Принцип работы импульсного блока питания
Перейти к содержимому

Принцип работы импульсного блока питания

  • автор:

Принцип работы импульсного блока питания.

fon1

Существуют блоки питания (БП) линейные и импульсные.
Линейный БП состоит из силового трансформатора, выпрямителя и стабилизатора. Главным недостатком линейного БП — это наличие низкочастотного силового трансформатора с тяжелым и массивным железным сердечником и сетевой обмоткой с большим числом витков.
Это следствие того, что работать силовой трансформатор вынужден на частоте электросети 50 Гц. Уже при повышении частоты сети до 400 Гц (на некоторых промышленных предприятиях, на оборонных объектах) его массо-габиритные параметры резко снижаются. К тому же, при увеличении частоты будет увеличена и частота выпрямленных пульсаций, а это значит,что для эффективного сглаживания потребуется конденсатор куда меньшей емкости.
Теперь понятно, что если мы хотим компактный, легкий и мощный БП, то нужно каким-то образом повысить частоту, на которой будет работать трансформатор. Ну и если уж повышать её, то не до 400 Гц, а уж сразу лучше до нескольких десятков или сотен кГц. Однако, повысить частоту сети непосредственно практически сложно. Куда легче вообще отказаться от переменного тока, — взять и сразу же выпрямить ток, поступающий из розетки, а затем уже из него с помощью генератора сделать переменный ток любой частоты.
На рисунке 1 показана упрощенная схема импульсного блока питания.
Ток от электросети частотой 50 Гц поступает на диодный мост VD1, выпрямляется, сглаживается конденсатором С1 и на выходе получаем около 300V, которым питается высокочастотный импульсный генератор ШИМ (ШИМ — это аббревиатура названия: «широко — импульсная модуляция»). Через первичную обмотку 1 подается питание на мощный выходной транзистор VТ1, который выполняет роль усилителя и ключа подачи импульсов в трансформатор.
Генератор вырабатывает прямоугольные импульсы в несколько десятков кГц и подаются на базу VТ1. Транзистор открывается и через него и обмотку 1 пойдет нарастающий ток. На вторичной обмотке 2 наводится ЭДС самоиндукции и на выходе диода VD2 появится положительное напряжение.
Трансформатор импульсного блока питания работает на частоте значительно выше сетевых 50 Гц и поэтому он имеет малое сходство с привычным силовым трансформатором. Он компактный с ферритовым сердечником и с небольшим числом витков намотки. И при мощности в сотню ватт весит не более 100 граммов.
Если будем увеличивать длительность импульсов приложенных к базе VТ1, во вторичной цепи будет увеличиваться напряжение, т.к энергии будет отдаваться больше, а если уменьшать длительность, — будет уменьшаться. Таким образом, изменяя длительность импульсов, поступающих на базу VT1, можно изменять напряжение вторичной обмотки Т1 и, следовательно, осуществлять стабилизацию на выходе импульсного блока питания. Для этого нужно устройство, которое будет каким-то образом измерять напряжение на выходе вторичной обмотки и регулировать соответствующим образом ширину импульсов, поступающих на базу VT1. В качестве такого устройства используется ШИМ контроллер.

В состав ШИМ контроллера входит задающий генератор импульсов, схема защиты и контроля, логическая схема, которая и управляет длительностью импульсов, поступающих на базу выходного транзистора.
Для стабилизации выходного напряжения импульсного блока питания, контроллер «должен знать» его величину при любом его изменении. Для этих целей используется цепь слежения (или цепь обратной связи) и она может быть выполнена самыми разными способами.
Если нет необходимости в гальванической развязки от сети, то питание с выходного выпрямителя (как показано на рис. 1) непосредственно подается на вход слежения (или на вход компаратора) генератора ШИМ (или ШИМ — контроллера). Если же необходима развязка, то, как промежуточное звено, может быть использована оптопара. Такой способ слежения называется непосредственным. Однако, существует и косвенный метод слежения (рис.2).
Суть косвенного метода слежения в том, что для измерения выходных параметров импульсного блока питания используется дополнительная обмотка 3 трансформатора с выпрямителем на выходе. Так как все обмотки взаимосвязаны, то эта дополнительная обмотка 3 и работает как некий датчик выходных параметров импульсного блока питания.
Практически, ШИМ-контроллер работает таким образом: он изменяет широту импульсов, подаваемых на базу транзистора таким образом, чтобы на его контрольном входе всегда было одно и то же напряжение. Так что регулировать выходное напряжение можно не только изменяя числа витков обмоток, но и с помощью делителя в контрольной цепи, например, переменным резистором R3 (рис.2). Меняя напряжение на контрольном входе контроллера он изменяет широту импульсов так, чтобы это напряжение на его контрольном входе восстановить.
Со стабилизацией все понятно. Теперь вопрос о защите от перегрузки импульсного блока питания. Ведь при превышении тока через транзистор он может выйти из строя.
Обычно используют датчики тока, представляющие собой мощный резистор, включенный в эмиттерную цепь транзистора. При прохождении тока через VT1 и R1 (рис.3) на резисторе создается падение напряжения, которое подается на вход защиты от КЗ ШИМ-контролера. Если оно на резисторе превышает некоторую величину, то контроллер выключает генератор и на базу транзистора не подается сигнал и транзистор не включается.

