Какой материал не пропускает электромагнитные волны. Экранирование магнитного поля
Экранирование магнитных полей может быть осуществленно двумя методами:
Экранирование с помощью ферромагнитных материалов.
Экранирование с помощью вихревых токов.
Первый метод применяется обычно при экранировании постоянных МП и полей низкой частоты. Второй метод обеспечивает значительную эффективность при экранировании МП высокой частоты. Из-за поверхностного эффекта плотность вихревых токов и напряженность переменного магнитного поля по мере углубления в металл падает по экспоненциальному закону:
Показатель уменьшения поля и тока, который называют эквивалентной глубиной проникновения.
Чем меньше глубина проникновения, тем больший ток течет в поверхностных слоях экрана, тем больше создаваемое им обратное МП, вытесняющее из пространства, занятое экраном, внешнее поле источника наводки. Если экран сделан из немагнитного материала, то экранирующий эффект будет зависеть только от удельной проводимости материала и частоты экранирующего поля. Если экран сделан из ферромагнитного материала, то при прочих равных условиях внешним полем в нем будет наводиться большая э. д. с. благодаря большей концентрации магнитных силовых линий. При одинаковой удельной проводимости материала увеличатся вихревые токи, что приведет к меньшей глубине проникновения и к лучшему экранирующему эффекту.
При выборе толщины и материала экрана следует исходить не из электрических свойств материала, а руководствоваться соображениями механической прочности, веса, жесткости, стойкости против коррозии, удобства стыковки отдельных деталей и осуществления между ними переходных контактов с малым сопротивлением, удобства пайки, сварки и прочим.
Из данных таблицы видно, что для частот выше 10 МГц медная и тем более серебряная пленки толщиной около 0,1 мм дает значительный экранирующий эффект. Поэтому на частотах выше 10 МГц вполне допустимо применение экранов из фольгированого гетинакса или стеклотекстолита. На больших частотах сталь дает больший экранирующий эффект, чем немагнитные металлы. Однако стоит учитывать, что такие экраны могут вносить значительные потери в экранируемые цепи вследствие большого удельного сопротивления и явления гистерезиса. Поэтому такие экраны применимы только в тех случаях, когда с вносимыми потерями можно не считаться. Так же для большей эффективности экранирования экран должен обладать меньшим магнитным сопротивлением, чем воздух, тогда силовые линии магнитного поля стремятся пройти по стенкам экрана и в меньшем числе проникают в пространство вне экрана. Такой экран одинаково пригоден для защиты от воздействия магнитного поля и для защиты внешнего пространства от влияния магнитного поля созданного источником внутри экрана.
Существует много марок стали и пермаллоя с различными величинами магнитной проницаемости, поэтому для каждого материала нужно расчитывать величину глубины проникновения. Расчет производится по приближенному уравнению:
1) Защита от внешнего магнитного поля
Магнитные силовые линии внешнего магнитного поля (линии индукции магнитного поля помех) будут проходить в основном по толще стенок экрана, обладающего малым магнитным сопротивлением по сравнению с сопротивлением пространства внутри экрана. В результате внешнее магнитное поле помех не будет влиять на режим работы электрической цепи.
2) Экранирование собственного магнитного поля
Такое кранирование используется, если ставится задача предохранения внешних электрических цепей от воздействия магнитного поля, создаваемого током катушки. Индуктивности L, т. е. когда требуется практически локализовать помехи, создаваемые индуктивностью L, то такая задача решается при помощи магнитного экрана, как это схематически показано на рисунке. Здесь почти все силовые линии поля катушки индуктивности будут замыкаться через толщу стенок экрана, не выходя за их пределы вследствие того, что магнитное сопротивление экрана намного меньше сопротивления окружающего пространства.
3) Двойной экран
В двойном магнитном экране можно представить себе, что часть магнитных силовых линий, которые выйдут за толщу стенок одного экрана, замкнутся через толщу стенок второго экрана. Точно также можно представить себе действие двойного магнитного экрана при локализации магнитных помех, создаваемых элементом электрической цепи, находящимся внутри первого (внутреннего) экрана: основная масса магнитных силовых линий (линии магнитного рассеяния) замкнется через стенки наружного экрана. Разумеется, что в двойных экранах должны быть рационально выбраны толщины стенок и расстояние между ними.
Общий коэффициент экранирования достигает наибольшей величииы в тех случаях, когда толщина стенок и промежуток между экранами увеличивается пропорционально расстоянию от центра экрана, причем величина промежутка является средней геометрической величиной толщин стенок примыкающих к нему экранов. При этом коэффициент экранирования:
Изготовление двойных экранов в соответствии с указанной рекомендацией практически затруднено из технологических соображений. Значительно целесообразнее выбрать расстояние между оболочками, прилегающими к воздушному промежутку экранов, большим, чем толщина первого экрана, приблизительно равным расстоянию между стеикой первого экрана и краем экранируемого элемента цепи (например, катушки иидуктивности). Выбор той или иной толщины стенок магнитного экрана нельзя сделать однозначным. Рациональная толщина стенок определяется. материалом экрана, частотой помехи и заданным коэффициентом экранирования. При этом полезно учитывать следующее.
1. При повышении частоты помех (частоты переменного магнитного поля помех) магнитная проницаемость материалов падает и вызывает снижение экранирующих свойств этих материалов, так как по мере снижения магнитной проницаемости возрастает сопротивление магнитному потоку, оказываемое экраном. Как правило, уменьшение магнитной проницаемости с повышением частоты идет наиболее интенсивно у тех магнитных материалов, у которых имеется наибольшая начальная магнитная проницаемость. Например, листовая электротехническая сталь с малой начальной магнитной проницаемостью мало изменяет величину jx с повышением частоты, а пермаллой, имеющий большие начальные значения магнитной проницаемости, весьма чувствителен к повышению частоты магнитного поля; магнитная проницаемость у него резко падает с частотой.
