Глава 3. Электрические измерения и приборы
Измерять активную мощность в четырехпроводной трехфазной цепи при несимметричной нагрузке можно тремя ваттметрами (рис. 3.13). Так как в этом случае каждый из ваттметров измеряет активную мощность одной фазы, то мощность в четырехпроводной трехфазной цепи.
Реактивную мощность в трехпроводной трехфазной цепи при симметричной нагрузке можно измерить одним ваттметром (рис. 3.14),
причем токовая обмотка включается в линейный провод А, а обмотка напряжения — на линейное напряжение UBC(т. е. на «чужое» напряжение). Из векторной диаграммы (рис. 3.14,б) видно, что сдвиг фаз между током IA и напряжением UBC составляет α= 90 —φ . Тогда показания ваттметра
Для вычисления реактивной мощности трехфазной трехпроводной цепи при симметричной нагрузке необходимо показания ваттметра умножить на
. 3.6.5. Измерение энергии в цепях переменного тока В цепях переменного тока для измерения активной энергии служат однофазные и трехфазные счетчики индукционной системы. Для измерения активной энергии в однофазных и трехфазных цепях однофазные счетчики включают по схемам аналогичным схемам включения ваттметров (см. рис.3.10 и 3.12). В трехпроводных трехфазных цепях для измерения активной энергии применяют двухэлементное объединяющие измерительные системы двух однофазных счетчиков (Рис 3.15) .
Для измерения активной энергии в четырехпроводных цепях трехфазного тока применяют треэлементные счктчики. Реактивную энергию WP как при симметричной, так и при несимметричной нагрузке в трехфазной цепи измеряют трехфазными индукционными счетчиками реактивной энергии. При симметричной нагрузке в трехпроводной трехфазной цепи реактивную мощность можно измерить с помощью двух однофазных счетчиков. Для этого ихвключают в цепь, как и ваттметры, по схеме рис. 3.12. Реактивная энергия равна разности показаний счетчиков, умноженной на
- « Предыдущая
- 7
- 8
- 9
- 10
- 11
- Следующая »
Расчет трехфазных цепей.
Трехфазные цепи являются разновидностью цепей синусоидального тока, и, следовательно, все рассмотренные ранее методы расчета и анализа в символической форме в полной мере распространяются на них. Анализ трехфазных систем удобно осуществлять с использованием векторных диаграмм, позволяющих достаточно просто определять фазовые сдвиги между переменными. Однако определенная специфика многофазных цепей вносит характерные особенности в их расчет, что, в первую очередь, касается анализа их работы в симметричных режимах.
Расчет симметричных режимов работы трехфазных систем
Многофазный приемник и вообще многофазная цепь называются симметричными, если в них комплексные сопротивления соответствующих фаз одинаковы, т.е. если . В противном случае они являются несимметричными. Равенство модулей указанных сопротивлений не является достаточным условием симметрии цепи. Так, например трехфазный приемник на рис. 1,а является симметричным, а на рис. 1,б – нет даже при условии: .
Если к симметричной трехфазной цепи приложена симметричная трехфазная система напряжений генератора, то в ней будет иметь место симметричная система токов. Такой режим работы трехфазной цепи называется симметричным. В этом режиме токи и напряжения соответствующих фаз равны по модулю и сдвинуты по фазе друг по отношению к другу на угол . Вследствие указанного расчет таких цепей проводится для одной – базовой – фазы, в качестве которой обычно принимают фазу А. При этом соответствующие величины в других фазах получают формальным добавлением к аргументу переменной фазы А фазового сдвига при сохранении неизменным ее модуля.
Так для симметричного режима работы цепи на рис. 2,а при известных линейном напряжении и сопротивлениях фаз можно записать
где определяется характером нагрузки .
Тогда на основании вышесказанного
Комплексы линейных токов можно найти с использованием векторной диаграммы на рис. 2,б, из которой вытекает:
При анализе сложных схем, работающих в симметричном режиме, расчет осуществляется с помощью двух основных приемов:
Все треугольники заменяются эквивалентными звездами. Поскольку треугольники симметричны, то в соответствии с формулами преобразования «треугольник-звезда» .