После знакомства с работой импульсного блока питания можно расширить перечень его преимуществ перед линейными блоками питания.
Кроме уменьшения веса трансформатора и конденсаторов у этих блоков питания будет выше КПД. У низкочастотных трансформаторов значительная доля потерь энергии создается за счет выделения и рассеивания тепла при выполнении электромагнитных преобразований. При импульсном питании наибольшие потери энергии создаются во время возникновения переходных процессов при коммутациях каскадов силовых ключей. А в остальное время транзисторы находятся в устойчивом положении: открыты или закрыты. При таком их состоянии создаются все условия для минимальной потери электроэнергии, когда КПД может составлять 90÷98%.
Также, благодаря использованию полупроводниковых модулей, работающих по цифровым технологиям, в конструкцию блоков питания удается встраивать малогабаритные защиты от перегрузки, выходные стабилизаторы и др.

Но кроме преимуществ импульсные блоки питания имеют и недостатки. Вот основные:
первый — высокочастотные помехи. Так как эти блоки питания работают по принципу преобразования ВЧ импульсов и они излучают помехи для точной цифровой аппаратуры, которые не всегда можно подавить;
второй — импульсные блоки питания имеют ограничение на минимальную мощность нагрузки. Если мощность нагрузки ниже минимальной, блок питания либо не запускается, либо выходные параметры могут не укладываться в допустимые отклонения.

Что такое импульсный блок питания и чем он отличается от обычного аналогового

Во многих электрических приборах уже давно применяется принцип реализации вторичной мощности за счет использования дополнительных устройств, на которые возложены функции обеспечения электроэнергией схем, нуждающихся в питании от отдельных типов напряжений, частоты, тока…

Для этого создаются дополнительные элементы: блоки питания, преобразующие напряжение одного вида в другой. Они могут быть:

  • встроены внутрь корпуса потребителя, как на многих микропроцессорных приборах;
  • или изготовлены отдельными модулями с соединительными проводами по образцу обычного зарядного устройства у мобильного телефона.

В современной электротехнике успешно уживаются два принципа преобразования энергии для электрических потребителей, основанные на:

1. использовании аналоговых трансформаторных устройств для передачи мощности во вторичную схему;

2. импульсных блоках питания.

Они имеют принципиальные отличия в своей конструкции, работают по разным технологиям.

Трансформаторные блоки питания

Первоначально создавались только такие конструкции. Они изменяют структуру напряжения за счет работы силового трансформатора, питающегося от бытовой сети 220 вольт, в котором происходит понижение амплитуды синусоидальной гармоники, направляемой далее на выпрямительное устройство, состоящее из силовых диодов, включенных, как правило, по схеме моста.

После этого пульсирующее напряжение сглаживается параллельно подключенной емкостью, подобранной по величине допустимой мощности, и стабилизируется полупроводниковой схемой с силовыми транзисторами.

Схема трансформаторного блока питания

За счет изменения положения подстроечных резисторов в схеме стабилизации удается регулировать величину напряжения на выходных клеммах.

Импульсные блоки питания (ИБП)

Подобные конструктивные разработки массово появились несколько десятилетий назад и стали пользоваться все большей популярностью в электротехнических приборах благодаря:

  • доступностью комплектования распространенной элементной базой;
  • надежностью в исполнении;
  • возможностями расширения рабочего диапазона выходных напряжений.

Практически все источники импульсного питания незначительно отличаются по конструкции и работают по одной, типичной для других устройств схеме.

Схема импульсного блока питания

В состав основных деталей источников питания входят:

  • сетевой выпрямитель, собранный из: входных дросселей, электромеханического фильтра, обеспечивающего отстройку от помех и развязку статики с конденсаторами, сетевого предохранителя и диодного моста;
  • накопительная фильтрующая емкость;
  • ключевой силовой транзистор;
  • задающий генератор;
  • схема обратной связи, выполненная на транзисторах;
  • оптопара;
  • импульсный источник питания, со вторичной обмотки которого исходит напряжение для преобразования в силовую цепь;
  • выпрямительные диоды выходной схемы;
  • цепи управления выходного напряжения, например, на 12 вольт с подстройкой, изготовленной на оптопаре и транзисторах;
  • фильтрующие конденсаторы;
  • силовые дроссели, выполняющие роль коррекции напряжения и его диагностики в сети;
  • выходные разъемы.