2. В магнитных материалах, подверженных действию высокочастотного магнитного поля помех, заметно проявляется поверхностный эффект, т. е. вытеснение магнитного потока к поверхности стенок экрана, вызывая увеличение магнитного сопротивления экрана. При таких условиях кажется, что почти бесполезно увеличивать толщину стенок экрана за пределы тех величин, которые заняты магнитным потоком при данной частоте. Такой вывод неправилен, ибо увеличение толщины стенок приводит к снижению магнитного сопротивления экрана даже при наличии поверхностного эффекта. При этом одновременно следует учитывать и изменение магнитной проницаемости. Так как явление поверхностного эффекта в магнитных материалах обычно начинает сказываться заметнее, чем снижение магнитной проницаемости в области низких частот, то влияние обоих факторов на выбор толщины стенок экрана будет различным на разных диапазонах частот магнитных помех. Как правило, снижение экранирующих свойств с повышением частоты помехи сильнее проявляется в экранах из материалов с высокой начальной магнитной проницаемостью. Указанные выше особенности магнитных материалов дают основание для рекомендаций по выбору материалов и толщины стенок магнитных экранов. Эти рекомендации могут быть сведены к следующим:
А) экраны из обычной электротехнической (трансформаторной) стали, обладающие малой начальной магнитной проницаемостью, можно применять при необходимости обеспечить малые коэффициенты экранирования (Кэ 10); такие экраны обеспечивают почти неизменный коэффициент экранирования в достаточно широкой полосе частот, вплоть до нескольких десятков килогерц; толщина таких экранов зависит от частоты помехи, причем чем ниже частота, тем большая толщина экрана требуется; например, при частоте магнитного поля помех 50-100 гц толщина стенок экрана должна быть приблизительно равна 2 мм; если требуется увеличение коэффициента экранирования или большая толщина экрана, то целесообразно применять несколько экранирующих слоев (двойных или тройных экранов) меньшей толщины;
Б) экраны из магнитных материалов с высокой начальной проницаемостью (например пермаллой) целесообразно применять при необходимости обеспечения большого коэффициента экранирования (Кэ > Ю) в сравнительно узкой полосе частот, причем толщину каждой оболочки магнитного экрана нецелесообразно выбирать больше 0,3-0,4 мм; экранирующее действие таких экранов начинает заметно падать на частотах, выше нескольких сот или тысяч герц, в зависимости от начальной проницаемости этих материалов.
Все сказанное выше о магнитных экранах справедливо в отношении слабых магнитных полей помех. Если же экран находится вблизи от мощных источников помех и в нем возникают магнитные потоки с большой магнитной индукцией, то, как известно, приходится учитывать изменение магнитной динамической проницаемости в зависимости от индукции; необходимо также учитывать при этом потери в толще экрана. Практически же с такими сильными источниками магнитных полей помех, при которых надо было бы считаться с их действием на экраны, не встречаются, за исключением некоторых специальных случаев, не предусматривающих радиолюбительскую практику и нормальные условия работы радиотехнических устройств широкого применения.
1. При магнитном экранировании экран должен:
1) Обладать меньшим магнитным сопротивлением, чем воздух
2) обладать равным воздуху магнитным сопротивлением
3) обладать большим магнитным сопротивлением, чем воздух
2. При экранировании магнитного поля Заземление экрана:
1) Не влияет на эффективность экранирования
2) Увеличивает эффективность магнитного экранирования
3) Уменьшает эффективность магнитног экранирования
3. На низких частотах ( 100кГц) эффективность магнитного экранирования не зависит от:
1) Толщины экрана
2) Магнитной проницаемости материала
3) Расстояния между экраном и другими магнитопроводами.
2. Семененко, В. А. Информационная безопасность / В. А. Семененко — Москва, 2008г.
3. Ярочкин, В. И. Информационая безопасность / В. И. Ярочкин – Москва, 2000г.
4. Демирчан, К. С. Теоретические основы электротехники III том / К. С. Демирчан С.-П, 2003г.
Для экранирования магнитного поля применяются два метода:
Метод магнитного поля экраном.
Рассмотрим подробнее каждый из этих методов.
Метод шунтирования магнитного поля экраном.
Метод шунтирования магнитного поля экраном применяется для защиты от постоянного и медленно изменяющего переменного магнитного поля. Экраны изготавливаются из ферромагнитных материалов с большой относительной магнитной проницательностью (сталь, пермаллой). При наличии экрана линии магнитной индукции проходят в основном по его стенкам (рисунок 8.15), которые обладают малым магнитным сопротивлением по сравнению с воздушным пространством внутри экрана. Качество экранирования зависит от магнитной проницаемости экрана и сопротивления магнитопровода, т.е. чем толще экран и чем меньше швов, стыков, идущих поперек направления линий магнитной индукции, эффективность экранирования будет выше.
Метод вытеснения магнитного поля экраном.
Метод вытеснения магнитного поля экраном применяется для экранирования переменных высокочастотных магнитных полей. При этом используются экраны из немагнитных металлов. Экранирование основано на явлении индукции. Здесь явление индукции полезно.
Поставим на пути равномерного переменного магнитного поля (рисунок 8.16, а) медный цилиндр. В нем возбудятся переменные ЭД, которые, в свою очередь, создадут переменные индукционные вихревые токи (токи Фуко). Магнитное поле этих токов (рисунок 8.16,б) будет замкнутым; внутри цилиндра оно будет направлено навстречу возбуждающему полю, а за его пределами – в ту же сторону, что и возбуждающее поле. Результирующее поле (рисунок 8.16, в) оказывается ослабленным у цилиндра и усиленным вне его, т.е. происходит вытеснение поля из пространства, занимаемого цилиндром, в чем и заключается его экранирующее действие, которое будет тем эффективнее, чем меньше электрическое сопротивление цилиндра, т.е. чем больше протекающие по нему вихревые токи.
