трансформатор
- Трехфазный трансформатор
- Постоянный ток
- Переменный ток
- Электропривод
- Параметры
- Уравнения
- Схемы замещения
- Фильтры
- Холостой ход
- Короткое замыкание
- Характеристическое сопротивление
- Коэффициент распространения
- Передаточная функция
- Обратные связи
- Общие сведения
- Классический метод
- Операторный метод
- Интеграл Дюамеля
- Основная литература
- Дополнительная литература
- Сборники задач
Линейные и нелинейные элементы электрической цепи
Те элементы электрической цепи, для которых зависимость тока от напряжения I(U) или напряжения от тока U(I), а также сопротивление R, постоянны, называются линейными элементами электрической цепи. Соответственно и цепь, состоящая из таких элементов, именуется линейной электрической цепью.
Для линейных элементов характерна линейная симметричная вольт-амперная характеристика (ВАХ), выглядящая как прямая линия, проходящая через начало координат под определенным углом к координатным осям. Это свидетельствует о том, что для линейных элементов и для линейных электрических цепей закон Ома строго выполняется.
Кроме того речь может идти не только об элементах, обладающих чисто активными сопротивлениями R, но и о линейных индуктивностях L и емкостях C, где постоянными будут зависимость магнитного потока от тока — Ф(I) и зависимость заряда конденсатора от напряжения между его обкладками — q(U).
Яркий пример линейного элемента — проволочный резистор. Ток через такой резистор в определенном диапазоне рабочих напряжений линейно зависит от величины сопротивления и от приложенного к резистору напряжения.
Характеристика проводника (вольтамперная характеристика) — зависимость между напряжением, подводимым к проводнику, и силой тока в нем (обычно выраженная в виде графика).
Для металлического проводника, например, сила тока в нем пропорциональна приложенному напряжению, и поэтому характеристика представляет собой прямую линию. Чем круче идет прямая, тем меньше сопротивление проводника. Однако некоторые проводники, в которых ток не пропорционален приложенному напряжению (например, газоразрядные лампы), имеют более сложную, не прямолинейную вольтамперную характеристику.
Если же для элемента электрической цепи зависимость тока от напряжения или напряжения от тока, а также сопротивление R, непостоянны, то есть изменяются в зависимости от тока или от приложенного напряжения, то такие элементы называются нелинейными, и соответственно электрическая цепь, содержащая минимум один нелинейный элемент, окажется нелинейной электрической цепью.
Вольт-амперная характеристика нелинейного элемента уже не является прямой линией на графике, она непрямолинейна и часто несимметрична, как например у полупроводникового диода. Для нелинейных элементов электрической цепи закон Ома не выполняется.
В данном контексте речь может идти не только о лампе накаливания или о полупроводниковом приборе, но и о нелинейных индуктивностях и емкостях, у которых магнитный поток Ф и заряд q нелинейно связаны с током катушки или с напряжением между обкладками конденсатора. Поэтому для них вебер-амперные характеристики и кулон-вольтные характеристики будут нелинейными, они задаются таблицами, графиками или аналитическими функциями.
Пример нелинейного элемента — лампа накаливания. С ростом тока через нить накаливания лампы, ее температура увеличивается и сопротивление возрастает, а значит оно непостоянно, и следовательно данный элемент электрической цепи нелинеен.
Для нелинейных элементов свойственно определенное статическое сопротивление в каждой точке их ВАХ, то есть каждому отношению напряжения к току, в каждой точке на графике, — ставится в соответствие определенное значение сопротивления. Оно может быть посчитано как тангенс угла альфа наклона графика к горизонтальной оси I, как если бы эта точка лежала на линейном графике.
Еще у нелинейных элементов есть так называемое дифференциальное сопротивление, которое выражается как отношение бесконечно малого приращения напряжения — к соответствующему изменению тока. Данное сопротивление можно посчитать как тангенс угла между касательной к ВАХ в данной точке и горизонтальной осью.
Такой подход делает возможным простейший анализ и расчет простых нелинейных цепей.
На рисунке выше показана ВАХ типичного диода. Она располагается в первом и в третьем квадрантах координатной плоскости, это говорит нам о том, что при положительном или отрицательном приложенном к p-n-переходу диода напряжении (в том или ином направлении) будет иметь место прямое либо обратное смещение p-n-перехода диода. С ростом напряжения на диоде в любом из направлений ток сначала слабо увеличивается, а после резко возрастает. По этой причине диод относится к неуправляемым нелинейным двухполюсникам.