Пример электронной платы подобного импульсного блока питания с кратким обозначением элементной базы показан на картинке.

Плата импульсного блока питания

Как работает импульсный блок питания

Импульсный блок питания выдает стабилизированное питающее напряжение за счет использования принципов взаимодействия элементов инверторной схемы.

Напряжение сети 220 вольт поступает по подключенным проводам на выпрямитель. Его амплитуда сглаживается емкостным фильтром за счет использования конденсаторов, выдерживающих пики порядка 300 вольт, и отделяется фильтром помех.

Входной диодный мост выпрямляет проходящие через него синусоиды, которые затем преобразуются транзисторной схемой в импульсы высокой частоты и прямоугольной формы с определенной скважностью. Они могут преобразовываться:

1. с гальваническим отделением сети питания от выходных цепей;

2. без выполнения подобной развязки.

Импульсный блок питания с гальванической развязкой

В этом случае высокочастотные сигналы направляются на импульсный трансформатор, осуществляющий гальваническую развязку цепей. За счет повышенной частоты увеличивается эффективность использования трансформатора, снижаются габариты его магнитопровода и вес. Чаще всего для материала подобного сердечника применяют ферромагнетики, а электротехнические стали в этих устройствах практически не используются. Это также позволяет минимизировать общую конструкцию.

Один из вариантов исполнения схемы импульсного блока питания с трансформаторной развязкой цепей показан на картинке.

Схема импульсного блока питания

В таких устройствах работают три взаимосвязанных цепочки:

2. каскад из силовых ключей;

3. импульсный трансформатор.

Как работает ШИМ-контроллер

Контроллером называют устройство, которое управляет каким-либо технологическим процессом. В рассматриваемых нами блоке питания им выступает процесс преобразования широтно-импульсной модуляции. В его основу заложен принцип выработки импульсов одинаковой частоты, но с разной длительностью включения.

Подача импульса соответствует обозначению логической единицы, а отсутствие — нуля. При этом они все равны по величине амплитуды и частоте (имеют одинаковый период колебаний Т). Продолжительность включенного состояния единицы и его отношение к периоду меняются и позволяют управлять работой электронных схем.

Типовые изменения ШИП-последовательностей показаны на графике.

Принципы создания ШИМ-импульсов

Контроллеры обычно создают подобные импульсы с частотой 30÷60 кГц.

В качестве примера можно привести контроллер, выполненный на микросхеме TL494. Для настройки частоты выработки его импульсов используется схема, состоящая из резисторов с конденсаторами.

ШИМ-контроллер

Работа каскада из силовых ключей

Он состоит из мощных транзисторов, которые подбираются из биполярных, полевых или IGBT-моделей. Для них может быть создана индивидуальная система управления на других маломощных транзисторах либо интегральных драйверах.

Силовые ключи могут быть включены по различным схемам:

  • мостовой;
  • полумостовой;
  • со средней точкой.

Импульсный трансформатор

Первичная и вторичная обмотки, смонтированные вокруг г магнитопровода из феррита или альсифера, способны надежно передавать высокочастотные импульсы с частотой вплоть до 100 кГц.

Их работу дополняют цепочки из фильтров, стабилизаторов, диодов и других компонентов.

Импульсные блоки питания без гальванической развязки

В импульсных блоках питания, разработанных по алгоритмам, исключающим гальваническое разделение, высокочастотный разделительный трансформатор не используется, а сигнал поступает сразу на фильтр нижних частот. Подобный принцип работы схемы показан ниже.

Схема блока питания без трансформаторной развязки

Особенности стабилизации выходного напряжения

Все импульсные блоки питания имеют в своем составе элементы, осуществляющие отрицательную обратную связь с выходными параметрами. За счет этого они обладают хорошей стабилизацией выходного напряжения при изменяющихся нагрузках и колебаниях питающей сети.

Способы реализации обратной связи зависят от применяемой схемы для работы блока питания. Она может осуществляться у блоков, работающих с гальванической развязкой за счет:

1. промежуточного воздействия выходного напряжения на одну из обмоток высокочастотного импульсного трансформатора;

2. применения оптрона.

В обоих случаях эти сигналы управляют скважностью импульсов, подаваемых на выход ШИМ-контроллера.

При использовании схемы без гальванической развязки обратная связь обычно создается за счет подключения резистивного делителя напряжения.

Преимущества импульсных блоков питания над обычными аналоговыми

При сравнении конструкций блоков с равными показателями выходных мощностей импульсные блоки питания обладают следующими достоинствами:

1. уменьшенный вес;

2. повышенный КПД;

3. меньшая стоимость;

4. расширенный диапазон питающих напряжений;

5. наличие встроенных защит.