Благодаря поверхностному эффекту («скинэффекту») плотность вихревых токов и напряженность переменного магнитного поля по мере углубления в металл падает по экспоненциальному закону
, (8.5)
– показатель уменьшения поля и тока, которое называется эквивалентной глубиной проникновения.
Здесь – относительная магнитная проницаемость материала;
– магнитная проницаемость вакуума, равная 1.25*10 8 гн*см -1 ;
– удельное сопротивление материала, Ом*см;
Величиной эквивалентной глубины проникновения удобно характеризовать экранирующий эффект вихревых токов. Чем меньше х 0 , тем больше создаваемое ими магнитное поле, вытесняющее из пространства занятого экраном, внешнее поле источника наводки.
Для немагнитного материала в формуле (8.6) =1, экранирующий эффект определяется только и . А если экран сделать из ферромагнитного материала?
При равных эффект будет лучше, так как >1 (50..100) и х 0 будет меньше.
Итак, х 0 является критерием экранирующего эффекта вихревых токов. Представляет интерес оценить, во сколько раз плотность тока и напряженность магнитного поля становится меньше на глубине х 0 по сравнению, чем на поверхности. Для этого в формулу (8.5) подставим х=х 0 , тогда
откуда видно, что на глубине х 0 плотность тока и напряженность магнитного поля падают в е раз, т.е. до величины 1/2.72, составляющей 0.37 от плотности и напряженности на поверхности. Так как ослабление поля всего в 2.72 раза на глубине х 0 недостаточно для характеристики экранирующего материала , то пользуются еще двумя величинами глубины проникновения х 0,1 и х 0,01 , характеризующими падение плотности тока и напряжения поля в 10 и 100 раз от их значений на поверхности.
Выразим значения х 0,1 и х 0,01 через величину х 0 , для этого на основание выражения (8.5) составим уравнение
решив которые получим
х 0.1 =х 0 ln10=2.3x 0 ; (8.7)
х 0.01 =х 0 ln100=4.6x 0
На основании формул (8.6) и (8.7) для различных экранирующих материалов в литературе приведены значения глубин проникновения. Эти же данные, с целью наглядности, приведем и мы в виде таблицы 8.1.
Из таблицы видно, что для всех высоких частот, начиная с диапазона средних волн, экран из любого металла толщиной 0,5..1,5 мм действует весьма эффективно. При выборе толщины и материала экрана следует исходить не из электрических свойств материала, а руководствоваться соображениями механической прочности, жесткости, стойкости против коррозии, удобства стыковки отдельных деталей и осуществления между ними переходных контактов с малым сопротивлением, удобства пайки, сварки и пр.
Из данных таблицы следует, что для частот больше 10 МГЦ пленка из меди и тем более из серебра толщиной меньше 0.1 мм дает значительный экранирующий эффект . Поэтому на частотах выше 10 МГц вполне допустимо применение экранов из фольгированного гетинакса или другого изоляционного материала с нанесенным на него медным или серебряным покрытием.
Сталь можно использовать в качестве экранов, только нужно помнить, что из-за большого удельного сопротивления и явления гистерезиса экран из стали может вносить в экранирующие цепи значительные потери.
Принципы экранирования магнитного поля
Для экранирования магнитного поля применяются два метода:
Метод магнитного поля экраном.
Рассмотрим подробнее каждый из этих методов.
Метод шунтирования магнитного поля экраном.
Метод шунтирования магнитного поля экраном применяется для защиты от постоянного и медленно изменяющего переменного магнитного поля. Экраны изготавливаются из ферромагнитных материалов с большой относительной магнитной проницательностью (сталь, пермаллой). При наличии экрана линии магнитной индукции проходят в основном по его стенкам (рисунок 8.15), которые обладают малым магнитным сопротивлением по сравнению с воздушным пространством внутри экрана. Качество экранирования зависит от магнитной проницаемости экрана и сопротивления магнитопровода, т.е. чем толще экран и чем меньше швов, стыков, идущих поперек направления линий магнитной индукции, эффективность экранирования будет выше.
Метод вытеснения магнитного поля экраном.
Метод вытеснения магнитного поля экраном применяется для экранирования переменных высокочастотных магнитных полей. При этом используются экраны из немагнитных металлов. Экранирование основано на явлении индукции. Здесь явление индукции полезно.
Поставим на пути равномерного переменного магнитного поля (рисунок 8.16, а) медный цилиндр. В нем возбудятся переменные ЭД, которые, в свою очередь, создадут переменные индукционные вихревые токи (токи Фуко). Магнитное поле этих токов (рисунок 8.16,б) будет замкнутым; внутри цилиндра оно будет направлено навстречу возбуждающему полю, а за его пределами – в ту же сторону, что и возбуждающее поле. Результирующее поле (рисунок 8.16, в) оказывается ослабленным у цилиндра и усиленным вне его, т.е. происходит вытеснение поля из пространства, занимаемого цилиндром, в чем и заключается его экранирующее действие, которое будет тем эффективнее, чем меньше электрическое сопротивление цилиндра, т.е. чем больше протекающие по нему вихревые токи.
Благодаря поверхностному эффекту («скинэффекту») плотность вихревых токов и напряженность переменного магнитного поля по мере углубления в металл падает по экспоненциальному закону
, (8.5)
– показатель уменьшения поля и тока, которое называется эквивалентной глубиной проникновения.
Здесь – относительная магнитная проницаемость материала;
– магнитная проницаемость вакуума, равная 1.25*10 8 гн*см -1 ;
– удельное сопротивление материала, Ом*см;
Величиной эквивалентной глубины проникновения удобно характеризовать экранирующий эффект вихревых токов. Чем меньше х 0 , тем больше создаваемое ими магнитное поле, вытесняющее из пространства занятого экраном, внешнее поле источника наводки.