Так как все исходные и вновь полученные звезды нагрузки симметричны, то потенциалы их нейтральных точек одинаковы. Следовательно, без изменения режима работы цепи их можно (мысленно) соединить нейтральным проводом. После этого из схемы выделяется базовая фаза (обычно фаза А), для которой и осуществляется расчет, по результатам которого определяются соответствующие величины в других фазах.
Пусть, например, при заданном фазном напряжении необходимо определить линейные токи и в схеме на рис. 3, все сопротивления в которой известны.
В соответствии с указанной методикой выделим расчетную фазу А, которая представлена на рис. 4. Здесь , .
Тогда для тока можно записать
Расчет несимметричных режимов работы трехфазных систем
Если хотя бы одно из условий симметрии не выполняется, в трехфазной цепи имеет место несимметричный режим работы. Такие режимы при наличии в цепи только статической нагрузки и пренебрежении падением напряжения в генераторе рассчитываются для всей цепи в целом любым из рассмотренных ранее методов расчета. При этом фазные напряжения генератора заменяются соответствующими источниками ЭДС. Можно отметить, что, поскольку в многофазных цепях, помимо токов, обычно представляют интерес также потенциалы узлов, чаще других для расчета сложных схем применяется метод узловых потенциалов. Для анализа несимметричных режимов работы трехфазных цепей с электрическими машинами в основном применяется метод симметричных составляющих, который будет рассмотрен далее.
При заданных линейных напряжениях наиболее просто рассчитываются трехфазные цепи при соединении в треугольник. Пусть в схеме на рис. 2,а . Тогда при известных комплексах линейных напряжений в соответствии с законом Ома
По найденным фазным токам приемника на основании первого закона Кирхгофа определяются линейные токи:
Обычно на практике известны не комплексы линейных напряжений, а их модули. В этом случае необходимо предварительное определение начальных фаз этих напряжений, что можно осуществить, например, графически. Для этого, приняв , по заданным модулям напряжений, строим треугольник (см. рис.5), из которого (путем замера) определяем значения углов a и b .
Искомые углы a и b могут быть также найдены аналитически на основании теоремы косинусов:
При соединении фаз генератора и нагрузки в звезду и наличии нейтрального провода с нулевым сопротивлением фазные напряжения нагрузки равны соответствующим напряжениям на фазах источника. В этом случае фазные токи легко определяются по закону Ома, т.е. путем деления известных напряжений на фазах потребителя на соответствующие сопротивления. Однако, если сопротивление нейтрального провода велико или он отсутствует, требуется более сложный расчет.
Рассмотрим трехфазную цепь на рис. 6,а. При симметричном питании и несимметричной нагрузке ей в общем случае будет соответствовать векторная диаграмма напряжений (см. рис. 6,б), на которой нейтральные точки источника и приемника занимают разные положения, т.е. .
Разность потенциалов нейтральных точек генератора и нагрузки называется напряжением смещения нейтральной точки (обычно принимается, что ) или просто напряжением смещения нейтрали. Чем оно больше, тем сильнее несимметрия фазных напряжений на нагрузке, что наглядно иллюстрирует векторная диаграмма на рис. 6,б.
Для расчета токов в цепи на рис. 6,а необходимо знать напряжение смещения нейтрали. Если оно известно, то напряжения на фазах нагрузки равны:
Тогда для искомых токов можно записать:
Соотношение для напряжения смещения нейтрали, записанное на основании метода узловых потенциалов, имеет вид
При наличии нейтрального провода с нулевым сопротивлением , и из (1) . В случае отсутствия нейтрального провода . При симметричной нагрузке с учетом того, что , из (1) вытекает .
В качестве примера анализа несимметричного режима работы цепи с использованием соотношения (1) определим, какая из ламп в схеме на рис. 7 с прямым чередованием фаз источника будет гореть ярче, если .
Запишем выражения комплексных сопротивлений фаз нагрузки:
Тогда для напряжения смещения нейтрали будем иметь
Напряжения на фазах нагрузки (здесь и далее индекс N у фазных напряжений источника опускается)
Таким образом, наиболее ярко будет гореть лампочка в фазе С.