1. Пониженный вес и габариты импульсных блоков питания объясняются переходом от преобразований низкочастотной энергии мощными и тяжелыми силовыми трансформаторами с управляющими системами, расположенными на больших радиаторах охлаждения и работающими в постоянном линейном режиме, к технологиям импульсного преобразования и регулирования.

За счет повышения частоты обрабатываемого сигнала сокращается емкость конденсаторов у фильтров напряжения и, соответственно, их габариты. Также упрощается их схема выпрямления вплоть до перехода к самой простой — однополупериодной.

2. У низкочастотных трансформаторов значительная доля потерь энергии создается за счет выделения и рассеивания тепла при выполнении электромагнитных преобразований.

В импульсных блоках наибольшие потери энергии создаются во время возникновения переходных процессов при коммутациях каскадов силовых ключей. А в остальное время транзисторы находятся в устойчивом положении: открыты или закрыты. При таком их состоянии создаются все условия для минимальной потери электроэнергии, когда КПД может составлять 90÷98%.

3. Цена на импульсные блоки питания постепенно снижается за счет постоянно проводимой унификации элементной базы, которая производится широким ассортиментом на полностью механизированных предприятиях со станками-роботами. К тому же режим работы силовых элементов на основе управляемых ключей позволяет использовать менее мощные полупроводниковые детали.

4. Импульсные технологии позволяют запитывать блоки питания от источников напряжения с разной частотой и амплитудой. Это расширяет область их применения в условиях эксплуатации с различными стандартами электрической энергии.

5. Благодаря использованию малогабаритных полупроводниковых модулей, работающих по цифровым технологиям, в конструкцию импульсных блоков удается надежно встраивать защиты, контролирующие возникновение токов коротких замыканий, отключения нагрузок на выходе прибора и другие аварийные режимы.

У обычных трансформаторных блоков питания такие защиты создавались на старой электромеханической, релейной, полупроводниковой базе. Применять сейчас для них цифровые технологии в большинстве схем не имеет смысла. Исключение составляют случаи питания:

  • маломощных цепей управления сложной бытовой техники;
  • слаботочных устройств управления высокой точности, например, используемых в измерительной технике или метрологических целях (цифровые счетчики электроэнергии, вольтметры).

Недостатки импульсных блоков питания

В/ч помехи

Поскольку импульсные блоки питания работают по принципу преобразования высокочастотных импульсов, то они в любом исполнении вырабатывают помехи, транслируемые в окружающую среду. Это создает необходимость их подавления различными способами.

В отдельных случаях помехоподавление может быть неэффективным, что исключает использование импульсных блоков питания для отдельных типов точной цифровой аппаратуры.

Ограничения по мощности

Импульсные блоки питания имеют противопоказание к работе не только на повышенных, но и пониженных нагрузках. Если в выходной цепи произойдет резкое снижение тока за предел минимального критического значения, то схема запуска может отказать или блок станет выдавать напряжение с искаженными техническими характеристиками, не укладывающимися в рабочий диапазон.

  • Однофазный асинхронный двигатель: как устроен и работает
  • Как устроен и работает плазменный сварочный аппарат
  • Как устроены люстры с дистанционным управлением

Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Электрические приборы и устройства

Подписывайтесь на наш канал в Telegram: Домашняя электрика

Поделитесь этой статьей с друзьями:

Схема, принцип работы импульсного блока питания

Любой блок питания – это устройство, обеспечивающее формирование вторичной мощности посредством применения дополнительных электрических компонентов. Проще говоря, БП служит для преобразования напряжения из одного вида в другой, по номиналу или другим характеристикам. Существует два больших класса таких преобразователей:

  • использующие для преобразования напряжения аналоговые трансформаторы;
  • блоки питания (инверторы) импульсного типа.

Импульсный блок питания

Первый тип известен достаточно давно, несмотря на постоянное совершенствование, трансформаторные блоки питания имеют ряд ограничений, преодолеть которые оказалось под силу импульсным устройствам. Принцип действия у них разный, отличия принципиальные, но многие не видят разницы между трансформаторными и импульсными преобразователями. Мы попробуем внести ясность в этот вопрос, рассмотрев принцип работы, достоинства и недостатки, а также сферу применения импульсных БП. И, конечно, затронем основные отличия от блоков питания устаревшего типа.

Что это такое

Упрощённо трансформаторный БП можно представить в виде схемы, состоящей из собственно трансформатора, выпрямителя, фильтра для сглаживания параметров выходного напряжения и стабилизатора. Такие устройства обладают достаточно простой схемотехникой, недорогие и обеспечивают низкий уровень помех выходного сигнала.

Но у них есть серьёзные конструктивные недостатки – большой вес и невысокий КПД. Значительная часть энергии преобразовывается в тепловую, поэтому проблема перегрева для таких устройств, особенно мощных – одна из самых актуальных.