Для немагнитного материала в формуле (8.6) =1, экранирующий эффект определяется только и . А если экран сделать из ферромагнитного материала?
При равных эффект будет лучше, так как >1 (50..100) и х 0 будет меньше.
Итак, х 0 является критерием экранирующего эффекта вихревых токов. Представляет интерес оценить, во сколько раз плотность тока и напряженность магнитного поля становится меньше на глубине х 0 по сравнению, чем на поверхности. Для этого в формулу (8.5) подставим х=х 0 , тогда
откуда видно, что на глубине х 0 плотность тока и напряженность магнитного поля падают в е раз, т.е. до величины 1/2.72, составляющей 0.37 от плотности и напряженности на поверхности. Так как ослабление поля всего в 2.72 раза на глубине х 0 недостаточно для характеристики экранирующего материала , то пользуются еще двумя величинами глубины проникновения х 0,1 и х 0,01 , характеризующими падение плотности тока и напряжения поля в 10 и 100 раз от их значений на поверхности.
Выразим значения х 0,1 и х 0,01 через величину х 0 , для этого на основание выражения (8.5) составим уравнение
решив которые получим
х 0.1 =х 0 ln10=2.3x 0 ; (8.7)
х 0.01 =х 0 ln100=4.6x 0
На основании формул (8.6) и (8.7) для различных экранирующих материалов в литературе приведены значения глубин проникновения. Эти же данные, с целью наглядности, приведем и мы в виде таблицы 8.1.
Из таблицы видно, что для всех высоких частот, начиная с диапазона средних волн, экран из любого металла толщиной 0,5..1,5 мм действует весьма эффективно. При выборе толщины и материала экрана следует исходить не из электрических свойств материала, а руководствоваться соображениями механической прочности, жесткости, стойкости против коррозии, удобства стыковки отдельных деталей и осуществления между ними переходных контактов с малым сопротивлением, удобства пайки, сварки и пр.
Из данных таблицы следует, что для частот больше 10 МГЦ пленка из меди и тем более из серебра толщиной меньше 0.1 мм дает значительный экранирующий эффект . Поэтому на частотах выше 10 МГц вполне допустимо применение экранов из фольгированного гетинакса или другого изоляционного материала с нанесенным на него медным или серебряным покрытием.
Сталь можно использовать в качестве экранов, только нужно помнить, что из-за большого удельного сопротивления и явления гистерезиса экран из стали может вносить в экранирующие цепи значительные потери.
Фильтрация является основным средством ослабления конструктивных помех, создаваемых в цепях питания и коммутации постоянного и переменного тока ЭС. Предназначенные для этой цели помехоподавляющие фильтры позволяют снижать кондуктивные помехи, как от внешних, так и от внутренних источников. Эффективность фильтрации определяется вносимым затуханием фильтра:
К фильтру предъявляются следующие основные требования:
Обеспечение заданной эффективности S в требуемом частотном диапазоне (с учетом внутреннего сопротивления и нагрузки электрической цепи);
Ограничение допустимого падения постоянного или переменного напряжения на фильтре при максимальном токе нагрузки;
Обеспечение допустимых нелинейных искажений питающего напряжения, определяющих требования к линейности фильтра;
Конструктивные требования – эффективность экранирования, минимальные габаритные размеры и масса, обеспечение нормального теплового режима, стойкость к механическим и климатическим воздействиям, технологичность конструкции т.д.;
Элементы фильтра должны выбираются с учетом номинальных токов и напряжений электрической цепи, а также вызванных в них бросков напряжений и токов, вызванных нестабильностью электрического режима и переходными процессами.
Конденсаторы. Применяются как самостоятельные помехоподавляющие элементы и как параллельные звенья фильтров. Конструктивно помехоподавляющие конденсаторы делятся на:
Двухполюсные типа К50-6, К52-1Б, ЭТО, К53-1А;
Опорные типа КО, КО-Е, КДО;
Проходные некоаксиальные типа К73-21;
Проходные коаксиальные типа КТП-44, К10-44, К73-18, К53-17;
Основной характеристикой помехоподавляющего конденсатора является зависимость его импеданса от частоты. Для ослабления помех в диапазоне частот примерно до 10МГц можно использовать двухполюсные конденсаторы с учетом малой длины их выводов. Опорные помехоподавляющие конденсаторы применяются до частот 30-50 МГц. Симметричные проходные конденсаторы используются в двухпроводной цепи до частот порядка 100 МГц. Проходные конденсаторы работают в широком диапазоне частот примерно до 1000 Мгц.
Индуктивные элементы . Применяются как самостоятельные элементы подавления помех и как последовательные звенья помехоподавляющих фильтров. Конструктивно наиболее распространены дроссели специальных видов:
Витковые на ферромагнитном сердечнике;
Основной характеристикой помехоподавляющего дросселя является зависимость его импеданса от частоты. При низких частотах рекомендуется применение магнитодиэлектрических сердечников марок ПП90 и ПП250, изготовленных на основе м-пермалоя. Для подавления помех в цепях аппаратуры с токами до 3А рекомендуется использовать ВЧ- дроссели типа ДМ, при больших номинальных значениях токов – дроссели серии Д200.
Фильтры. Керамические проходные фильтры типа Б7, Б14, Б23 предназначены для подавления помех в цепях постоянного, пульсирующего и переменного токов в диапазоне частот от 10 МГц до 10ГГц. Конструкции таких фильтров представлены на рисунке 8.17
Вносимые фильтрами Б7, Б14, Б23 затухания в диапазоне частот 10..100 МГц возрастает приблизительно от 20..30 до 50..60 дБ и в диапазоне частот свыше 100 МГц превышает 50 дБ.
Керамические проходные фильтры типа Б23Б построены на основе дисковых керамических конденсаторов и безвитковых ферромагнитных дросселей (рисунок 8.18).