В заключение отметим, что если при соединении в звезду задаются линейные напряжения (что обычно имеет место на практике), то с учетом того, что сумма последних равна нулю, их можно однозначно задать с помощью двух источников ЭДС, например, и . Тогда, поскольку при этом , соотношение (1) трансформируется в формулу
- Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
- Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
- Какой многофазный приемник является симметричным?
- Какой режим работы трехфазной цепи называется симметричным?
- В чем заключается специфика расчета симметричных режимов работы трехфазных цепей?
- С помощью каких приемов трехфазная симметричная схема сводится к расчетной однофазной?
- Что такое напряжение смещения нейтрали, как оно определяется?
- Как можно определить комплексы линейных напряжений, если заданы их модули?
- Что обеспечивает нейтральный провод с нулевым сопротивлением?
- В цепи на рис. 6,а ; ; ; . Линейное напряжение равно 380 В. Определить ток в нейтральном проводе. Ответ: .
- В схеме предыдущей задачи ; . Остальные параметры те же. Определить ток в нейтральном проводе. Ответ: .
- В задаче 8 нейтральный провод оборван. Определить фазные напряжения на нагрузке. Ответ: ; ; .
- В задаче 9 нейтральный провод оборван. Определить фазные напряжения на нагрузке. Ответ: ; ; .
- Что такое ИБП
- Отличие источников
- Как рассчитать мощность
- Перед включением ИБП
- Библиотека ИБП
- Запрос стоимости ИБП
Измерения тока, напряжения, мощности
Простейшим способом измерения постоянного тока является непосредственное прямое включение амперметра. При этом необходимо соблюдать три условия:
- предел измерения амперметра должен быть больше или равен максимальному рабочему току цепи;
- испытательное напряжение амперметра должно быть больше напряжения сети Ua > Uс,
- сопротивление амперметра должно быть больше сопротивления приемника RA > Rnp.
Чем меньше номинальный ток шунта, тем больше его внутреннее сопротивление. При подключении нескольких приборов параллельно шунту может возникнуть погрешность, превышающая допустимую для его класса точности. Поэтому при токах шунта в несколько десятков ампер к нему подключают один измерительный прибор.
Напряжение в цепях постоянного тока может измеряться приборами различных систем. При использовании вольтметров PV магнитоэлектрической системы следует соблюдать полярность включения (рис. 1, а).
Для расширения пределов измерения вольтметров применяют добавочные резисторы (рис. 1, б). В этом случае предел измерения:
Рис 1. Схемы включения вольтметров в цепи постоянного тока:
а — непосредственное включение, б — с добавочным резистором
где UPVx — расширенный предел вольтметра; RД — сопротивление добавочного резистора; K — коэффициент, показывающий, во сколько раз увеличивается предел измерения напряжения прибора при использовании добавочного резистора.
Выпускаются различные шунты и добавочные резисторы для расширения пределов измерения приборов постоянного тока.
Переменные напряжение и ток можно измерять приборами любой системы, за исключением магнитоэлектрической. При измерении больших токов в низковольтных установках, а также напряжений и токов в высоковольтных установках применяют приборы электромагнитной системы, включаемые через специальные трансформаторы тока и напряжения. В практике наладочных работ используют различные измерительные трансформаторы, при этом следует помнить, что они вносят в результат измерений дополнительную погрешность. Чтобы погрешность не превышала допустимой, определенной классом точности применяемого измерительного трансформатора, его вторичную обмотку необходимо включать на номинальное сопротивление. Номинальным сопротивлением вторичной обмотки цепи трансформатора тока является то наибольшее, а трансформатора напряжения — то наименьшее сопротивление, на которое можно включить эту обмотку, не превысив погрешность выше допустимой.
Схемы включения вольтметров с добавочными резисторами в цепях постоянного тока и однофазных сетях переменного тока одинаковы (рис. 1,6). Схемы включения амперметров и вольтметров при использовании измерительных трансформаторов показаны на рис. 2, а, б.
Рис 6. Схемы измерения реактивной мощности в трехфазной сети: а — с помощью одного ваттметра, б — с помощью трех ваттметров.