На этом рисунке показано семейство типичных ВАХ фотодиода в разных условиях освещенности. Основной режимом работы фотодиода — режим обратного смещения, когда при постоянном световом потоке Ф ток практически неизменен в довольно широком диапазоне рабочих напряжений. В данных условиях модуляция освещающего фотодиод светового потока, приведет к одновременной модуляции тока через фотодиод. Таким образом, фотодиод — это управляемый нелинейный двухполюсник.
Это ВАХ тиристора, здесь видна ее явная зависимость от величины тока управляющего электрода. В первом квадранте — рабочий участок тиристора. В третьем квадранте начало ВАХ — малый ток и большое приложенное напряжение (в запертом состоянии сопротивление тиристора очень велико). В первом квадранте ток велик, падение напряжения мало — тиристор в данный момент открыт.
Момент перехода из закрытого — в открытое состояние наступает тогда, когда на управляющий электрод подан определенный ток. Переключение из открытого состояния — в закрытое происходит при снижении тока через тиристор. Таким образом, тиристор — это управляемый нелинейный трехполюсник (как и транзистор, у которого ток коллектора зависит от тока базы).
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Нелинейные электрические цепи
В электрические цепи могут входить пассивные элементы , электрическое сопротивление которых существенно зависит от тока и ли напряжения, в результате чего ток не находится в прямо пропорциональной зависимости по отношению к напряжению. Такие элементы и электрические цепи, в которые они входят, называют нелинейными элементами .
Нелинейные элементы придают электрическим цепям свойства, недостижимые в линейных цепях (стабилизация напряжения или тока, усиление постоянного тока и др.). Они бывают неуправляемые и управляемые . Первые — двухполюсники — предназначены для работы без воздействия на них управляющего фактора (полупроводниковые терморезисторы и диоды), а вторые — многополюсники — используются при воздействии на них управляющего фактора (транзисторы и тиристоры).
Вольт-амперные характеристики нелинейных элементов
Электрические свойства нелинейных элементов представляют вольт-амперными характеристиками I(U) экспериментально полученными графиками, отображающими зависимость тока от напряжения, для которых иногда составляют приближенную, удобную для расчетов эмпирическую формулу.
Неуправляемые нелинейные элементы имеют одну вольт-амперную характеристику, а управляемые — семейство таких характеристик, параметром которого является управляющий фактор.
У линейных элементов электрическое сопротивление постоянно, поэтому вольт-амперная характеристика их является прямой линией, проходящей через начало координат (рис. 1, а).
Вольт-амперные характеристики нелинейных имеют различную форму и разделяются на симметричные и несимметричные относительно осей координат (рис. 1, б, в).
Рис. 1. Вольт-амперные характеристики пассивных элементов: а — линейных, б — нелинейных симметричных, в — нелинейных несимметричных
Рис. 2. Графики для определения статического к дифференциального сопротивлений нелинейных элементов на участках вольт-амперных характеристик: а — восходящем, б — падающем
У нелинейных элементов с симметричной вольт-амперной характеристикой, или у симметричных, элементов, перемена направления напряжения не вызывает изменения значения тока (рис. 1, б), а у нелинейных элементов с несимметричной вольт-амперной характеристикой, или у несимметричных элементов, при одном и том же абсолютном значении напряжения, направленного в противоположные стороны, токи разные (рис. 1, в). Поэтому нелинейные симметричные элементы применяют в цепях постоянного и переменного тока, а нелинейные несимметричные элементы, как правило, в цепях переменного тока для преобразования переменного тока в ток постоянного направления.
Характеристики нелинейных элементов
Для каждого нелинейного элемента различают статическое сопротивление, соответствующее данной точке вольт-амперной характеристики, например, точке А:
R ст = U/I = muOB / miBA = mr tgα
и дифференциальное сопротивление, которое для. той же точки А определяется по формуле:
R диф = dU/dI = muDC / miCA = mr tgβ ,
где mu, mi, mr — соответственно масштаб напряжений, токов и сопротивлений.
Статическое сопротивление характеризует свойства нелинейного элемента в режиме неизменного тока, а дифференциальное — при малых отклонениях тока от установившегося значения. Оба они изменяются при переходе от одной точки и вольт-амперной характеристики к другой, причем первое всегда положительное, а второе — знакопеременное: на восходящем участке вольт-амперной характеристики оно положительное, а на падающем участке — отрицательное.
Нелинейные элементы характеризуются также обратными величинами: статической проводимостью Gст и дифференциальной проводимостью G диф либо безразмерными параметрами —
Kr = — (R диф/ R ст)
или относительной проводимостью:
Kg = — ( G диф / G ст)
У линейных элементов параметры Kr и Kg равны единице, а у нелинейных элементов отличаются от нее, причем чем больше они отличаются от единицы, тем больше проявляется нелинейность электрической цепи.