Принцип работы импульсных БП для начинающих тоже можно объяснить довольно просто: он также основан на использовании трансформатора, однако работает он на очень больших частотах, порядка 1-100 КГц и обладает гораздо меньшими габаритами и массой. Это, в свою очередь, делает задачу отвода тепла легко выполнимой. Функция фильтрации/стабилизации выходного напряжения упрощается, поскольку для этой задачи используются конденсаторы малой ёмкости.

Но и у инверторных оков питания имеются недостатки – сложная схемотехника, чувствительность к электромагнитным помехам. Что касается стоимости, то она вполне сравнима с трансформаторными устройствами.

Принцип работы импульсного (инверторного) блока питания

А теперь рассмотрим, как работает импульсный блок питания, на полупрофессиональном уровне.

Основной функционал устройства заключается в выпрямлении характеристик первичного напряжения с последующим преобразованием в непрерывную последовательность импульсов, следующих с частотой, существенно превышающую номинальные 50 Гц. Именно в этом и заключается основное отличие от БП трансформаторного типа. У инверторных устройств выходное напряжение прямо влияет на функционирование блока посредством обратной связи. Используя характеристики импульсов, можно более точно регулировать стабилизацию выходного напряжения, тока и других параметров. Фактически импульсный блок питания может использоваться в качестве стабилизатора и напряжения, и тока. При этом полярность и число выходных характеристик может варьироваться в широких пределах, в зависимости от конкретной конструкции ИБП.

Импульсный блок питания ПК

Опишем принцип действия импульсного БП схематично.

На первый блок устройства, выпрямитель, подаётся бытовое напряжение номиналом 220 В, на трансформаторе амплитуда напряжения сглаживается, за что отвечает фильтр на основе конденсатора ёмкостного типа. Следующий этап – выпрямление синусоидного сигнала посредством диодного моста. После этого синусоидное напряжение преобразовывается в высокочастотные импульсы, при этом может быть использован принцип гальванического отделения питающего напряжения от выходного.

Если такая гальваническая развязка присутствует, высокочастотные сигналы по принципу обратной связи снова направляются на трансформатор, который использует их для осуществления гальванической развязки. Чтобы повысить КПД трансформатора, используется такой приём, как повышение его рабочей частоты.

Инверторный принцип обратной связи реализован посредством взаимодействия 3 базовых цепочек:

  • за широтно-импульсную модуляцию входного напряжения отвечает ШИМ-контроллер;
  • второй элемент – каскад силовых ключей, включающий собранные по специальным схемам транзисторы (схема со средней точкой Push-Pull, мостовая или полумостовая);
  • третья цепочка – собственно импульсный трансформатор.

Принцип работы импульсного блока питания

Разновидности импульсных БП

По большому счёту классификация ИБП может включать немало схем, но мы рассмотрим только две из их:

  • бестрансформаторные импульсные устройства;
  • трансформаторные ИБП.

Мы уже рассматривали, чем отличается импульсный инвертор от обычного трансформаторного блока питания. Теперь можно рассказать об отличиях между этими двумя разновидностями импульсных преобразователей.

В бестрансформаторных ИБП высокочастотные импульсы следуют на выходной выпрямитель, и далее – на оконечную компоненту, сглаживающий фильтр. Основное достоинство такой схемы – простота конструкции. Большую роль здесь играет широтно-импульсный генератор, представляющий собой специализированную микросхему.

Главный минус таких устройств – отсутствие гальванической развязки, то есть обратной связи с питающей цепочкой. По этой причине уровень безопасности бестрансформаторных блоков не так высок – существует опасность поражения электрическим током высокой частоты. Поэтому блоки питания такого типа делают маломощными.

Трансформаторные БП более распространены. Здесь присутствует гальваническая развязка: высокочастотные импульсы подаются на трансформаторный блок, на первичную обмотку, при этом количество вторичных обмоток неограниченно. Другими словами, выходных напряжений может быть много, при этом каждая вторичная обмотка содержит собственную пару выпрямитель – фильтр. К КПД такого импульсного блока питания претензий нет, уровень безопасности – высокий. Неслучайно в компьютерах используют именно этот тип. Здесь для подачи сигнала на трансформатор по гальванической развязке используется напряжение номиналом 5/12 В, поскольку уровень точности и стабильности для работы компонентов ПК требуется очень высокий.

В числе основных отличий импульсного блока питания от классического трансформаторного является использование высокочастотных импульсов вместо стандартных 50 Гц. Такое решение позволило использовать ферромагнитные сплавы вместо электротехнических разновидностей железа. Они обладают высокой коэрцитивной силой, что предоставило возможность многократно уменьшить вес и размеры трансформаторной части и всего устройства.