Для измерения мощности в трехфазных цепях с симметричной нагрузкой используют ваттметровые токоизмерительные клещи (рис. 7). Чаще всего их применяют для определения нагрузки трехфазных двигателей М напряжением 380 и 660 В с доступной нейтралью (рис. 7). В процессе измерения охватывают клещами один из подводящих проводов, причем зажим напряжения, отмеченный звездочкой, соединяют с этим проводом, а зажим «220 В» (в цепи 660 В зажим «380 В») — с нейтралью статорной обмотки. Если показания прибора отрицательные, клещи при охвате провода следует повернуть на 180° либо поменять местами провода цепи напряжения.
Рис. 9.Схемы включения счетчика активной энергии типа САЗ и САЗУ и счётчика реактивной энергии типа СРЗ, СРЗУ: а — непосредственное включение, б — с трансформаторами тока, в — с трансформаторами тока и напряжения.
Рис. 10. Схемы включения счетчика активной энергии типа СА4 и СА4У и счетчика реактивной энергии типа СР4, СР4У, СР4-И676 и СР4У-И676: а — непосредственное включение, б — с трансформаторами тока, в — с трансформаторами тока и напряжения в трехпроводной цепи, г — с трансформаторами тока и напряжения и четырехпроводной цепи (в реактивных счетчиках зажимы 10 отсутствуют).
Иногда при наладочных работах счетчики используют для измерения мощности. Рассмотрим пример определения мощности, потребляемой двигателем, с помощью трехфазного счетчика. Отсчитываем число оборотов диска за промежуток времени t (обычно достаточно 20—40 с, отсчитанных по секундомеру); нагрузка двигателя за этот промежуток не должна меняться. Если на табличке счетчика, например типа САЗУ, указано 1 кВт . ч = n оборотов диска, то мощность, кВт:
Измерение мощности в трехфазных цепях
Выясним, сколько ваттметров нужно включить для измерения активной мощности в трехфазной цепи при любом несимметричном режиме.
На рис. 32 прямоугольником условно показана сколь угодно сложная цепь, питаемая трехфазной линией с нейтральным проводом. Фазные напряжения на входе линии с нейтральным проводом всегда можно приписать трем источникам напряжения (показаны штриховой линией). Из этого следует, что для измерения активной мощности в трехфазной линии с нейтральным проводом нужно включить три ваттметра, как показано на рис. 32 (ваттметры измеряют активные мощности источников напряжения).
В цепи без нейтрального провода (рис. 33) линейные напряжения на входных выводах всегда можно рассматривать получающимися от двух источников напряжения, например, включенных так, как показано штриховой линией на рис. 33.
Следовательно, активная мощность передачи энергии по линии без нейтрального провода может быть измерена двумя ваттметрами. Следует иметь в виду, что возможны такие режимы работы цепи, при которых стрелка того или иного ваттметра отклоняется в обратную сторону, несмотря на правильное включение ваттметра в цепь. Тогда, чтобы сделать отсчет по шкале, нужно изменить подключение обмотки напряжения или обмотки тока соответствующего ваттметра на противоположное. Измеренную после этого мощность следует считать отрицательной. Пример подобного случая приводится ниже.
Выясним зависимость мощности, измеряемой каждым из ваттметров в схеме рис. 33, от сдвига фаз между напряжениями и токами в частном случае симметричного режима. На рис. 34 показана векторная диаграмма токов и напряжений. Линии, соединяющие центр тяжести треугольника напряжений с его вершинами, можно рассматривать как фазные напряжения эквивалентного приемника, соединенного звездой.
На основании схемы включения одноименных выводов ваттметров и руководствуясь векторной диаграммой, можно записать
Как следует из этих выражений, показания ваттметров одинаковы только при j=0. При j=60° получаем Р2=0, а при j= -60° имеем P1 = 0. При j>60° имеем Р2 < 0, а при j60° стрелка одного из ваттметров отклоняется в обратную сторону.
Дополнительно по теме
- Понятие о многофазных источниках питания и о многофазных цепях
- Трехфазные цепи
- Соединение звездой и многоугольником
- Симметричный режим трехфазной цепи
- Свойства трехфазных цепей
- Расчет симметричных режимов
- Расчет несимметричных режимов
- Напряжение на фазах приемника
- Вращающееся магнитное поле
- Принцип действия асинхронного и синхронного двигателей