Расчет нелинейных электрических цепей
Нелинейные электрические цепи рассчитывают графическим и аналитическим методами , в основу которых положены законы Кирхгофа и вольт-амперные характеристики отдельных элементов цепях переменного тока для преобразования переменного тока в ток постоянного направления.
При графическом расчете электрической цепи с двумя последовательно соединенными нелинейными резисторами R1 и R2 с вольт-амперными характеристиками I(U1) и I(U2) строят вольт-амперную характеристику всей цепи I(U) , где U = U1+U2 , абсциссы точек которой находят суммированием абсцисс точек вольт-амперных характеристик нелинейных резисторов с равными ординатами (рис. 3, а, б).
Рис. 3. Схемы и характеристики нелинейных электрических цепей: а — схема последовательного соединения нелинейных резисторов, б — вольт-амперные характеристики отдельных элементов и последовательной цепи, в — схема параллельного соединения нелинейных резисторов, г — вольт-амперные характеристики отдельных элементов и параллельной цепи.
Наличие этой кривой позволяет по напряжению U найти ток I , а также напряжения U1 и U2 на зажимах резисторов.
Аналогично выполняют расчет электрической цепи с двумя параллельно соединенными резисторами R1 и R2 с вольт-амперными характеристиками I1(U) и I 2(U), для чего строят вольт-амперную характеристику всей цепи I ( U ), где I = I1 + I2 , по которой, пользуясь заданным напряжением U , находят токи I , I1 , I2 (рис. 3 , в, г).
Аналитический метод расчета нелинейных электрических цепей основан на представлении вольт-амперных характеристик нелинейных элементов уравнениями соответствующих математических функций, позволяющих составить необходимые уравнения состояния электрических цепей. Поскольку решение таких нелинейных уравнений часто вызывает значительные трудности, аналитический метод расчета нелинейных цепей удобен, когда рабочие участки вольт-амперных характеристик нелинейных элементов могут быть спрямлены. Это позволяет описать электрическое состояние цепи линейными уравнениями, не вызывающими затруднения при их решении.
Нелинейные цепи постоянного тока. Графические методы расчета.
Нелинейными называются цепи, в состав которых входит хотя бы один нелинейный элемент.
Нелинейными называются элементы, параметры которых зависят от величины и (или) направления связанных с этими элементами переменных (напряжения, тока, магнитного потока, заряда, температуры, светового потока и др.). Нелинейные элементы описываются нелинейными характеристиками, которые не имеют строгого аналитического выражения, определяются экспериментально и задаются таблично или графиками.
Нелинейные элементы можно разделить на двух – и многополюсные. Последние содержат три (различные полупроводниковые и электронные триоды) и более (магнитные усилители, многообмоточные трансформаторы, тетроды, пентоды и др.) полюсов, с помощью которых они подсоединяются к электрической цепи. Характерной особенностью многополюсных элементов является то, что в общем случае их свойства определяются семейством характеристик, представляющих зависимости выходных характеристик от входных переменных и наоборот: входные характеристики строят для ряда фиксированных значений одного из выходных параметров, выходные – для ряда фиксированных значений одного из входных.
По другому признаку классификации нелинейные элементы можно разделить на инерционные и безынерционные. Инерционными называются элементы, характеристики которых зависят от скорости изменения переменных. Для таких элементов статические характеристики, определяющие зависимость между действующими значениями переменных, отличаются от динамических характеристик, устанавливающих взаимосвязь между мгновенными значениями переменных. Безынерционными называются элементы, характеристики которых не зависят от скорости изменения переменных. Для таких элементов статические и динамические характеристики совпадают.
Понятия инерционных и безынерционных элементов относительны: элемент может рассматриваться как безынерционный в допустимом (ограниченном сверху) диапазоне частот, при выходе за пределы которого он переходит в разряд инерционных.
В зависимости от вида характеристик различают нелинейные элементы с симметричными и несимметричными характеристиками. Симметричной называется характеристика, не зависящая от направления определяющих ее величин, т.е. имеющая симметрию относительно начала системы координат: . Для несимметричной характеристики это условие не выполняется, т.е. . Наличие у нелинейного элемента симметричной характеристики позволяет в целом ряде случаев упростить анализ схемы, осуществляя его в пределах одного квадранта.