Безвитковые дроссели представляют собой трубчатый ферромагнитный сердечник из феррита марки 50 ВЧ-2 , одетый на проходной вывод. Индуктивность дросселя составляет 0.08…0.13 мкГн. Корпус фильтра выполнен из керамического материала УФ-61, имеющего высокую механическую прочность. Корпус металлизирован слоем серебра для обеспечения малого переходного сопротивления между наружной обкладкой конденсатора и заземляющей резьбовой втулкой, с помощью которой осуществляется крепление фильтра. Конденсатор по наружному периметру припаян к корпусу фильтра., а по внутреннему – к проходному выводу. Герметизация фильтра обеспечивается заливкой торцов корпуса компаундом.
Для фильтров Б23Б:
номинальные емкости фильтров – от 0.01 до 6.8 мкФ,
номинальное напряжение 50 и 250В,
номинальный ток до 20А,
Габаритные размеры фильтра:
Вносимое фильтрами Б23Б затухание в диапазоне частот от 10 кГц до 10 МГц возрастает приблизительно от 30..50 до 60..70 дБ и в диапазоне частот свыше 10 МГц превышает 70 дБ.
Для бортовых ЭС перспективным является применение специальных помехоподавляющих проводов с ферронаполнителями, имеющими высокую магнитную проницаемость и большие удельные потери. Так у проводов марки ППЭ вносимое затухание в диапазоне частот 1…1000 МГц возрастает с 6 до 128 дБ/м.
Известна конструкция многоштыревых разъемов, в которых на каждый контакт устанавливается по одному П-образному помехоподавляющему фильтру.
Габаритные размеры встроенного фильтра:
Вносимое фильтром затухание в 50-омной цепи составляет 20 дБ на частоте 10МГц и до 80 дБ на частоте 100МГц.
Фильтрация цепей питания цифровых РЭС.
Импульсные помехи в шинах питания, возникающие в процессе коммутации цифровых интегральных схем (ЦИС), а также проникающие внешним путем, могут приводить к появлению сбоев в работе устройств цифровой обработки информации.
Для снижения уровня помех в шинах питания применяются схемно-конструкторские методы:
Уменьшение индуктивности шин «питание», с учетом взаимной магнитной связи прямого и обратного проводников;
Сокращение длин участков шин «питания», которые являются общими для токов для различных ЦИС;
Замедление фронтов импульсных токов в шинах «питание» с помощью помехоподавляющих конденсаторов;
Рациональная топология цепей питания на печатной плате.
Увеличение размеров поперечного сечения проводников приводит к уменьшению собственной индуктивности шин, а также снижает их активное сопротивление. Последнее особенно важно в случае шины «земля», в которая является обратным проводником для сигнальных цепей. Поэтому в многослойных печатных платах желательно выполнить шины «питание» в виде проводящих плоскостей, расположенных в соседних слоях (рисунок 8.19).
Навесные шины питания, применяемые в печатных узлах на цифровых ИС, имеют большие поперечные размеры по сравнению с шинами, выполненными в виде печатных проводников, а следовательно, и меньшую индуктивность и сопротивление. Дополнительными преимуществами навесных шин питания являются:
Упрощенная трассировка сигнальных цепей;
Повышение жесткости ПП за счет создания дополнительных ребер, выполняющих роль ограничителей, которые предохраняют ИС с навесными ЭРЭ от механических повреждений при монтаже и настройке изделия (рисунок 8.20).
Высокой технологичностью отличаются шины «питания», изготовленные печатным способом и крепящиеся на ПП вертикально (рисунок 6.12в).
Известны конструкции навесных шин, установленных под корпус ИС, которые располагаются на плате рядами (рисунок 8.22).
Рассмотренные конструкции шин «питания» обеспечивают также большую погонную емкость, что приводит к уменьшению волнового сопротивления линии «питания» и, следовательно, снижению уровня импульсных помех.
Разводка питания ИС на ПП должно осуществляться не последовательно (рисунок 8.23а), а параллельно (рисунок 8.23б)
Необходимо использовать разводку питания в виде замкнутых контуров (рис.8.23в). Такая конструкция приближается по своим электрическим параметрам к сплошным плоскостям питания. Для защиты от влияния внешнего помехонесущего магнитного поля по периметру ПП следует предусмотреть внешний замкнутый контур.
Система заземления – это электрическая цепь, обладающая свойством сохранять минимальный потенциал, являющийся уровнем отсчета в конкретном изделии. Система заземления в ЭС должна обеспечивать сигнальные и силовые цепи возврата, защитить людей и оборудование от неисправностей в цепях источников питания, снимать статические заряды.
К системам заземления предъявляют следующие основные требования:
1) минимизация общего импеданса шины «земля»;
2) отсутствие замкнутых контуров заземления, чувствительных к воздействию магнитных полей.
В ЭС требуется как минимум три раздельные цепи заземления:
Для сигнальных цепей с низким уровнем токов и напряжений;
Для силовых цепей с высоким уровнем потребляемой мощности (источники питания, выходные каскады ЭС и т.д.)
Для корпусных цепей (шасси, панелей, экранов и металлизации).
Электрические цепи в ЭС заземляются следующим способами: в одной точке и в нескольких точках, ближайших к опорной точке заземления (рисунок 8.24)
Соответственно системы заземления могут быть названы одноточечной и многоточечной.
Наибольший уровень помех возникает в одноточечной системе заземления с общей последовательно включенной шиной «земля» (рисунок 8.24 а).
Чем дальше удалена точка заземления, тем выше её потенциал. Её не следует применять для цепей с большим разбросом потребляемой мощности, так как мощные ФУ создают большие возвратные токи заземления, которые могут влиять на малосигнальные ФУ. При необходимости наиболее критичный ФУ следует подключить как можно ближе к точке опорного заземления.