Использование инверторных схем существенно упростило задачу преобразования напряжения и тока, хотя схематически ИБП намного сложнее трансформаторных аналогов.

Схема ИБП

Рассмотрим, как устроен не самый сложный импульсный блок питания в наиболее распространённой конфигурации:

  • помехоподавляющий фильтр;
  • диодный выпрямитель;
  • сглаживающий фильтр;
  • ШИП;
  • блок силовых ключевых транзисторов;
  • высокочастотный трансформатор;
  • выпрямители;
  • групповые/индивидуальные фильтры.

Схема ИБП

В зону ответственности помехоподавляющего фильтра входит функция фильтрация помех, источником появления которых является сам блок питания. Дело в том, что использование мощных полупроводниковых компонентов часто приводит к формированию кратковременных импульсов, наблюдаемых в обширном диапазоне частот. Чтобы снизить их влияние на выходной сигнал, применяются цепочки специальных проходных конденсаторов, служащих фильтром для подобных импульсов.

Назначение диодного выпрямителя – преобразование переменного напряжения на входе блока в постоянное на выходе. Возникающие паразитные пульсации сглаживает установленный долее по схеме фильтр.

Если устройство импульсного блока включает преобразователь постоянного напряжения, цепочка из выпрямителя и фильтра будет лишней, поскольку входной сигнал будет сглаживаться на участке помехоподавляющего фильтра.

Широтно-импульсный преобразователь (его ещё называют модулятором) – наиболее сложная часть устройства. Он выполняет несколько функций:

  • генерирует импульсы высокой частоты (от килогерца до сотен КГц);
  • на основании параметров сигнала обратной связи корректирует характеристики импульсной последовательности на выходе;
  • осуществляет защиту схемы от перегрузок.

С ШИМ импульсы подаются на ключевые транзисторы высокой мощности, чаще всего выполненные по мостовой/полумостовой схемам. Выводы ключевых транзисторов поступают на первичную обмотку трансформаторного блока. В качестве элементной базы используются транзисторы типа MOSFET или IGBT, отличающиеся от биполярных аналогов незначительным снижение напряжения на участке перехода, а также более высоким быстродействием. Это позволило снизить параметр рассеиваемой мощности при тех же габаритах.

Что касается принципа работы импульсного трансформатора, то он использует тот же способ преобразования, что и классические трансформаторные БП. Единственное, но важное отличие – он работает на гораздо более высоких частотах. Это и позволило при той же выходной мощности заметно уменьшить массу и размеры блока.

С вторичной обмотки трансформатора (напоминаем, их может быть несколько) импульс поступает на выходные выпрямители. В отличие от аналога на входе блока, здесь диоды должны обеспечивать работу на высоких частотах. Лучше всего с такой работой справляются диоды Шоттки. Они устроены так, что обеспечивают малую ёмкость p-n перехода и, соответственно, небольшое падение напряжения при высоком показателе рабочей частоты.

Последний элемент схемы, выходной фильтр, сглаживает пульсации поступающего на вход выпрямленного напряжения. Поскольку это высокочастотные импульсы, здесь отпадает необходимость в применении конденсаторов и катушек большой мощности.

Сфера применения ИБП

Эра классических трансформаторных БП уходит в небытие. Импульсные преобразователи на основе полупроводниковых стабилизаторов повсеместно их вытесняют, поскольку при тех же значениях выходной мощности характеризуются гораздо меньшими весогабаритными показателями, они надёжнее аналоговых оппонентов и обладают намного более высоким КПД, позволяя снизить тепловые потери. Наконец, ИБП могут функционировать с входным напряжением в обширном диапазоне значений. Импульсный блок такого же размера, как трансформаторный, обладает в разы большей мощностью.

В настоящее время в сферах, требующих преобразования переменного напряжения в постоянное, используются практически только импульсные инверторы, при этом они могут обеспечить и повышение напряжения, что недоступно для классических аналоговых блоков. Ещё одним достоинством ИБП является способность обеспечить смену полярности выходного напряжения. Работа на высоких частотах облегчает функцию стабилизации/фильтрации выходных импульсов.

Малогабаритные инверторы, построенные на специализированных микросхемах, являются основой зарядных устройств всевозможных мобильных гаджетов, а надёжность их такова, что срок службы существенно превышает ресурс мобильных устройств. О компьютерных блоках питания мы уже упоминали. Отметим, что принцип работы ИБП используется в 12-вольтовых драйверах питания светодиодов.

Помогла ли вам данная статья разобраться с тем, какой же всё-таки принцип работы импульсного блока питания? Если что-то осталось непонятным или вы просто хотите поблагодарить за информацию, ждём вас в комментариях.