По типу характеристики можно также разделить все нелинейные элементы на элементы с однозначной и неоднозначной характеристиками. Однозначной называется характеристика , у которой каждому значению х соответствует единственное значение y и наоборот. В случае неоднозначной характеристики каким-то значениям х может соответствовать два или более значения y или наоборот. У нелинейных резисторов неоднозначность характеристики обычно связана с наличием падающего участка, для которого , а у нелинейных индуктивных и емкостных элементов – с гистерезисом.
Наконец, все нелинейные элементы можно разделить на управляемые и неуправляемые. В отличие от неуправляемых управляемые нелинейные элементы (обычно трех- и многополюсники) содержат управляющие каналы, изменяя напряжение, ток, световой поток и др. в которых, изменяют их основные характеристики: вольт-амперную, вебер-амперную или кулон-вольтную.
Нелинейные электрические цепи постоянного тока
Нелинейные свойства таких цепей определяет наличие в них нелинейных резисторов.
В связи с отсутствием у нелинейных резисторов прямой пропорциональности между напряжением и током их нельзя охарактеризовать одним параметром (одним значением ). Соотношение между этими величинами в общем случае зависит не только от их мгновенных значений, но и от производных и интегралов по времени.
Параметры нелинейных резисторов
В зависимости от условий работы нелинейного резистора и характера задачи различают статическое, дифференциальное и динамическое сопротивления.
Если нелинейный элемент является безынерционным, то он характеризуется первыми двумя из перечисленных параметров.
Статическое сопротивление равно отношению напряжения на резистивном элементе к протекающему через него току. В частности для точки 1 ВАХ на рис. 1
Под дифференциальным сопротивлением понимается отношение бесконечно малого приращения напряжения к соответствующему приращению тока
Следует отметить, что у неуправляемого нелинейного резистора всегда, а может принимать и отрицательные значения (участок 2-3 ВАХ на рис. 1).
В случае инерционного нелинейного резистора вводится понятие динамического сопротивления
определяемого по динамической ВАХ. В зависимости от скорости изменения переменной, например тока, может меняться не только величина, но и знак .
Методы расчета нелинейных электрических цепей постоянного тока
Электрическое состояние нелинейных цепей описывается на основании законов Кирхгофа, которые имеют общий характер. При этом следует помнить, что для нелинейных цепей принцип наложения неприменим. В этой связи методы расчета, разработанные для линейных схем на основе законов Кирхгофа и принципа наложения, в общем случае не распространяются на нелинейные цепи.
- графическими;
- аналитическими;
- графо-аналитическими;
- итерационными.
Графические методы расчета
При использовании этих методов задача решается путем графических построений на плоскости. При этом характеристики всех ветвей цепи следует записать в функции одного общего аргумента. Благодаря этому система уравнений сводится к одному нелинейному уравнению с одним неизвестным. Формально при расчете различают цепи с последовательным, параллельным и смешанным соединениями.
а) Цепи с последовательным соединением резистивных элементов.
При последовательном соединении нелинейных резисторов в качестве общего аргумента принимается ток, протекающий через последовательно соединенные элементы. Расчет проводится в следующей последовательности. По заданным ВАХ отдельных резисторов в системе декартовых координат строится результирующая зависимость . Затем на оси напряжений откладывается точка, соответствующая в выбранном масштабе заданной величине напряжения на входе цепи, из которой восстанавливается перпендикуляр до пересечения с зависимостью . Из точки пересечения перпендикуляра с кривой опускается ортогональ на ось токов – полученная точка соответствует искомому току в цепи, по найденному значению которого с использованием зависимостей определяются напряжения на отдельных резистивных элементах.
Применение указанной методики иллюстрируют графические построения на рис. 2,б, соответствующие цепи на рис. 2,а.
Графическое решение для последовательной нелинейной цепи с двумя резистивными элементами может быть проведено и другим методом – методом пересечений. В этом случае один из нелинейных резисторов, например, с ВАХ на рис.2,а, считается внутренним сопротивлением источника с ЭДС Е, а другой – нагрузкой. Тогда на основании соотношения точка а (см. рис. 3) пересечения кривых и определяет режим работы цепи. Кривая строится путем вычитания абсцисс ВАХ из ЭДС Е для различных значений тока.
Использование данного метода наиболее рационально при последовательном соединении линейного и нелинейного резисторов. В этом случае линейный резистор принимается за внутреннее сопротивление источника, и линейная ВАХ последнего строится по двум точкам.
б) Цепи с параллельным соединением резистивных элементов.
При параллельном соединении нелинейных резисторов в качестве общего аргумента принимается напряжение, приложенное к параллельно соединенным элементам. Расчет проводится в следующей последовательности. По заданным ВАХ отдельных резисторов в системе декартовых координат строится результирующая зависимость . Затем на оси токов откладывается точка, соответствующая в выбранном масштабе заданной величине тока источника на входе цепи (при наличии на входе цепи источника напряжения задача решается сразу путем восстановления перпендикуляра из точки, соответствующей заданному напряжению источника, до пересечения с ВАХ ), из которой восстанавливается перпендикуляр до пересечения с зависимостью . Из точки пересечения перпендикуляра с кривой опускается ортогональ на ось напряжений – полученная точка соответствует напряжению на нелинейных резисторах, по найденному значению которого с использованием зависимостей определяются токи в ветвях с отдельными резистивными элементами.
Использование данной методики иллюстрируют графические построения на рис. 4,б, соответствующие цепи на рис. 4,а.
в) Цепи с последовательно-параллельным (смешанным) соединением резистивных элементов.
1. Расчет таких цепей производится в следующей последовательности:
Исходная схема сводится к цепи с последовательным соединением резисторов, для чего строится результирующая ВАХ параллельно соединенных элементов, как это показано в пункте б).
2. Проводится расчет полученной схемы с последовательным соединением резистивных элементов (см. пункт а), на основании которого затем определяются токи в исходных параллельных ветвях.
Метод двух узлов
Для цепей, содержащих два узла или сводящихся к таковым, можно применять метод двух узлов. При полностью графическом способе реализации метода он заключается в следующем:
Строятся графики зависимостей токов во всех i-х ветвях в функции общей величины – напряжения между узлами m и n, для чего каждая из исходных кривых смещается вдоль оси напряжений параллельно самой себе, чтобы ее начало находилось в точке, соответствующей ЭДС в i-й ветви, а затем зеркально отражается относительно перпендикуляра, восстановленного в этой точке.
Определяется, в какой точке графически реализуется первый закон Кирхгофа . Соответствующие данной точке токи являются решением задачи.
Метод двух узлов может быть реализован и в другом варианте, отличающемся от изложенного выше меньшим числом графических построений.
В качестве примера рассмотрим цепь на рис. 5. Для нее выражаем напряжения на резистивных элементах в функции :
Далее задаемся током, протекающим через один из резисторов, например во второй ветви , и рассчитываем , а затем по с использованием (1) и (3) находим и и по зависимостям и — соответствующие им токи и и т.д. Результаты вычислений сводим в табл. 1, в последней колонке которой определяем сумму токов
Таблица 1. Таблица результатов расчета методом двух узлов
Алгебраическая сумма токов в соответствии с первым законом Кирхгофа должна равнять нулю, поэтому получающаяся в последней колонке табл. 1 величина указывает, каким значением следует задаваться на следующем шаге.
В осях строим кривую зависимости и по точке ее пересечения с осью напряжений определяем напряжение между точками m и n. Для найденного значения по (1)…(3) рассчитываем напряжения на резисторах, после чего по заданным зависимостям определяем токи в ветвях схемы.
- Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
- Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
- Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.2. Жуховицкий Б.Я., Негневицкий И.Б. Линейные электрические цепи (продолжение). Нелинейные цепи. –М.: Энергия- 1972. –200с.
- Почему метод наложения неприменим к нелинейным цепям?
- Какие параметры характеризуют нелинейный резистор?
- Почему статическое сопротивление всегда больше нуля, а дифференциальное и динамическое могут иметь любой знак?
- Какие методы используют для анализа нелинейных резистивных цепей постоянного тока?
- Какая последовательность расчета графическим методом нелинейной цепи с последовательным соединением резисторов?
- Какая последовательность расчета графическим методом нелинейной цепи с параллельным соединением резисторов?
- Какой алгоритм анализа цепи со смешанным соединением нелинейных резисторов?
- В чем сущность метода двух узлов?
- В цепи на рис. 2,а ВАХ нелинейных резисторов и , где напряжение – в вольтах, а ток – в амперах; . Графическим методом определить напряжения на резисторах. Ответ: .
- В цепи на рис. 4,а ВАХ нелинейных резисторов и , где ток – в амперах, а напряжение – в вольтах; . Графическим методом определить токи и . Ответ: .
- В цепи на рис. 5 , где ток – в амперах, а напряжение – в вольтах; третий резистор линейный с . Определить токи в ветвях методом двух узлов, если . Ответ: .
- Что такое ИБП
- Отличие источников
- Как рассчитать мощность
- Перед включением ИБП
- Библиотека ИБП
- Запрос стоимости ИБП