Многоточечную систему заземления (рисунок 8.24 в) следует использовать для высокочастотных схем (f≥10Мгц), подключая ФУ РЭС в точках, ближайших к опорной точке заземления.
Для чувствительных схем применяется схема с плавающим заземлением (рисунок 8.25). Такая заземляющая система требует полной изоляции схемы от корпуса (высокого сопротивления и низкой емкости), в противном случае она оказывается малоэффективной. В качестве источников питания схем могут использоваться солнечные элементы или аккумуляторы, а сигналы должны поступать и покидать схему через трансформаторы или оптроны.
Пример реализации рассмотренных принципов заземления для девятидорожечного цифрового накопителя на магнитной ленте показан на рисунке 8.26.
Здесь имеются следующие шины земли: три сигнальные, одна силовая и одна корпусная. Наиболее восприимчивые к помехам аналоговые ФУ (девять усилителей считывания) заземлены с помощью двух разделенных шин «земля». Девять усилителей записи, работающих с большими, чем усилители считывания, уровнями сигналов, а также ИС управления и схемы интерфейса с изделиями передачи данных подключены к третьей сигнальной шине «земля». Три двигателя постоянного тока и их схемы управления, реле и соленоиды соединены с силовой шиной «земля». Наиболее восприимчивая схема управления двигателем ведущего вала подключена ближе других к опорной точке заземления. Корпусная шина «земля» служит для подключения корпуса и кожуха. Сигнальная, силовая и корпусная шины «земля» соединяются вместе в одной точке в источнике вторичного электропитания. Следует отметить целесообразность составления структурных монтажных схем при проектировании РЭС.
Экранирование магнитного поля.
Метод шунтирования. -Метод магнитного поля экраном.
Метод шунтирования магнитного поля экраном применяется для защиты от постоянного и медленно изменяющего переменного магнитного поля. Экраны изготавливаются из ферромагнитных материалов с большой относительной магнитной проницательностью (сталь, пермаллой). При наличии экрана линии магнитной индукции проходят в основном по его стенкам, которые обладают малым магнитным сопротивлением по сравнению с воздушным пространством внутри экрана. Чем толще экран и, чем меньше швов, стыков, тем экранирование эффективнее. Метод вытеснения магнитного поля экраном применяется для экранирования переменных высокочастотных магнитных полей. При этом используются экраны из немагнитных металлов. Экранирование основано на явлении индукции.
Если поставить на пути равнопеременного магнитного моля медный цилиндр, в котором возбудятся переменные вихревые индукционные токи(токи Фуко). Магнитное поле этих токов будет замкнутым; внутри цилиндра оно будет направлено навстречу возбуждающему полю, а за его пределами – в ту же сторону, что и возбуждающее поле. Результирующее поле оказывается ослабленным у цилиндра и усиленным вне его, т.е. происходит вытеснение поля из пространства, занимаемого цилиндром, в чем и заключается его экранирующее действие, которое будет тем эффективнее, чем меньше электрическое сопротивление цилиндра, т.е. чем больше протекающие по нему вихревые токи.
Благодаря поверхностному эффекту («скинэффекту») плотность вихревых токов и напряженность переменного магнитного поля по мере углубления в металл падает по экспоненциальному закону
Где
μ– относительная магнитная проницаемость материала; μ˳– магнитная проницаемость вакуума, равная 1.25*108 гн*см-1; ρ– удельное сопротивление материала, Ом*см; ƒ– частота, Гц.
Для немагнитного материала μ = 1. И экранирующий эффект определяется только по ƒ и ρ.
Экранирование является активным методом защиты информации. Экранирование магнитного поля (магнитостатическое экранирование) используется при необходимости подавить наводки на низких частотах от 0 до 3..10 кГц. Эффективность магнитостатического экранирования повышается при применении многослойных экранов.
Эффективность магнитного экранирования зависит от частоты и электрических свойств материала экрана. Чем ниже частота, тем слабее действует экран, тем большей толщины приходится его делать для достижения одного и того же экранирующего эффекта. Для высоких частот, начиная с диапазона средних волн, экран из любого металла толщиной 0,5 . 1,5 мм действует весьма эффективно. При выборе толщины и материала экрана следует учитывать механическую прочность, жесткость, стойкость против коррозии, удобство стыковки отдельных деталей и осуществления между ними переходных контактов с малым сопротивлением, удобство пайки, сварки и пр. Для частот выше 10 МГц медная и тем более серебряная пленка толщиной более 0,1 мм дает значительный экранирующий эффект. Поэтому на частотах выше 10 МГц вполне допустимо применение экранов из фольгированного гетинакса или другого изоляционного материала с нанесенным на него медным или серебряным покрытием. Для изготовления экранов используются: металлические материалы, материалы-диэлектрики, стёкла с токопроводящим покрытием, специальные металлизированные ткани, токопроводящие краски. Металлические материалы (сталь, медь, алюминий, цинк, латунь), применяемые для экранирования, изготавливаются в виде листов, сеток и фольги.
Все эти материалы удовлетворяют требованию устойчивости против коррозии при использовании соответствующих защитных покрытий. Наиболее технологичными являются конструкции экранов из стали, так как при их изготовлении и монтаже можно широко использовать сварку или пайку. Металлические листы должны быть между собой электрически соединены по всему периметру. Шов электросварки или пайки должен быть непрерывным, с тем чтобы получить цельносварную конструкцию экрана. Толщина стали выбирается исходя из назначения конструкции экрана и условий его сборки, а также из возможности обеспечения сплошных сварных швов при изготовлении. Экраны из стали обеспечивают ослабление электромагнитного излучения более чем на 100 дБ. Сетчатые экраны проще в изготовлении, удобны для сборки и эксплуатации. Для защиты от коррозии сетки целесообразно покрывать антикоррозийным лаком. К недостаткам сетчатых экранов следует отнести невысокую механическую прочность и меньшую эффективность экранирования по сравнению с листовыми. Для сетчатых экранов пригодна любая конструкция шва, обеспечивающая хороший электрический контакт между соседними полотнищами сетки не реже чем через 10-15 мм. Для этой цели может применяться пайка или точечная сварка. Экран, изготовленный из лужёной низкоуглеродистой стальной сетки с ячейкой 2,5-3 мм, даёт ослабление порядка 55-60 дБ, а из такой же двойной (с расстоянием между наружной и внутренней сетками 100 мм) около 90 дБ. Экран, изготовленный из одинарной медной сетки с ячейкой 2,5 мм, имеет ослабление порядка 65-70 дБ
Какие материалы не пропускают электромагнитные волны?
Таких, чтобы прямо совсем не пропускали, не бывеает. Рентгеновские дефектоскопы же работают как-то.
Хорошо задерживает ЭМ любой металл, чем толще, тем лучше.
Зависит от длины волны. Даже тонкая бумага может экранировать некоторые длины волн полностью.
Отражают материалы с высокими диэлектрическими и магнитными проницаемостями. Идеальный отражатель — сверхроводник.
Свинцовые трусы . Не только от электромагнитных волн, но и от радиации
P.S. я имел ввиду не трусы «свинцового» цвета, а именно трусы из свинца
Всё зависит от того какой длинны волна. Универсального материала нет. Почему какой то то там номер ж это смерть. Да по тому что даже 8 метров в толщину железобетон для него совершенно прозрачен.
ShadeИскусственный Интеллект (272894) 2 года назад
гамма излучение любое задержит метр свинца.
Icetrain Оракул (64563) Shade, слишком интенсивное может его расплавить. ) Свинец и в тонких пластинках значительно снижает уровень излучения. А ж проходит. )
>> не пропускают электромагнитные волны
Зеркало отражает свет, металлическая решетка отражает СВЧ, а краска на военных самолетах поглощает, сигнал от моего роутера почти полностью поглощается двумя несущими ж/б стенами.
Электропроводящие.
Только не «не пропускают», а говорить надо о толщине материала и глубине проникновения волны внутрь. Чем длиннее волна, тем глубже она проникает.
Что не пропускает электромагнитные волны
«Ткань Фарадея» блокирует 99,9% электромагнитных волн
Георгий Голованов 14 декабря 2020 г., 09:40
Георгий Голованов 14 декабря 2020 г., 09:40
Основной компонент изобретения английских инженеров — двухмерный неорганический материал MXene, состоящий из слоев переходных металлов толщиной в несколько атомов. В отличие от аналогов, процесс производства не требует предшествующей или последующей обработки, а сами ткани хорошо сохраняют свои экранирующие качества после двух лет хранения.
Самые интересные технологические и научные новости выходят в нашем телеграм-канале Хайтек+. Подпишитесь, чтобы быть в курсе.
Электромагнитные волны выполняют важную функцию в современном мире, обеспечивая работу радио, телевидения, Wi-Fi и Bluetooth, но попутно засоряя окружающее пространство помехами, которые нарушают работу электронных устройств. Поэтому чувствительные элементы приборов часто покрывают защитным слоем, например, медной фольгой. Проблема в том, что такой метод экранирования увеличивает объем и массу, к тому же отражает электромагнитные волны, которые продолжают создавать помехи, пишет New Atlas.
MXene принадлежит к классу проводящих двумерных материалов, из которого изготавливают напыляемые антенны, проводящую глину и электроды для батарей. Он не только чрезвычайно тонкий, но и поглощает сигналы, вместо того чтобы отражать их. Специалисты из Дрексельского университета нашли ему новое применение. Они погрузили куски льняной и хлопчатобумажной ткани в раствор MXene и обнаружили, что получившийся материал блокирует 99,9% электромагнитных сигналов.
При тщательном изучении оказалось, что хлопья MXene прочно крепятся на волокнах тканей благодаря электрическому заряду. Получается надежное покрытие, не требующее предшествующей или последующей обработки, в отличие от других проводящих материалов.
Другие тесты продемонстрировали высокую стойкость тканей. Через два года хранения в обычных условиях образцы потеряли лишь от 8% до 13% эффективности.
Разработчики считают, что новый материал может стать хорошей альтернативой нынешним тканям, экранирующим электромагнитное излучение. Оно не только обеспечивает лучшую защиту чувствительной электронике, но и не требует химических присадок.
Аналогичную функцию выполняет и двухмерный материал карбонитрид титана, открытый недавно учеными из США. Он также абсорбирует, а не отражает электромагнитные волны, снижая общее количество помех в окружающей среде.
Шум волн: чем опасно окружающее нас электромагнитное излучение
Человек постоянно находится под воздействием электромагнитного излучения из-за гаджетов, бытовых приборов, терминалов оплаты в магазине, сотовых вышек, радио в машине. Какое излучение представляет для нас наибольшую опасность? Облучает ли нас микроволновка? Зачем алюминиевая пластина под чехлом для телефона? И чем может навредить обычный свет от экрана ноутбука? Рассказывает Эргаш Нуруллаев, кандидат физико-математических наук, доцент кафедры прикладной физики Пермского Политеха.
Существует два типа волн: ионизирующие и неионизирующие. Ионизирующие волны способны отделять электроны от атомов вещества или живых организмов, образуя ионы — заряженные частицы. Примеры ионизирующего излучения — гамма-лучи, используемые в медицине для лечения рака и на атомных электростанциях для производства энергии, а также рентгеновские лучи и ультрафиолет, который испускает Солнце. В повседневной жизни человек подвергается воздействию только ультрафиолетовых лучей, причем самые опасные из них рассеиваются в атмосфере, превращая кислород в озон. Однако постоянное воздействие ультрафиолета может привести к фотостарению кожи, поскольку ультрафиолет разрушает коллаген и эластин — «строительные» компоненты нашей кожи.
«Все приборы и устройства вокруг нас — мобильные телефоны, ноутбуки, беспроводные наушники и смарт-часы с Bluetooth, Wi-Fi-роутеры, электрические зубные щетки, микроволновые печи, холодильники и т. д. — излучают неионизирующие электромагнитные волны. Прежде всего, речь идет о сверхвысокочастотном излучении (СВЧ-излучение или микроволновое излучение), которое имеет диапазон частот от 300 МГц до 300 ГГц, а длину волны — от 1 м до 1 мм», — рассказывает Эргаш Нуруллаев.
Стоит ли бояться микроволновок?
Опасность СВЧ-лучей кроется в их способности передавать тепловую энергию: нагретые молекулы начинают колебаться интенсивнее, что приводит к их разрыву и разрушению вещества. Самым сильным источником такого излучения у нас дома считается микроволновая печь, еда в ней разогревается благодаря воздействию сверхвысокочастотных лучей. Но бояться работающей микроволновки все же не стоит: современные модели со всех сторон обшиты материалом, блокирующим вредное излучение. Даже стекло на дверце покрывают специальным металлическим напылением. При такой защите СВЧ-лучи все равно попадают за пределы микроволновой печи, но в тех дозах, которые не обожгут человека. Специалисты при работе микроволновки рекомендуют сохранять дистанцию в 1 метр.
«Если бы защитный экран в микроволновой печи „запирал“ излучение внутри нее полностью, извне также нельзя было бы воздействовать на содержимое микроволновки. Существует тест с мобильным телефоном: устройство нужно поместить в неработающую печь и позвонить на него. Ранее считалось, что если телефон зазвонил, то устройство некачественное и пропускает СВЧ-лучи. Но поскольку экран в микроволновке все же пропускает излучение, этот тест может быть некорректным», — объясняет физик.
Кстати, страх перед микроволновой печью возник в том числе из-за мифа о том, что она излучает радиацию. Сейчас мы знаем, что это не так: в ее механизме не используются радиоактивные вещества.
Что излучают мобильные телефоны?
От смартфонов исходит комплекс излучений, в который входят микро- и радиоволны, инфракрасное (тепловое) излучение, а также малые порции низкочастотных волн в диапазоне от 2 до 15 Гц. Последние — самые небезопасные, поскольку по частоте совпадают с колебаниями молекул головного мозга. Из-за этого при приближении телефона к уху происходит резонансное поглощение лучей и частицы мозга начинают разрушаться. Микроволновое излучение, как в случае с микроволновкой и едой, нагревает молекулы нашего организма, что также может привести к патологии.
«Самое сильное излучение телефон испускает во время звонка, когда передает сигнал от вышки сотовой связи. Разовая доза такого облучения вреда не принесет — она слишком мала. Однако это воздействие имеет накопительный эффект. И негативные последствия от беспрерывного использования мобильных устройств могут настигнуть через 40-50 лет в виде заболеваний иммунной системы, психических отклонений, заболеваний раком», — отмечает ученый.
Особенно восприимчивы к микроволновому излучению маленькие дети, у которых еще не сросся родничок, — мягкий участок между черепными костями. К тому же головной мозг ребенка содержит больше жидкости, чем жира. В таком случае ткани будут лучше поглощать электромагнитные лучи.
Как можно защититься от сверхвысокочастотного излучения? Одним из вариантов будет положить в чехол от телефона алюминиевую пластинку. Она оградит вас от лишнего излучения, когда телефон лежит в кармане и не используется. А во время звонка устройство лучше держать на расстоянии от головы и по возможности сократить время разговора.
Почему вредно читать в транспорте?
Персональные компьютеры — незаменимый инструмент для работы, и ограничить исходящее от него излучение алюминиевой пластинкой не получится. За последние 10-15 лет количество микроволнового излучения от них уменьшилось. Тем не менее дополнительным источником излучения является Wi-Fi-роутер, заменить который можно менее удобным интернет-кабелем.
Не стоит забывать, что экран ноутбука (как и смартфона) излучает свет. Разрушить структуру молекул в нашем организме или вызвать ожог он не может, но способен испортить зрение сильной пульсацией. Человек зрительно различает частоты в диапазоне от 35 до 60 Гц. Показатель выше 400 Гц не имеет влияния на организм человека, поскольку на таких частотах это просто не воспринимается сетчаткой глаза. Но значения ниже этого будут утомлять глаза, что в последствие приведет к снижению остроты зрения.
«Даже если ваше устройство, смартфон или ноутбук имеют комфортный показатель пульсации, вибрация, возникающая из-за движения транспорта, создает колебания, которые мешают глазу сфокусироваться на тексте или изображении. Это перетруждает зрение», — добавляет Эргаш Нуруллаев.
Где разместить гаджеты, чтобы снизить риски от излучения?
Мобильный телефон на время сна специалисты рекомендуют держать минимум в полуметре от головы, ни в коем случае не класть его под подушку или на кровать рядом с собой. Лучше всего, если любые гаджеты будут удалены от кровати на 2-3 метра. Роутер для Wi-Fi можно разместить в нежилой зоне, например, коридоре, подальше от спального или рабочего места.
Следует понимать, что излучение — это распространяющееся в пространстве изменение состояния электромагнитного поля. Закон обратных квадратов говорит, что воздействие этого поля уменьшается пропорционально расстоянию от источника излучения, взятого в квадрат. То есть если разместить Wi-Fi-роутер или умную колонку в два раза дальше, то мощность излучения от них уменьшится в четыре раза.
Приборы с электромагнитным излучением окружают нас постоянно. Их длительное воздействие продолжают исследовать, при этом в России такие товары проходят обязательную проверку на допустимый уровень излучения.