Блок питания: импульсный или трансформаторный? Разбираем преимущества и недостатки

лабораторные блоки питания

Лабораторный блок питания – это вторичный источник электроэнергии, дополненный блоками регулировки выходного напряжения и тока, контроля работы и индикации режимов, а также схемами защиты.

Лабораторный блок питания (ЛБП) – очень востребованное профессионалами оборудование. Он активно используется инженерами, занимающимися разработкой и ремонтом различных электронных устройств. В настоящее время есть много типов и моделей лабораторных источников питания (ИП). Их настолько много, что новичку непросто сориентироваться в таком многообразии оборудования.

Чтобы выбрать оптимальный источник питания для определенных целей, рекомендуется вначале разобраться в особенностях различных типов ЛБП, а уже после принимать решение об их покупке.

Материал обновлён 24.11.2022
Время чтения: 10 минут

Академия Суперайс - авторы статей в Supereyes

Увлечённые и опытные авторы компании, разбирающиеся в измерительном, оптическом и паяльном оборудовании, любящие своё дело

В этой статье рассмотрим:

  • Классификация лабораторных источников питания
    • Линейные
    • Импульсные
    • Преимущества импульсных источников
    • Недостатки импульсных блоков
    • Преимущества линейных БП
    • Недостатки линейных источников

    Классификация лабораторных источников

    Лабораторные ИП могут классифицироваться по различным параметрам. Но наиболее популярным видом классификации является деление по типу конструкции. В соответствии с ним все ЛБП делятся на импульсные и линейные. Последние, также называют трансформаторными. Чем отличаются импульсные источники питания от линейных разберём далее.

    лабораторные блоки

    Линейный блок питания

    Традиционным считается линейный блок питания (БП). В основе его конструкции лежит понижающий трансформатор. После трансформатора в схему включен диодный мост (выпрямитель), который преобразует переменное напряжение в постоянное. Далее располагается основная схема, отвечающая за регулировку выходного напряжения, а также его стабилизацию. Как правило, за функцию стабилизации отвечает высокоемкостный конденсатор.

    Большинство блоков имеют более сложную принципиальную схему, включающую блоки регулировки и стабилизации напряжения, а также тока, блоки защиты и индикации. Простейший трансформаторный блок питания возможно сделать своими руками, при этом, основным и самым дорогим компонентом в нем будет понижающий трансформатор.

    простая схема линейного бп

    Среди мастеров, осуществляющих ремонт и проектирование электроники и радиотехнических устройств, самые популярные ЛБП – модели с выходными характеристиками: напряжения в диапазоне от 0 до 30 В и тока в диапазоне до 5 А.

    В качестве примера, можно привести источник постоянного тока YIHUA-305D. Этот БП представляет собой высокоточный агрегат, при помощи которого можно тонко настраивать параметры выходного тока и напряжения в установленном диапазоне. Цифровой индикатор у устройства работает в двойном режиме, одновременно отображая текущие показатели напряжения и выходного тока. Помимо этого, ЛБП имеет режим защиты от короткого замыкания (SCP), перегрузки по току (OCP), а также функцию самовосстановления после срабатывания защиты.

    Импульсный блок питания

    В настоящее время большинство используемых лабораторных блоков питания – это преимущественно установки импульсного типа. Что значит импульсный блок питания?

    Принцип работы достаточно прост: вначале происходит предварительное выпрямление входного напряжения, после этого оно преобразуется в импульсы с увеличенной частотой и требуемой скважностью. Далее импульсы передаются в трансформатор, где напряжение понижается до требуемой величины. После трансформатора вновь расположен диодный выпрямитель, после которого выполняется стабилизация напряжения в импульсном блоке питания (ИБП).

    Для генерации импульсов могут применяться как однотактные, так и двухтактные схемы. Оба типа схем строятся на базе биполярных или полевых транзисторов. В современных схемах наибольшую популярность получили IGBT и MOSFET транзисторы.

    схема импульсного блока

    Двухтактные схемы чаще всего строятся на базе широтно-импульсного контроллера (ШИМ-контроллера). Эти небольшие микросхемы содержат схему, позволяющую генерировать сигналы требуемой ширины и скважности для управления силовыми ключами.

    импульсная схема

    В ИБП используются небольшие трансформаторы. Их более чем достаточно, поскольку увеличение частоты напряжения повышает эффективность работы трансформатора, а, следовательно, конструкцию можно значительно уменьшить. Часто сердечник трансформатора ИБП изготавливается из ферромагнитных материалов, что дополнительно облегчает общую конструкцию.

    трансформаторы блоков питания

    Что же обеспечивает стабилизацию напряжения в импульсном блоке питания? Эту функцию берёт на себя отрицательная обратная связь, которая поддерживает выходное напряжение на одном уровне. При этом величина нагрузки и колебания входного напряжения не оказывают никакого влияния на выходные параметры.

    Вполне возможно сделать импульсный ЛБП своими руками. При этом основными компонентами будут: линейный регулятор, ШИМ-контроллер, а также импульсный трансформатор.

    MAISHENG MS305D– один из популярных ЛБП на рынке. Этот ИБП – эталон компактности и удобства. Он пользуется высоким спросом как среди любителей, так и среди профессионалов.

    Данный источник импульсного типа подходит для питания самых разных электронных схем и устройств, обеспечивая им стабильную работу. Конструкцией устройства предусмотрена возможность настраивать параметры переменного тока в диапазоне от 0 до 5 А, а также напряжения от 0 до 30 В. В блоке присутствует защита от короткого замыкания, перегрева и перегрузки по току. Модель оснащена системой плавной регулировки, которая позволяет точно подобрать напряжение и ток на выходе. Также устройство оснащено удобным цифровым дисплеем, на котором в реальном времени отображаются параметры напряжения и переменного тока.

    Преимущества и недостатки

    Что же выбрать? Линейный или импульсный блок питания?

    Импульсные БП используются практически повсеместно. Они активно вытесняют с рынка менее удобные трансформаторные модели. Тем не менее только в работе можно оценить сильные и слабые стороны импульсных и трансформаторных источников.

    Каждый из рассматриваемых типов блоков имеет свои преимущества, а также недостатки.

    Так, к примеру, КПД импульсного блока питания наиболее высокий, а мощность, по сравнению с трансформаторными моделями, значительно больше. В свою очередь, линейные источники питания отличаются простотой конструкции, надежностью работы и не требуют дорогого ремонта. Отметим преимущества и недостатки, консолидируя характеристики ЛБП.

    Преимущества импульсных источников

    К достоинствам импульсных агрегатов нужно отнести:

    • высокий коэффициент стабилизации;
    • высокий коэффициент полезного действия;
    • более широкий диапазон входных напряжений;
    • более высокую мощность, по сравнению с линейными устройствами;
    • отсутствие чувствительности к качеству электропитания и частоте входного напряжения;
    • небольшие габариты дающие хорошую транспортабельность;
    • доступная цена.
    Недостатки импульсных блоков

    К явным недостаткам импульсных ИП можно отнести:

    • импульсная система питания дает высокочастотные помехи;
    • сложность схем, что негативно сказывается на надежности;
    • ремонт далеко не всегда удается произвести своими руками.
    Преимущества линейных БП

    Трансформаторные ЛБП также имеют ряд плюсов, среди которых:

    • простота и надежность конструкции;
    • высокая ремонтопригодность, а также невысокая стоимость запчастей;
    • отсутствие радиопомех;
    Недостатки линейных источников

    Если определять недостатки линейных вторичных источников питания, то среди них можно выделить:

    • большой вес и габариты, что часто делает транспортировку очень неудобной;
    • обратная зависимость между КПД и стабильностью выходного напряжения;
    • высокая металлоемкость конструкции.

    Мощные импульсные ЛБП

    ИП импульсного типа можно конструировать с большой выходной мощностью, в десятки сотен ватт, и при этом они будут очень лёгкими и компактными. Яркими представителями этих устройств, в качестве примера, можно привести ЛБП компании

    Модель Мощность
    MAISHENG MP3060D (30В, 60А) 1800 Вт
    MAISHENG MP6030D (60В, 30А) 1800 Вт
    MAISHENG MP5050D (50В, 50А) 2500 Вт
    MAISHENG MP5060D (50В, 60А) 3000 Вт
    MAISHENG MP40010D (400 В, 10 А) 4000 Вт
    MAISHENG MP15030D (150 В, 30 А) 4500 Вт
    MAISHENG MP30150D (30 В, 150 А) 4500 Вт
    MAISHENG MP6080D (60 В, 80 А) 4800 Вт
    MAISHENG MP50100D (50 В, 100 А) 5000 Вт

    Лабораторный блок питания: импульсный или линейный?

    Современные источники питания представлены огромным ассортиментом. Значительным спросом пользуются как импульсные, так и трансформаторные БП. И то, какие цели вы преследуете, приобретая лабораторный БП, влияет на тип выбираемого вами оборудования.

    Если вам необходимо всегда иметь под рукой надежное устройство с отсутствием радиопомех, которое редко ломается, а также легко поддается ремонту, тогда обратите внимание на трансформаторные модели. Если же для вас важна мощность и высокий коэффициент полезного действия, в таком случае стоит подробнее изучить модельный ряд импульсных устройств.

    Если же у вас остались вопросы по выбору ЛБП, то мы рекомендуем ознакомиться с дополнительными статьями о выборе источников питания:

    • Лабораторные источники питания: особенности выбора;
    • Выбираем программируемый источник питания постоянного тока.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *