Какие швы не допускают перемещение стыкуемых поверхностей относительно друг друга
Перейти к содержимому

Какие швы не допускают перемещение стыкуемых поверхностей относительно друг друга

  • автор:

Глава 3 Контроль качества без разрушения сварных соединений 3.3. Ультразвуковая дефектоскопия 3.3.2. Технология ультразвукового контроля

На практике для оценки размеров и типа выявленного дефекта используются только те его характеристики, которые легко может измерить в любых условиях каждый оператор и выразить в простой числовой форме.
Для оценки качества сварных швов обычно определяются следующие характеристики дефектов:

  • амплитуда эхо-сигнала, пропорциональная площади проекции отражающей поверхности дефекта на плоскость, перпендикулярную оси ультразвукового пучка;
  • условная протяженность, определяемая длиной зоны перемещения преобразователя вдоль шва, в пределах которой фиксируется эхо-сигнал от выявленного дефекта;
  • условная высота, равная разности значений глубин залегания дефекта, измеряемых в крайних положениях наклонного преобразователя при перемещении его перпендикулярно оси шва (крайними являются те положения преобразователя, которые соответствуют появлению и исчезновению эхо-сигнала от дефекта на развертке дефектоскопа);
  • число дефектов, приходящихся на единицу длины шва;
  • координаты дефекта по сечению и длине шва.

Местоположение дефекта в сварном шве определяется следующими тремя координатами: Н — глубина залегания дефекта, отсчитываемая по нормали к поверхности; X — расстояние от центра пучка излучателя до дефекта вдоль поверхности сварного соединения; L — расстояние вдоль оси шва от какой-либо выбранной точки отсчета до дефекта.

Глубиномерное устройство дефектоскопа измеряет интервал времени ∆t между следованиями зондирующего импульса и эхо-сигнала от дефекта. Так как скорости распространения ультразвуковых колебаний в металле и призме, а также углы ввода ультразвука обычно известны, то по значению ∆t можно определить Н и X.

В ультразвуковой дефектоскопии амплитуду эхо-сигнала от дефекта измеряют посредством его сравнения с каким-либо опорным сигналом, имеющим известные значение и форму и поступившим в тот же преобразователь от отражателя. Если вид обнаруженного дефекта известен заранее, то наиболее правильно сравнить эхо-сигнал от дефекта с сигналом от искусственного отражателя, форма которого наиболее близка к форме дефекта. Однако чаще всего невозможно достаточно уверенно распознать вид дефекта. Кроме того, его размер должен выражаться через какую- либо стандартизованную величину, воспроизводимую при любых измерениях, поэтому в целях унификации измерения амплитуды эхо-сигнала было введено понятие эквивалентной площади (или эквивалентного диаметра) дефекта.

Эквивалентная площадь дефекта считается равной площади искусственного отражателя (дна плоскодонного отверстия), расположенного на той же глубине, что и дефект, и обеспечивающего получение эхо-сигнала такой же амплитуды. Аналогично определяют эквивалентный диаметр. Общепринято, что при измерении эквивалентного размера дефекта по совмещенной схеме наклонным преобразователем ось плоскодонного отверстия совпадает с акустической осью пучка, а при измерении его раздельно- совмещенным преобразователем (PC-преобразователем) ось отверстия перпендикулярна плоскости дна.

Существуют два способа измерения эквивалентного размера дефектов: с помощью тест-образцов и с помощью специальных акустических диаграмм, полученных экспериментально или на основе расчетов. Первый способ состоит в том, что эхо-сигнал от дефекта последовательно сравнивается с сигналами от плоскодонных отверстий разных размеров, изготовленных в тест-образце на той же глубине, на которой расположен дефект. Тест-образец представляет собой копию контролируемого сварного соединения. Все операции по измерению эквивалентного размера дефекта сводятся к нахождению отверстия, от которого исходит эхо-сигнал, равный эхо-сигналу от дефекта.

К основным достоинствам данного способа относятся его простота и доступность. Его недостаток — необходимость изготовления большого числа образцов с широким набором плоскодонных отражателей, отличающихся друг от друга диаметром и глубиной расположения. Кроме того, качество поверхности и акустические свойства тест-образца должны полностью соответствовать аналогичным характеристикам контролируемого сварного соединения. Второй способ измерения эквивалентного размера дефекта базируется на использовании специальных акустических диаграмм, связывающих для данного преобразователя между собой амплитуду эхо-сигнала, эквивалентный размер плоскодонного отражателя и расстояние до него. По оси ординат такой диаграммы откладывается относительная амплитуда эхо-сигнала, представляющая собой отрицательную величину, выраженную в децибелах, а по оси абсцисс — глубина залегания дефекта. Выбор угла наклона координатной сетки определяется затуханием ультразвука в сварном соединении. Данная диаграмма обеспечивает хорошо отработанный универсальный способ решения всех практических задач измерения эквивалентных размеров дефектов и настройки чувствительности дефектоскопа. Для удобства практического ее использования разработаны и применяются линейки разной конструкции со шкалами, нанесенными в соответствии с акустическими диаграммами.

В практике ультразвукового контроля распространен также способ оценки дефектов на поверхности сварного соединения посредством измерения их условных размеров. Суть этого способа состоит в том, что при перемещении преобразователя по поверхности детали вдоль дефекта измеряются расстояния между его положениями, в которых при заданном уровне чувствительности дефектоскопа эхоимпульс от дефекта исчезает с экрана.

Схема измерения условной высоты ∆Н и условной протяженности ∆L дефекта наклонным преобразователем изображена на рис. 3.23.

Условные размеры превышают действительные размеры дефекта вследствие того, что ультразвуковой пучок имеет значительное расхождение, увеличивающееся с расстоянием от излучателя. Следовательно, значения ∆L и ∆Н зависят от расстояния удаления излучателя от дефекта.

Определение условной высоты небольших по сравнению с пьезоэлементом дефектов, связанное со значительными измерительными погрешностями, фактически не дает новой информации о размерах дефекта. Однако условную высоту целесообразно измерять всегда дополнительно к амплитуде, чтобы не пропустить какой-либо крупный плоскостной дефект (трещину) с низкой отражательной способностью.

При контроле сварных соединений преобразователи устанавливают по обе стороны сечения и дополнительно измеряют разницу во времени поступления сигналов, дифрагировавших на концах трещины, в каждый преобразователь. Этот метод позволяет также определить наклон трещины в вертикальной плоскости, но он очень трудоемкий и требует высокой квалификации операторов.

Рис. 3.23. Схемы измерения условной высоты ∆Н (а) и условной протяженности ∆L (б) дефекта:
∆Х — расстояние между излучателем и дефектом

Глубину трещин, выходящих на поверхность, оценивают по времени распространения поверхностной волны между излучателем и приемником. При использовании временных методов глубина трещины определяется разницей во времени поступлений сигнала, вызванного поверхностной волной, в каждый РС- преобразователь.

Выполнение контроля при произвольном уровне чувствительности дефектоскопа может привести к регистрации эхо-сигналов от мелких неопасных дефектов и структурных неоднородностей либо к пропуску опасных дефектов, поэтому дефекты следует выявлять при строго определенном уровне чувствительности. Чтобы установить заданный уровень предельной (или контрольной) чувствительности дефектоскопа, его настраивают по образцу, представляющему собой копию сварного шва, в котором выполнено плоскодонное отверстие или другой отражатель. Эквивалентная площадь отражателя регламентируется соответствующим нормативным документом. Выбор типа отражателя осуществляется в соответствии с его отражательными свойствами, технологичностью и воспроизводимостью характеристик при изготовлении.

На практике используются следующие эталонные отражатели: боковой цилиндрический, угловой, сегментный и в виде плоскодонного отверстия, которые относительно легко изготовляются, имеют простую форму и, что самое главное, эхо-сигналы от этих отражателей пропорциональны их площадям.

По форме дефекты сварных швов подразделяются на две группы: объемные с округлыми краями и плоскостные с острыми краями, которые являются концентраторами значительных напряжений. Плоскостные дефекты существенно более опасны при эксплуатации сварных конструкций, чем объемные, поэтому любой метод дефектоскопии должен обеспечивать распознавание типа дефекта. При ультразвуковом контроле для этого необходимо проанализировать несколько информативных признаков с учетом того, что плоскостные дефекты отражают ультразвук направленно, т.е. преимущественно в каком-либо одном направлении, а объемные — приблизительно равномерно по всем направлениям.

Наиболее достоверные результаты определения типа дефектов получают в случае измерения коэффициента его формы Кф. Согласно определению коэффициент

где А0, А3 — амплитуды сигналов, соответственно отраженного от дефекта обратно к преобразователю и дважды зеркально отраженного (от дефекта и внутренней поверхности сварного соединения ко второму преобразователю, включенному по схеме «тандем»).

Установлено, что с вероятностью 0,95 у плоскостных дефектов (трещин, непроваров) Кф 1. В сварных швах небольшой толщины Кф измеряют, располагая преобразователи под углом друг к другу.

Перспективным методом определения типа дефекта является ультразвуковая спектрометрия, основанная на исследовании спектров эхо-сигналов, отраженных от дефектов разных типов при варьировании частоты ультразвуковых колебаний зондирующих импульсов.

Принятые при таком «прозвучивании» эхо-сигналы обрабатываются и изображаются на экране спектрального анализатора в виде отдельных импульсов, высота которых пропорциональна амплитуде эхо-сигнала, а положение на развертке — частоте. У объемных дефектов частотный спектр носит монотонный характер, а у плоскостных — гребенчатый с периодическими максимумами и минимумами.

Способы контроля.

Используемая методика ультразвукового контроля должна обеспечивать выявление любых недопустимых дефектов по всему сечению сварного шва и околошовной зоны. Выбор типа преобразователя, параметров и схемы контроля шва определяется особенностями конструкции сварного соединения и базируется на вероятностно-статистических характеристиках распределения дефектов по сечению шва, по типам дефектов и их ориентации относительно оси шва. В свою очередь, эти характеристики определяются типоразмером сварного шва и технологией сварки.

Анализ распределения дефектов, встречающихся в разных зонах сечения шва, позволяет выделить те зоны, которые нуждаются в наиболее тщательном контроле, а также выработать рекомендации по изменению конструкции соединения в целях обеспечения возможности «прозвучивания» всего металла шва. Такой подход (от изучения характеристик реальных дефектов к разработке методики контроля) является наиболее правильным и обеспечивает высокую достоверность результатов контроля.

Для контроля сварных швов применяют «прозвучивание» прямым лучом, прямым и однократно отраженным лучом, многократно отраженным лучом, по слоям (все эти способы основаны на совмещенной схеме включения преобразователя в дефектоскоп), а также эхо-зеркальный метод «тандем», зеркально-теневой и теневой методы.

При «прозвучивании» стыковых сварных швов прямым лучом (рис. 3.24, а) преобразователь перемещают в околошовной зоне между валиком шва и точкой, удаленной от оси шва на расстояние

где δ, е — соответственно толщина и ширина шва.

Данный способ контроля наиболее помехоустойчив: при его использовании наблюдается минимум ложных эхо-сигналов от каких-либо элементов конструкции в зоне соединения (приварных косынок, штуцеров и др.). Это единственный способ, пригодный для «прозвучивания» швов толщиной 3,5 … 10,0 мм, выполненных односторонней сваркой с проплавлением, в которых дефекты находятся в основном в корне шва.

Недостатком этого способа контроля является наличие «мертвой зоны», вызванное тем, что преобразователь упирается в валик шва. Для ее уменьшения верхнюю часть шва целесообразно «прозвучивать» с помощью преобразователей, имеющих большие углы ввода ультразвука.

Контроль прямым и однократно отраженным лучом (рис. 3.24, б) осуществляется при перемещении преобразователя в околошовной зоне. Этот способ позволяет выполнять контроль с одной стороны сварного соединения. Преобразователь перемещают до линии, отстоящей от оси шва на расстояние Х2, определяемое по приведенной ранее формуле.

Контроль многократно отраженным лучом (рис. 3.24, в) сопровождается большим числом ложных сигналов от валика шва и является наименее помехоустойчивым. Возможность его применения ограничивается случаями, когда отсутствует доступ непосредственно к шву, например, в стыковом соединении, с обеих сторон закрытом приварными накладками.

Контроль по слоям (рис. 3.24, г) обеспечивает наибольшую достоверность результатов, но его рекомендуется применять при толщине швов не менее 40 мм. «Прозвучивание» по слоям осуществляется любым из рассмотренных ранее способов, а эхосигналы от дефектов, расположенных в разных слоях сварного соединения, фиксируются только на определенном участке развертки.

Эхо-зеркальный метод контроля «тандем» (рис. 3.24, д) заключается в одновременном «прозвучивании» шва двумя преобразователями, расположенными с одной стороны шва друг за другом и синхронно перемещающимися в разные стороны относительно плоскости О—О. При таком перемещении преобразователей сумма расстояний X 1 и Х 2, а также время поступления в приемник сигналов, зеркально отраженных от дефектов и обратной стороны сварного соединения, постоянные для данной толщины шва. Это облегчает контроль, так как эхо-сигнал от любого дефекта находится на фиксированном участке развертки, где можно установить метку (строб-импульс) и обеспечить звуковую индикацию дефекта.

Рис. 3.24. Схемы «прозвучивания» стыковых сварных швов:
а — прямым лучом; б — прямым и однократно отраженным лучом; в — многократно отраженным лучом; г — по слоям;
д — эхо-зеркальным методом «тандем»; е — зеркально-теневым методом; X — расстояние между преобразователями;
X1, X 2 — расстояния от оси шва до осей преобразователей в их крайних положениях;
е — ширина шва; S — толщина металла; α — угол между осью излучателя и поверхностью контролируемой детали;
δ — толщина шва; О—О — плоскость, разделяющая зоны перемещения преобразователей

Преобразователи могут включаться по раздельной или раздельно-совмещенной схеме. В последнем случае дополнительно регистрируются эхо-сигналы, отраженные обратно к каждому преобразователю.

Зеркально-теневой (рис. 3.24, е) и теневой методы рекомендуются только для выявления относительно грубых дефектов. «Прозвучивание» здесь осуществляется двумя преобразователями, включенными по раздельной схеме. Преобразователи установлены по обе стороны шва навстречу друг другу и закреплены с помощью какого-либо приспособления (расстояние между ними равно X). О наличии дефекта судят по отсутствию сигнала в строб- импульсе. Данный способ перспективен для контроля швов, выполненных сваркой трением и контактной сваркой давлением.

Особенности контроля.

Сварные швы контролируются с одной (при толщине основного металла до 50 мм) или с обеих сторон соединения. Контроль выполняется после внешнего осмотра и устранения выявленных при этом недопустимых поверхностных дефектов. Непосредственно перед контролем подготовленную поверхность околошовной зоны тщательно протирают ветошью и покрывают слоем контактного смазочного материала. Наиболее целесообразно использовать для этого минеральные масла (автолы, компрессорные масла и др.).

Поиск дефектов в шве производится при несколько завышенной чувствительности дефектоскопа посредством продольно- поперечного перемещения преобразователя 4 по всей контролируемой зоне сначала с одной стороны шва, а затем с другой (рис. 3.25). Шаг продольного перемещения преобразователя должен составлять не более половины диаметра пьезоэлемента. В процессе перемещения наклонный преобразователь необходимо непрерывно поворачивать вокруг его оси на ±15° для обнаружения дефектов с разной ориентацией. Контакт преобразователя с поверхностью контролируемого сварного соединения обеспечивается легким нажатием на него рукой.

При появлении эхо-сигналов от дефекта на рабочем участке развертки зону перемещения преобразователя сокращают и производят измерение информативных характеристик: координат, амплитуды эхо-сигнала, условной высоты и протяженности дефекта, коэффициента его формы К ф и числа дефектов на стандартном участке шва.

Нормы оценки качества сварных соединений разных типов составляются с учетом информации, получаемой при ультразвуковом контроле, на основе норм и требований СНиП и других действующих нормативных документов, определяющих их качество. Ультразвуковой контроль швов при сварке из углеродистых и низколегированных сталей малой толщины (до 15 мм) наиболее эффективен при использовании преобразователей с большими углами призмы (β = 53 … 56°, частота сигнала f = 5 МГц).

Рис. 3.25. Схема ультразвуковой диагностики сварного шва при наличии в нем трещины:
1 — траектория преобразователя; 2 — трещина; 3 — звуковая волна; 4 — преобразователь

В МГТУ им. Н.Э.Баумана разработан наклонный PC- преобразователь типа РСМП — с повышенным отношением сигнал/помеха, обеспечивающий уверенное выявление круглых дефектов размером 0,7 мм и более.

При толщине стали 15 … 30 мм швы, выполненные односторонней сваркой, контролируют прямым и однократно отраженным лучом с использованием одного преобразователя. Наиболее эффективен в этом случае стандартный преобразователь (β = 50°, f = 2,5 МГц). Если возникает ложный эхо-сигнал от провисания шва, то в целях повышения надежности и помехоустойчивости контроль целесообразно производить раздельно в корневой и остальной части шва. При этом верхнюю часть шва предпочтительно контролировать преобразователем с β = 40°.

Односторонние сварные швы листовых конструкций без подварки корня, как правило, имеют весьма низкое качество. При сварке образуется провисание шва значительных размеров (3 … 5 мм). Контроль корневой зоны таких швов возможен только после удаления всех неровностей поверхности шлифовальной машинкой.

При толщине стали 30 … 200 мм швы, выполненные двухсторонней или односторонней с подваркой корня сваркой, контролируют наклонными преобразователями с β = 30 и 40° на частотах 1,8 и 2,5 МГц. Статистика контроля показывает, что в этих швах распределение дефектов по видам следующее: 65 … 70 % — шлаковые включения, 10 % — поры и 20 … 25 % — плоскостные дефекты (из них 5 … 7 % — трещины).

Наиболее опасные дефекты — трещины и непровары — ориентированы преимущественно в вертикальной плоскости. Такие дефекты, расположенные в сечении шва, плохо выявляются при однощуповой схеме «прозвучивания». Для их обнаружения необходимо применять схему «тандем».

Сварные швы при толщине стали более 200 мм необходимо контролировать на пониженных частотах (1,0 … 1,25 МГц) и, что особенно важно, после термообработки, если она предусмотрена технологией. Благодаря термообработке измельчается зерно и возрастает степень однородности структуры, что уменьшает затухание ультразвука в шве и околошовной зоне и повышает достоверность контроля. Так, например, при контроле швов после термообработки число выявленных дефектов увеличивается на 20 … 25 %. Контроль до термообработки необязателен.

Весьма специфической задачей ультразвукового контроля сварных соединений является обнаружение поперечных трещин. Такие трещины возникают при грубых нарушениях сварочной технологии в сталях, склонных к трещинообразованию. Поперечные трещины располагаются в литом металле и в зоне термического влияния. Наиболее часто они появляются в корневой зоне швов, выполненных двухсторонней сваркой без подогрева. Поверхность поперечных трещин имеет малую шероховатость, и отражение ультразвука от них носит в основном зеркальный характер, что затрудняет их обнаружение.

Схема «прозвучивания» поперечных трещин одним преобразователем (рис. 3.26, а) самая простая, но и наименее надежная.

Применяется она для контроля швов при небольшой (до 20 мм) толщине основного металла.

Значительно более высокая чувствительность контроля достигается при использовании схемы с двумя преобразователями, расположенными под углом к шву (рис. 3.26, б). Такое их размещение способствует регистрации максимального по амплитуде зеркально отраженного сигнала.

Для контроля швов, полученных при сварке металла большой толщины, применяют эхо-зеркальный метод «тандем» с размещением преобразователей на лицевой поверхности по обе стороны шва.

Рис. 3.26. Схемы «прозвучивания» поперечных трещин: а — одним преобразователем; б — двумя преобразователями;
в — одним или двумя преобразователями при снятом валике лицевой поверхности шва

Приведенные схемы позволяют осуществлять контроль без снятия валика лицевой поверхности шва (что является их преимуществом), но требуют использования специальных приспособлений для крепления преобразователей. Следует отметить, что сравнительная эффективность применения той или иной схемы еще не установлена, поэтому на практике очень часто контроль швов производят одним или двумя преобразователями (рис. 3.26, в), размещенными в одной плоскости, после снятия валика.

Ультразвук широко используется для контроля стыковых швов различных конструкций. Способ «прозвучивания» выбирают в соответствии с конфигурацией конструкции. Так, швы звеньев корабельных цепей контролируют по схеме «тандем» при размещении преобразователей с одной стороны шва симметрично оси звена. Стержни арматуры железобетонных конструкций имеют периодический профиль, что существенно усложняет контроль швов арматуры эхо-импульсным методом, так как в этом случае резко ухудшается акустический контакт и повышается уровень ложных сигналов, поэтому швы арматуры контролируют теневым методом. О наличии и размерах дефекта судят по уменьшению амплитуды отраженного от него эхо-сигнала: степень ослабления амплитуды эхо-сигнала пропорциональна площади дефекта.

Ложные сигналы возникают при отражении ультразвука от грубых неровностей валика шва, а в случае угловых соединений — от угла элемента конструкции. Ложные сигналы отличают от сигналов дефекта, разделяя их по времени поступления в преобразователь.

Для выявления непроваров в угловых и тавровых соединениях при наличии свободного доступа к ним со стороны вертикального листа применяют прямые или раздельно-совмещенные преобразователи. Иногда для контроля тавровых соединений используют сдвоенные наклонные преобразователи.

Примером применения РС-преобразователей для выявления дефектов в тавровом соединении служит схема контроля шва (между стержнем и пластиной) закладной детали, приведенная на рис. 3.27. Подобные детали широко применяются в строительстве.

В МГТУ им. Н.Э.Баумана разработана методика контроля закладных деталей. В этой методике, внедренной в производство на заводах железобетонных конструкций, контроль основан на использовании специального устройства для фиксации РС-преобразователей на детали.

Рис. 3.27. Схема контроля шва закладной детали: 1 — устройство для фиксации РС-преобразователей; 2 — закладная деталь;
3 — падающий сигнал; 4 — сигнал, отраженный от дефекта; А — амплитуда отраженного сигнала

Контроль нахлесточных соединений осуществляется зеркально- теневым методом. В этом случае при отсутствии дефекта ультразвук беспрепятственно проходит от излучателя к приемнику, и на экране электронно-лучевой трубки (ЭЛТ) появляется сигнал. Если в соединении имеется дефект, то этот сигнал резко ослабляется или исчезает совсем. Для выполнения такого контроля необходимы специальные приспособления, закрепляющие преобразователи на определенном расстоянии друг от друга, зависящем от толщины соединенных деталей.

Ультразвуковые методы получают все более широкое распространение при контроле швов, выполненных контактной сваркой. Однако основные дефекты этих швов — оксидные пленки — выявляются ультразвуком плохо, поскольку имеют весьма малую ширину раскрытия (0,5 … 3,0 мкм) и гладкую поверхность, т.е. ультразвук от них практически не отражается. В случаях, когда оксидным пленкам сопутствуют включения или непровары, имеющие большую ширину раскрытия, основные дефекты швов, выполняемых контактной сваркой, ультразвуком обнаруживаются.

В контактных стыках рельсов эти дефекты швов надежно выявляются эхо-импульсным методом с одним преобразователем.

Наилучшие результаты контроля контактных стыков труб котлоагрегатов тепловых электростанций обеспечиваются при использовании эхо-зеркального метода.

Качество сварных точек контролируется зеркально-теневым методом. Признаком непровара между листами (деталями) в этом случае служит поступление донного сигнала от первого листа в приемный преобразователь. Размеры сварной точки можно определить, измерив расстояние между границами перемещения преобразователя по поверхности листа.

Недостатком зеркально-теневого метода контроля является невозможность выявления, окисленного непровара, который почти полностью пропускает ультразвук в нижний лист. Этот недостаток устраняется при выполнении контроля эхо-импульсным методом по совмещенной схеме непосредственно в процессе сварки. Вследствие различия акустических сопротивлений жидкого и твердого металлов ультразвук при образовании расплавленного ядра между листами отражается от него. По промежутку времени от момента появления эхо-сигнала, свидетельствующего о начале формирования ядра, до выключения сварочного тока можно оценить размеры ядра.

Недостатками эхо-импульсного метода контроля являются его довольно сложная аппаратурная реализация и наличие проблем при создании ультразвукового контакта вблизи сварочного электрода.

Наиболее перспективен теневой метод «прозвучивания» сварных соединений, при котором излучающий и приемный преобразователи встраиваются в электроды сварочной машины. При сжатии сварочных листов электродами излучаются непрерывные ультразвуковые колебания. В процессе расплавления металла ультразвук сильно поглощается в нем и амплитуда прошедшего сигнала уменьшается, а после застывания металла амплитуда сигнала возрастает. По перепаду амплитуд сигнала судят о качестве сплавления листов. При таком контроле наиболее эффективно применение поперечных волн, так как они не проходят через жидкий металл, и в этом случае перепад амплитуд, определяющий точность метода, наибольший.

До сих пор рассматривались методы контроля сварных швов в соединениях из углеродистых и низколегированных сталей. Однако с каждым годом в производстве расширяется использование алюминиевых и медных сплавов, высоколегированных сталей и других конструкционных материалов, ультразвуковой контроль которых имеет свои особенности.

Для алюминиевых сплавов характерно слабое затухание ультразвука, что позволяет контролировать их обычными методами.

Контроль соединений из высоколегированных сталей и медных сплавов весьма затруднен, поскольку сварные швы этих металлов отличаются крупнозернистой упругоанизотропной структурой, в которой ультразвуковой сигнал значительно ослабляется и создает ложные сигналы отражения от границ зерен. При контроле таких швов приходится в 2 — 3 раза снижать частоту ультразвуковых колебаний, что ограничивает возможность выявления малых дефектов.

Однако в ряде случаев и эта мера не обеспечивает положительных результатов, и ультразвуковой контроль обычным дефектоскопом осуществить невозможно. В настоящее время разрабатываются специальные дефектоскопы для контроля крупнозернистых материалов. Выполняемый с их помощью контроль будет основан на статистическом анализе полезных сигналов от дефекта и ложных — от структуры.

Дефектоскопия соединений трубопроводов.

Рассмотрим ультразвуковой контроль сварных стыков трубопроводов с толщиной стенки более 8 мм. Такой контроль осуществляется в результате плавкого возвратно-поступательного движения призматического искателя по поверхности трубы, прилегающей к сварному шву. При «прозвучивании» соединения необходимо все время следить за тем, чтобы искатель был направлен перпендикулярно шву. Смещение искателя по окружности трубы допускается не более 2 … 4 мм. Размер зоны перемещения искателя вдоль трубы, которая должна обеспечивать контроль всего сечения шва, выбирается в зависимости от толщины стенок трубы и формы разделки шва. Сварной кольцевой шов трубопровода контролируется последовательно с двух сторон по ходу и против хода рабочей среды, а швы на стыке трубы с литой арматурой — только со стороны трубы.

Стыки между литыми деталями подвергаются ультразвуковому контролю на наличие поперечных трещин.

Нижняя часть сварного шва трубопровода контролируется прямым лучом или, если это невозможно, двухкратно отраженным лучом, а верхняя часть шва «прозвучивается» однократно отраженным лучом. Трубопроводы с толщиной стенки до 40 мм контролируются за один прием, т.е. верхняя и нижняя части шва проверяются за одно движение искателя, а трубопроводы с толщиной стенки более 40 мм — в два приема: сначала проверяется корневая часть шва прямым лучом, а затем верхняя часть шва — однократно отраженным лучом.

При ультразвуковом контроле сварных швов трубопроводов необходимо учитывать особенности формирования их корневого слоя и обратного валика. При сварке в нижнем положении металл обратного валика шва провисает внутрь трубы, а при сварке в потолочном положении металл проседает.

Обнаружение поперечных трещин производится перемещением искателя вдоль шва непосредственно по поверхности наплавленного металла. Усиление шва в этом случае необходимо полностью снимать абразивным кругом заподлицо с основным металлом. Для контроля используются призматические искатели с углом наклона призмы 50° — при толщине стенок труб 8 … 15 мм и с углом наклона 40° — при толщине стенок более 15 мм. Рабочая поверхность искателя притирается на наждачной бумаге, наложенной на контролируемую трубу. В процессе притирки перемещение искателя должно производиться параллельно оси трубы.

Ультразвуковой контроль сварных соединений трубопроводов диаметром 25 … 100 мм с толщиной стенки 3 … 8 мм производится на рабочей частоте 5 МГц специальными искателями, обеспечивающими возможность контроля корневой части шва прямым лучом. Рабочая поверхность искателя должна иметь радиус скругления, равный радиycy контролируемой трубы. Такие искатели должны иметь угол наклона призмы 53 … 55°, а при толщине стенки трубопровода 3 … 4 мм — только 55°.

Ошибки в оценке качества соединения в этом случае могут возникать по нескольким причинам. Это, прежде всего, смещение кромок (шов ошибочно бракуется), которое определяется по появлению сигнала с одной стороны шва (рис. 3.28, искатель в положении 3) при условии, что с другой его стороны в диаметрально противоположной точке (искатель в положении 2) также будет появляться сигнал. При этом в положениях 1 и 4 сигналы отсутствуют.

Наличие забоин, клейм, задиров вблизи сварного шва может привести к появлению ложных сигналов или пропуску дефектов в результате нарушения ультразвукового контакта.

Из-за ошибок, связанных с характером и отражающей способностью поверхностей дефектов, может быть пропущен непровар пологой формы.

Рис. 3.28. Схема определения смещения кромок стыкуемых труб:1…4 — положения искателей

Качество сварных швов трубопроводов с толщиной стенки 3 … 8 мм оценивается по амплитуде отраженного сигнала и пробегу отраженного сигнала по линии условной развертки (по условной высоте дефекта).

Сварной шов бракуется в следующих случаях:

  • если амплитуда эхо-сигнала от дефекта равна или большe амплитуды эхо-сигнала, отраженного от соответствующей зарубки на эталонном образце (при толщине стенки труб до 5 мм используется зарубка с площадью вертикальной грани 1,6 мм 2, а при большей толщине — с площадью 2 мм 2);
  • если импульс эхо-сигнала от дефекта равен или больше импульса от соответствующей зарубки на эталонном образце. Сварные швы трубопроводов считаются годными при отсутствии дефектов и значениях амплитуды эхо-сигнала и условной высоты, менее указанных ранее.

Сварные стыки трубопроводов с толщиной стенки больше 8 мм бракуются в следующих случаях:

  • если в них обнаруживают любые дефекты, расположенные в сечении шва, амплитуда эхо-сигнала которых равна или больше амплитуды эхо-сигнала от эталонного отражателя, соответствующего чувствительности оценки;
  • если дефекты, дающие эхо-сигнал, пробег которого по экрану дефектоскопа больше или равен пробегу эхо-сигнала от зарубки, соответствующей чувствительности оценки при толщине стенки до 20 мм;
  • если дефекты имеют высоту 3 мм и более, что соответствует условной высоте, измеряемой по шкале продольных волн глубиномера, 10 мм при толщине стенки трубы более 20 мм;
  • при наличии протяженных дефектов в корне шва, условная длина которых превышает 30 мм — для технологических трубопроводов и 10 % от периметра шва — для других трубопроводов;
  • если общая условная протяженность дефектов в корне шва превышает 20 % от его периметра;
  • если в шве имеются дефекты с признаками трещин.

Оценка качества при контроле корневой части шва производится по сопоставлению амплитуды эхо-сигнала и времени пробега сигнала на экране дефектоскопа с амплитудой эхо-сигнала и временем пробега сигнала от искусственного дефекта в виде канавки высотой 15 % от толщины стенки, но не более 2 мм. Дефект считается недопустимым, если время пробега сигнала или его амплитуда превышает время пробега или амплитуду сигнала от контрольного отражателя.

Контроль угловых соединений.

При контроле угловых швов тавровых и крестовых соединений ультразвуковой луч вводят в шов через основной металл стенки, так как в этом случае выявляются все дефекты (рис. 3.29). При отсутствии доступа к стенке или небольших ее размерах, не обеспечивающих необходимые пределы перемещения искателей, для выявления непровара в корне шва можно проводить контроль с наружной поверхности полки. При этом угол ввода ультразвуковых волн должен обеспечивать направление луча, приблизительно перпендикулярное сечению, в котором площадь дефекта ожидается максимальной.

Рис. 3.29. Схемы «прозвучивания» угловых швов соединений различных типов: а — крестового с К-образной разделкой кромок; б — углового со скосом одной кромки; в — углового со скосом двух кромок;
г — углового с двумя скосами одной кромки; д — таврового при выявлении поперечных трещин;
1 — полка; 2 — стенка; δ 1, δ 2 — толщины металла; L 1…L 4 — расстояния от полки до центра искателя;
n — половина ширины искателя

Контроль угловых швов таврового соединения с К-образной разделкой, в которых требуется полный провар корня шва, начинают с поиска непровара в корне шва прямым или однократно отраженным лучом. При отсутствии непровара в корне шва проверяют остальные его части: нижнюю часть — прямым лучом, а верхнюю — однократно отраженным.

Тавровые соединения с К-образной разделкой при наличии технологического непровара корня шва шириной до 4 мм контролируют с внешней стороны полки безэталонным способом. После определения ширины технологического непровара производится контроль всего сечения шва наклонными искателями за два прохода прямым и однократно или двухкратно отраженным лучами.

Угловые швы таврового соединения с У-образной разделкой и подваркой корня шва и при отсутствии подварки (в этом случае допустимая высота непровара не должна превышать 3 мм) «про- звучивают» с плоскости приваренного листа.

Контроль нахлесточных соединений.

Швы сварных соединений внахлестку «прозвучивают» со стороны основного листа однократно отраженным лучом и искателем, включенным по совмещенной схеме (рис. 3.30, а, б). При этом обеспечивается выявление трещин, непроваров вертикальной кромки и корня шва, а также одиночных включений и их скоплений. При выполнении контроля искателем, включенным по совмещенной схеме, обнаружение непроваров горизонтальной кромки не гарантируется. Объясняется это тем, что ультразвуковой луч, попадая на горизонтальный плоский дефект, отражается под тем же углом и не возвращается на искатель.

Рис. 3.30. Схемы контроля нахлесточных соединений однократно отраженным лучом по совмещенной схеме (а, б)
и теневым методом с включением двух искателей по раздельной схеме (в, г):
1…3 — точки преломления ультразвукового луча; δ 1, δ2 — толщины металла; L 1, L2 — расстояния от центра искателя до кромки верхнего листа; К1 — катет шва

Горизонтальные непровары выявляются зеркально-теневым методом при включении искателей по раздельной схеме (рис. 3.30, в, г). Уровень прошедшего сигнала в этом случае устанавливается по тест-образцу без дефектов. Чтобы обеспечить «прозвучивание» всего сечения наплавленного металла, необходимо перемещать искатели примерно на длину, соответствующую размеру горизонтального катета шва.

С 2011 года «УКРИНТЕХ» успешно работает и развивается в области контроля качества материалов и изделий.

5. Изготовление

Маркировка должна быть расположена на стороне листа и плиты, не соприкасающейся с рабочей средой, в углу на расстоянии 300 мм от кромок.

5.1.3 Методы разметки заготовок деталей из сталей аустенитного класса марок 12Х18Н10Т. 10X17H13M3T. 08Х17Н15МЗТ и др. и двухслойных сталей с коррозионно-стойким слоем из этих сталей не должны допускать повреждений рабочей поверхности деталей.

Кернение допускается только по линии реза.

5.1.4 На поверхностях обечаек, днищ и других элементах корпуса не допускаются риски, забоины, царапины, раковины и другие дефекты, если их глубина превышает минусовые предельные отклонения. предусмотренные соответствующими стандартами и техническими условиями*.

5.1.5 Поверхности деталей должны быть очищены от брызг металла, полученных в результате термической (огневой) резки и сварки.

5.1.6 Заусенцы должны быть удалены, и острые кромки деталей и узлов притуплены.

5.1.7 Предельные отклонения размеров, если в чертежах или нормативных документах не указаны более жесткие требования, должны быть:

  • для механически обрабатываемых поверхностей: отверстий Н14. валов М4. остальных ПО ГОСТ 25347: 2
  • для поверхностей без механической обработки, а также между обработанной и необработанной поверхностями — в соответствии с таблицей 3.

Таблица 3. Предельные отклонения размеров поверхностей

Размер, мм Предельное отклонение по ГОСТ 2S347 и ГОСТ 26179
отверстий 09 ЛОв остальных
До 500 включ. Н17 И17 ГП7
Св. 500 до 3150 включ. Н16 h16
Св. 3150 Н15 h15 ms
1 2

* Действуют только в Российской Федерации и государствах, упомянутых в предисловии как проголосовавшие за принятие межгосударственного стандарта.

Оси резьбовых отверстий деталей внутренних устройств должны быть перпендикулярны к опорным поверхностям. Допуск перпендикулярности должен быть в пределах 15-й степени точности по ГОСТ 24543. если в чертежах или нормативных документах не предъявлены более жесткие требования.

5.1.8 Методы сборки элементов под сварку должны обеспечивать правильное взаимное расположение сопрягаемых элементов и свободный доступ к выполнению сварочных работ в последовательности. предусмотренной технологическим процессом.

5.2 Корпусы

5.2.1 Обечайки корпусов диаметром до 1000 мм следует изготовлять не более чем с двумя продольными швами.

Обечайки сосудов 1-й, 2-й групп диаметром свыше 1000 мм следует изготовлять из листов максимально возможной длины с минимальным числом продольных швов. Допускается одна вставка шириной не менее 255. но не менее 400 мм.

Вальцовку обечаек из листов, изготовленных прокаткой, рекомендуется проводить так, чтобы направление прокатки было перпендикулярно к продольной оси сосуда.

5.2.2 После сборки и сварки обечаек корпус (без днищ) должен удовлетворять следующим требованиям:

а) отклонение по длине не более ±0.3 % номинальной длины, но не более ±50 мм;
б) отклонение от прямолинейности не более 2 мм на длине 1 м. но не более 30 мм при длине корпуса свыше 15 м.

При этом местную непрямолинейность не учитывают:

  • в местах сварных швов;
  • в зоне вварки штуцеров и люков в корпус;
  • в зоне сопряжения разнотолщинных обечаек, выполненного с учетом допустимых смещений кромок в кольцевых швах сосудов.

5.2.3 Усиления кольцевых и продольных швов на внутренней поверхности корпуса должны быть зачищены в местах, где они мешают установке внутренних устройств, а также при наличии указаний в технической документации.

Усиления сварных швов, как правило, не снимают у корпусов сосудов, изготовленных из двухслойных и коррозионно-стойких сталей; при этом у деталей внутренних устройств делают местную выемку в местах прилегания к сварному шву.

Допускается зачистка усиления продольных и кольцевых швов корпуса на внутренней и наружной поверхностях на всей протяженности, если это потребуется для обеспечения точности калибровки обечаек корпуса или в других технически обоснованных случаях. При этом должна быть предусмотрена технология сварки, обеспечивающая коррозионную стойкость зачищенного шва.

При зачистке усилений швов корпуса не должно быть утонения стенки корпуса.

5.2.4 Отклонение внутреннего (наружного) диаметра корпуса сосудов допускается не более ±1 % номинального диаметра, если в технической документации не оговорены более жесткие требования.

Относительная овальность корпуса сосудов а (за исключением аппаратов, работающих под вакуумом или наружным давлением, теплообменных кожухотрубчатых аппаратов) не должна превышать 1 %.

Относительную овальность корпуса сосудов а. %. вычисляют по формулам:

  • в местах, где не установлены штуцера и люки

(1)

где Dmax, Dmin — соответственно наибольший и наименьший внутренние диаметры корпуса, измеренные в одном поперечном сечении;

  • в местах установки штуцеров и люков

(2)

где d — внутренний диаметр штуцера или люка.

Значение а допускается увеличивать до 1.5 % для сосудов при отношении толщины корпуса к внутреннему диаметру не более 0,01.

Значение а для сосудов, работающих под вакуумом или наружным давлением, должно быть не более 0.5 %.

Значение а для сосудов без давления (под налив) должно быть не более 2 %.

5.2.5 Для выверки горизонтального положения базовая поверхность горизонтального сосуда должна быть указана в технической документации. На одном из днищ корпуса должны быть нанесены несмываемой краской две контрольные риски для выверки бокового положения сосуда на фундаменте.

5.2.6 По требованию заказчика для выверки вертикального положения вверху и внизу корпуса под углом 90º должны быть предусмотрены у изолируемых сосудов две пары приспособлений для выверки, а у не изолируемых — Две Лары рисок.

5.2.7 Корпусы вертикальных сосудов с фланцами, имеющими уплотнительные поверхности «шип*лаз» или «выступ-впадина», для удобства установки прокладки необходимо выполнять так. чтобы фланцы с пазом или впадиной были нижними.

5.3 Днища

Допустимое отклонение внутреннего (наружного) диаметра в цилиндрической части отбортованных и полусферических днищ и относительная овальность не должны превышать соответствующих значений для корпуса.

5.3.1 Эллиптические днища

5.3.1.1 Отклонения размеров и формы днищ (см. рисунок 6) не должны превышать значений, указанных в таблицах 4—6.

Г — шаблон: О — внутренний диаметр днища. *’ — толщина днища: Лю — допуск наклона: Т — высота вогнутости или выпуклости: Дги дР — зазоры между шаблоном и эллипсоидной поверхностью днища: А — высота цилиндрической части днища. ДА — отклонение высоты цилиндрической части днища

Рисунок 6. Отклонение размеров и формы эллиптического днища

Таблица 4. Допуски высоты цилиндрической части и высоты выпуклости <вогнутости) на эллипсоидной части днища

Внутренний диаметр
днища О, мм
Предельное отклонение высоты
цилиндрической части ДА, мм
Предельная высота отдельной
вогнутости или выпуклости
на эллипсоидной части Т, мм
До 720 15 2
От 800 до 1300 3
От 1320 и более 4
Примечания
Высота отдельной вогнутости или выпуклости Г на эллипсоидной части днища, изготовляемого на фланжировочном прессе, допускается до б мм.
На цилиндрической части днища не допускаются гофры высотой болев 2 мм.

Таблица 5. Допуски наклона цилиндрической части

Толщина днища s’, мм Допуск от наклона Ат, мм
До 20 4
От 22 до 25 5
От 28 до 34 6
От 36 и более в

Таблица 6. Допуски формы эллипсоидной поверхности

Внутренний диаметр
днища 0, мм
Зазор между шаблоном и эллипсоидной поверхностью, мм
Аг Ай
До 530 4 в
От 550 до 1400 6 13
От 1500 до 2200 10 21
От 2400 до 2800 12 31
От 3000 и более 16 41

5.3.1.2 Для днищ, изготовляемых штамповкой, допускается утонение в зоне отбортовки до 15 % исходной толщины заготовки.

5.3.1.3 Контроль формы готового днища необходимо проводить шаблоном длиной 0.5 внутреннего диаметра днища. Высоту цилиндрической части необходимо измерять линейкой согласно ГОСТ 427.

5.3.2 Полусферические днища

5.3.2.1 высота отдельной вогнутости или выпуклости Г([см. рисунок 7 а) на поверхности днищ должна быть не более 4 мм.

Рисунок 7. Отклонение формы полусферического днища

5.3.2.2 Зазоры IR и Аr между шаблоном и сферической поверхностью днища из лепестков и шарового сегмента (см. рисунки 7 б). 7 в)) должны быть не более ±5 мм при внутреннем диаметре днища до 5000 мм и ±8 мм — при внутреннем диаметре днища более 5000 мм.

Зазор SR может быть увеличен в два раза, если s’ £ 0.85$ (s — толщина обечайки).

5.3.2.3 Зазоры IR и Аr между шаблоном и сферической поверхностью штампованного днища должны быть не более значений, указанных в таблице 6.

5.3.2.4 Контроль формы готового днища проводят шаблоном длиной не менее 1/6 внутреннего диаметра днища.

5.3.3 Конические днища (переходы)

5.3.3.1 У конических днищ (переходов) продольные и кольцевые швы смежных поясов могут быть расположены не параллельно образующей и основанию конуса. При этом должны быть выполнены требования 5.9.7.

5.3.3.2 Утонение толщины стенки отбортовки конических днищ (переходов), изготовляемых штамповкой, должно соответствовать требованию 5.3.1.2.

5.3.3.3 Отклонения высоты цилиндрической части днища допускаются не более плюс 10 и минус 5 мм.

5.3.4 Плоские днища

5.3.4.1 Отклонение от плоскостности для плоских днищ по ГОСТ 12622 и ГОСТ 12623 не должно превышать требований по отклонению от плоскостности на лист по ГОСТ 19903 и ГОСТ 10885.

5.3.4.2 Отклонение от плоскостности для плоских днищ, работающих под давлением, после приварки их к обечайке не должно превышать 0,01 внутреннего диаметра сосуда, но не более 20 мм эмалированных и гуммированных сосудов при условии, что в технической документации не указаны более жесткие требования.

5.4 Фланцы

5.4.1 Технические требования к фланцам сосудов—по ГОСТ 28759.5. арматуры — по ГОСТ 33259.

5.4.2 Фланцы с гладкой уплотнительной поверхностью не допускается применять в сосудах 1-й и 2-й групп, за исключением тех случаев, когда во фланцевых соединениях использованы спирально навитые прокладки с двумя ограничительными кольцами или прокладки других типов, отвечающие следующим критериям:

  • прокладка должна обеспечивать герметичность фланцевого соединения в рабочих условиях с учетом температуры, давления и состава среды;
  • конструкция прокладки должна обеспечивать автоматическое центрирование при сборке фланцевого соединения и предотвращать возможность выдавливания прокладки в плоскости приварочной поверхности.

Это ограничение не распространяется на фланцы сосудов, работающих под налив и до давления 0,05 МПа.

5.4.3 Для фланцевых соединений эмалированных и гуммированных сосудов следует применять прокладки, исключающие возможность повреждения уплотнительной поверхности (спирально навитые прокладки и др.).

5.4.4 При выборе материала прокладок необходимо учитывать условия эксплуатации сосуда. Сведения о прокладках необходимо указывать в технической документации на сосуд.

5.4.5 Приварные встык фланцы необходимо изготовлять из поковок, штампованных заготовок (деталей) или раскатных колец. Применение литых фланцев, в том числе изготовленных из центробежно-литых заготовок, не допускается. Приварные встык фланцы допускается изготовлять вальцовкой заготовки по плоскости листа (см. рисунок 8) для сосудов, работающих под давлением не более номинального давления 2.5 МПа при соблюдении следующих условий:

  • поверхность исходной заготовки параллельна оси обработанного фланца;
  • сварные швы, соединяющие части вальцованной заготовки, должны быть стыковыми и проконтролированы радиографическим или ультразвуковым методом в 100%-ном объеме;
  • заготовки из углеродистых и низколегированных сталей подлежат термообработке согласно 5.11.1. При этом в качестве толщины принимают меньшее из двух значений: b или 1/2(£>м — D) —толщина тарелки фланца; Он и О — наружный и внутренний диаметры фланца соответственно);
  • наружная поверхность втулки фланца подлежит магнитопорошковому или капиллярному контролю.

1 — толщина листа, 2 — ось фланца, 3 — волокно, 4 — лист

Рисунок 8. Схема вальцовки фланца приварного встык по плоскости листа

Приварные встык фланцы допускается изготовлять точением из сортового проката. Плоские приварные фланцы допускается изготовлять из листового проката.

5.4.6 Плоские фланцы допускается изготовлять сварными из частей при условии выполнения сварных швов с полным проваром по всему сечению фланца, а также выполнения требований, перечисленных в 5.11.1. Качество радиальных сварных швов должно быть проверено радиографическим или ультразвуковым методом в 100%-ном объеме.

5.4.7 Корпусные фланцы сосудов из двухслойной стали необходимо изготовлять из стали основного слоя двухслойной стали или из стали этого же класса с защитой уплотнительной и внутренней поверхностей фланца от коррозии наплавкой или облицовкой из коррозионно-стойкой стали.

5.4.6 Для контроля герметичности сварных соединений облицовки фланцев необходимо предусматривать контрольные отверстия под резьбу М10 по ГОСТ 6724.

5.4.9 Длина шпилек (болтов) фланцевых соединений должна обеспечивать превышение резьбовой части над гайкой не менее чем на 1.5 шага резьбы.

5.5 Штуцера, люки, укрепляющие кольца

5.5.1 Патрубки штуцеров и люков допускается изготовлять вальцованными из листового проката, труб и поковок. Патрубки штуцеров и люков допускается изготовлять из сортового проката с наружным диаметром не более 160 мм. толщиной не более 40 мм. длиной до 200 мм включительно.

Заготовки для штуцеров и люков должны быть в термически обработанном состоянии и должны подвергаться радиографическому или ультразвуковому контролю по всему объему. Необходимость термической обработки заготовок, изготовленных из листового проката вальцовкой и сваркой, определяется согласно 5.11.1.

5.5.2 Патрубки штуцеров и люков сосудов из двухслойных сталей могут быть изготовлены:

  • из двухслойной стали той же марки или того же класса:
  • с коррозионно-стойкой наплавкой внутренней поверхности патрубка;
  • с применением облицовочных гильз.

Толщина наплавленного слоя после механической обработки должка быть не менее 3 мм и не менее 6 мм при наличии требований по межкристаллитной коррозии и указана в технической документации. Толщина облицовки должна быть не менее 3 мм.

Для сред, не вызывающих коррозионное растрескивание, штуцера сосудов из двухслойной стали с основным слоем из углеродистой или марганцево-кремнистой стали и плакирующим слоем из хромистой коррозионно-стойкой стали или хромоникелевой аустенитной стали допускается изготовлять из хромоникелевой аустенитной стали при номинальном диаметре штуцера не более 100 мм. расчетной температуре не более 400 ºС. Использование штуцеров с номинальным диаметром не более 100 мм расчетной температурой более 400 ºС допускается при условии подтверждения статической и малоцикловой прочности узлов врезки расчетом с учетом стесненности температурных деформаций в соответствии с ГОСТ 34233.1 (пункт 8.10) и ГОСТ 34233.6.

5.5.3 Торцы штуцеров сосудов и люков из двухслойной стали и швы приварки их к корпусу должны быть защищены от корродирующего действия среды наплавкой или накладкой. Толщина наплавленного слоя должна быть не менее указанной в 5.5.2. Толщина накладок должна быть не менее 3 мм.

5.5.4 При установке штуцеров и люков:

  • позиционное отклонение (в радиусном измерении) осей штуцеров и люков на днищах допускается не более ±10 мм;
  • отклонения диаметров отверстий под штуцера и люки должны быть в пределах зазоров, допустимых для сварных соединении по конструкторской документации;
  • оси отверстий для болтов и шпилек фланцев не должны совпадать с главными осями сосудов и должны быть расположены симметрично относительно этих осей, при этом отклонение от симметричности допускается не более ±5°;
  • отклонение по высоте (вылету) штуцеров допускается не более ±5 мм.

5.5.5 Для контроля герметичности при наличии облицовочной гильзы необходимо предусмотреть контрольное отверстие с резьбой М10 по ГОСТ 8724.

5.5.6 При приварке к корпусу сосуда бобышек, патрубков штуцеров и люков, укрепляющих колец расстояние N (см. рисунок 9) принимают в соответствии с 5.9.6. При этом стыковой шов корпуса должен быть проконтролирован ультразвуковым либо радиографическим методом контроля до приварки бобышек. патрубков штуцеров, люков и укрепляющих колец.

1 — шва приварки патрубка или укрепляющего кольца, 2 — шов корпуса: N — расстояние между краем шва корпуса и краем шва приварки детали

Рисунок 9. Расстояние N

5.5.7 Укрепляющие кольца допускается изготовлять из частей, но не более чем из четырех. При этом сварные швы необходимо выполнять с проваром на полную толщину кольца. В каждом укрепляющем кольце или каждой его части, если сварку частей проводят после установки их на сосуд, должно быть не менее одного контрольного отверстия с резьбой М10 по ГОСТ 8724.

Контрольное отверстие необходимо располагать в нижней части кольца или полукольца по отношению к сосуду, устанавливаемому в эксплуатационное положение, и оно должно быть открытым.

5.5.8 Укрепляющие кольца должны прилегать к поверхности укрепляемого элемента. Зазор допускается не более 3 мм. Зазор контролируют щупом по наружному диаметру укрепляющего кольца.

5.6 Змеевики

5.6.1 При изготовлении гнутых змеевиков необходимо соблюдать следующие условия:

а) расстояние между сварными стыками в змеевиках спирального, винтового и других типов должно быть не менее 4 м. Длина замыкающей трубы с каждого конца должна быть не менее 500 мм за исключением случая приварки к замыкающей трубе патрубка, штуцера или отвода.

При горячей гибке труб с наполнителем допускается не более одного сварного стыка на каждом витке при условии, что расстояние между сварными стыками не менее 2 м;

б) в змеевиках с приварными двойниками (двойные колена) на прямых участках труб длиной не менее 2 м допускается один сварной стык, исключая швы приварки двойников.

Примечание — При горячей гибке вручную труб с наполнителем для змеевиков с диаметром витка не более 1.3 м допускается не более двух стыков на каждом витке. Для змеевиков с диаметром витка более 1.3 м количество стыков не нормируется, но при этом расстояние между стыками должно быть не менее 2 м.

5.6.2 Для сварки стыков труб допускается применять все виды сварки, за исключением газовой сварки, при соблюдении требований 5.9—5.11.

5.6.3 Применение газовой сварки допускается только для труб с номинальным диаметром до 60 мм. толщиной стенки не более 4 мм.

5.6.4 Грат снаружи и внутри трубы после контактной сварки необходимо удалять методом, принятым на предприятии-изготовителе. Концы труб, подлежащие контактной сварке, должны быть очищены снаружи и внутри от грязи, масла, заусенцев. При этом не допускается исправление дефектов, дефектные стыки должны быть вырезаны. В местах вырезки допускается вставка отрезка трубы длиной не менее 200 мм.

5.6.5 На каждый крайний сварной стык, независимо от способа сварки, наносят клеймо, позволяющее установить фамилию сварщика, выполнявшего эту работу.

Место клеймения необходимо располагать на основном металле на расстоянии не более 100 мм от стыка.

5.6.6 Отклонение от перпендикулярности торца труб с наружным диаметром не более 100 мм относительно оси трубы не должно превышать:

  • 0.4 мм при контактной сварке;
  • 0.6 мм при газовой и электродуговой сварках.

Отклонение от перпендикулярности торца труб с наружным диаметром более 100 мм должно соответствовать нормам, принятым на предприятии-изготовителе.

5.6.7 Холодная раздача концов труб из углеродистой стали при их подгонке допускается для труб с наружным диаметром не более 83 мм и толщиной стенки не более 6 мм на не более чем 3 % внутреннего диаметра трубы.

5.6.8 Отклонение от крутости в местах гиба труб и сужения внутреннего диаметра в зоне сварных швов не должны превышать 10 % наружного диаметра труб. Отклонение от крутости необходимо проверять для труб диаметром не более 60 мм при радиусе гиба менее четырех диаметров пропусканием контрольного шара, а для остальных труб — измерением наружного диаметра.

Диаметр контрольного шара должен быть равен:

  • 0.9с/ — для труб без гибов, за исключением труб с подкладными остающимися кольцами (d — фактический наименьший внутренний диаметр труб);
  • 0.8tf — для гнутых сварных труб, за исключением гнутых труб в горячем состоянии или с приварными коленами;
  • 0,86rf — для гнутых в горячем состоянии труб:
  • 0.7Sd—для гнутых труб с приварными коленами.

Отклонение от номинального размера диаметра контрольного шара не должно превышать 1.5 мм.

5.6.9 Смещение кромок в стыкуемых труб (см. рисунок 10) в стыковых соединениях определяют шаблоном и щупом, и оно не должно превышать значений, указанных в таблице 7.

Рисунок 10. Схема определения

Таблица 7. Смещение кромок стыкуемых труб

Номинальная толщина стенки трубы в. мм в. мы
До 3 включ. 0.2s
Св. 3 до 6 включ. 0.1s+ 0.3
Св.6 до 10 включ.
Св.10 до 20 включ. 0.05s+ 1.0
Св.20 0.1s, но не более 3 мм

5.6.10 Отклонение от прямолинейности М оси трубы на расстоянии 200 мм от оси шва (см. рисунок 11) определяют шаблоном и щупом, и оно не должно превышать значений, указанных в таблице 8.

1 — шаблон: AL — отклонение от прямолинейности

Рисунок 11 — Схема определения отклонения от прямолинейности оси трубы

Таблица 8. Отклонение от прямолинейности оси трубы Номинальная толщина стенки трубы з. мм At. мм

Номинальная толщина стенки трубы, мм At. мм
До 3 в ключ. 0.2s + 1.0
Св. 3 до 6 включ. 0.1s+ 1.3
Св. 6 до 10 включ. 0.15s + 1.0
Св. 10 до 20 включ. 0.05s + 2.0
Св. 20 0.1s + 1.0, но не более 4 мм

5.6.11 При изготовлении гнутых змеевиков [см. рисунки 12 а), в)] предельные отклонения размеров должны быть следующие:

±6 мм — для L:
±5 мм — для L, и t2:
±4 мм — для
±10 мм — для D.

Ц — алина прямой части змеевика: L — длина свободного конца змеевика с отводом: Ц, f2. Jg — шаги змеевика: Ot — диаметр наружного контура змеевика винтовой формы: О — диаметр наружного контура змеевика спиральной формы: R/— радиус оси но контура змеевика спиральной формы

Рисунок 12. лист 1. Размеры гнутых змеевиков

Рисунок 12. лист 2

Предельные отклонений радиусов /?,— Rs диаметра О,, шага 13 [см. рисунки 12 б), 12 в)] и излома оси в швах приварки выводов устанавливают по чертежам предприятия-изготовителя.

Примечание — Допускается отклонение размеров i. и Ц (если эти размеры более 6 м) увеличивать на 1 мм на каждый 1 м длины, но не более чем на 10 мм на всю длину.

5.6.12 Контроль сварных швов змеевиков необходимо проводить в соответствии с требованиями 7.2—7.10.

Объем контроля сварных швов радиографическим или ультразвуковым методом должен быть не менее 3 % (но не менее двух стыков), выполненных каждым сварщиком (по всей длине соединения).

5.6.13 До установки в сосуд змеевики необходимо подвергать гидравлическому испытанию пробным давлением, указанным в чертежах предприятия-изготовителя. При испытании не должно быть признаков течи и потения.

5.7 Отводы и гнутые трубы

5.7.1 Отводы должны удовлетворять требованиям ГОСТ 17375. ГОСТ 17380. ГОСТ 30753 и чертежам предприятия-изготовителя.

5.7.2 Отводы необходимо изготовлять с углом изгиба 45е. 60е, 90е и 180е. Отводы, гнутые из труб под углом 180е, допускается изготовлять сварными из двух отводов под углом 90е.

Изменение угла изгиба допускается по соглашению с заказчиком.

5.7.3 Крутоизогнутые отводы допускается изготовлять из труб и листового проката. При изготовлении секторных отводов угол между поперечными сечениями секторов не должен превышать 30е.

Расстояние между соседними сварными швами по внутренней стороне отвода должно обеспечивать доступность контроля этих швов с обеих сторон по наружной поверхности согласно разделу 7.

Применение секторных отводов в сосудах 1-й и 2-й групп не допускается для DN £ 800 мм.

5.7.4 Предельные отклонения размеров и допуск плоскостности торцов отводов и гнутых труб не должны превышать значений, указанных в таблице 9.

Таблица 9. Предельные отклонения размеров и допуск плоскостности торцов отводов и гнутых труб

Толщина отводов
или гнутых труб S мм
Предельные отклонения, мм Допуск плоскостности А, мм
внутреннего диаметра толщин стенки
От 2.5 до 3,0 включ. ±0.5 ±0.125$ ±0.5
От 3.5 до 4,5 включ. ±1.0 ±1.0
От 5.0 до 6,0 включ. ±1.5 ±0.125$ ±1.5
От 7.0 до 8,0 включ. ±2.0
От 9.0 до 15.0 включ. ±2.5 ±0.125s ±1.5
От 16.0 и более ±3.0

Предельные отклонения размеров L,, Ц. Ц отводов (см. рисунок 13) не должны превышать значений. указанных в таблице 10.

Рисунок 13. Схема определения размеров С,. L2. L3. Л отводов в зависимости от угла изгиба

Таблица 10. Предельные отклонения размеров С,. L2, L, отводов

Номинальный диаметр отводов, мм Предельные отклонения размеров C. L. S, мм
До 125 включ. ±2.0
Св. 125 до 200 включ. ±3.0
Св. 200 до 350 включ. ±4.0
Св. 350 до 500 включ. ±5.0
Св. 500 ±6.0

5.8 Сварка и наплавка

5.8.1 Сварку корпусов сосудов 1.2. 3 и 4-й групп, а также сварку их внутренних и наружных деталей должны проводить аттестованные сварщики.

5.8.2 Сосуды в зависимости от конструкции и размеров могут быть изготовлены с применением всех аттестованных видов промышленной сварки, за исключением газовой сварки. Применение газовой сварки допускается только для труб и змеевиков диаметром до 80 мм и толщиной стенки не более 4 мм.

Применяемая технология сварки должна быть аттестована.

5.8.3 Сварку и наплавку сосудов (сборочных единиц, деталей) необходимо проводить в соответствии с требованиями технических условий на изготовление или технологической документации.

Технологическая документация должна содержать указания:

  • по технологии сварки и наплавки материалов, принятой для изготовления сосудов (сборочных единиц, деталей); видам и объему контроля;
  • предварительному и сопутствующему подогреву;
  • термической обработке.

5.8.4 Все сварочные работы при изготовлении сосудов (сборочных единиц и деталей) необходимо проводить при положительных температурах.

При выполнении сварочных работ на открытой площадке сварщик и место сварки должны быть защищены от непосредственного воздействия дождя, ветра и снега. Температура окружающего воздуха должна быть не ниже указанной в таблице 11.

Таблица 11. Температура окружающего воздуха при сварке сосудов

Материал Температура окружающею кошуха при сварке металла толщиной
не более 16 мм более 16 мм
Углеродистая сталь с содержанием
углерода менее 0.24 %. низколеги-
рованные марганцовистые и марган-
цево-кремнистые стали и основной
спой из этих сталей в двухслойной
стали
Ниже 0 ‘С до минус 20 ’С сварка
без подогрева.
При температуре ниже минус 20 ‘С
сварка с подогревом до 100—
200 ’С
Ниже 0 ‘С до минус 20 ’С* сварка
с подогревом до 100—200 *С
Углеродистая сталь с содержанием
углерода от 0.24 % до 0.28 %
Ниже 0 *С до минус 10 *С‘ сварка
без подогрева
Ниже 0 ‘С до минус 10 *С‘ сварка
с подогревом до 100—200 *С
Теплоустойчивые хромомолибде-
новые стали типа 12МХ и основной
слой из этих сталей в двухслойной
стали
Ниже 0 *С до минус 10 ’С’ сварка с подогревом до 250—350 ’С
Среднелегированные хромистые
и хромомолибденовые стали типа
15X5.15Х5М
Не ниже 0 «С*
Высоколегированные хромони-
кельмолибденовые и хромоникеле-
вые стали аустенитного класса
Ниже 0 *С до минус 20 *С’ сварка без подогрева

*При температуре, ниже указанной, сварка не допускается.

5.8.5 Форма подготовки кромок должна соответствовать требованиям технической и проектной документации.

Кромки подготовленных под сварку элементов сосудов должны быть зачищены на ширину не менее 20 мм. а для электрошлаковой сварки — на ширину не менее 50 мм. Кромки не должны иметь следов ржавчины, окалины, масла и прочих загрязнений. Кромки должны проходить визуальный контроль для выявления пороков металла. Не допускаются расслоения, закаты, трещины, а для двухслойной стали также и отслоения коррозионно-стойкого слоя.

При толщине листового проката более 36 мм зону, прилегающую к кромкам, дополнительно необходимо контролировать ультразвуковым методом на ширине не менее 50 мм.

Размеры дефектов не должны превышать допустимых размеров для сварных соединений соответствующих групп сосудов и аппаратов в соответствии с подразделом 5.10.

В случае обнаружения недопустимых дефектов исправления проводят в соответствии с типовой или специально разработанной технологической инструкцией не более трех раз в одном месте сварного шва.

5.8.6 Все сварные швы подлежат клеймению, позволяющему установить сварщика, выполнявшего эти швы. Клеймение наплавкой запрещено.

Клеймо наносят на расстоянии 20—50 мм от кромки сварного шва с наружной стороны. Если шов с наружной и внутренней сторон заваривается разными сварщиками, клейма ставят только с наружной стороны через дробь: в числителе клеймо сварщика с наружной стороны шва. в знаменателе клеймо сварщика с внутренней стороны. Если сварные соединения сосуда выполнены одним сварщиком, то допускается клеймо ставить около таблички или на другом открытом участке.

У продольных швов клеймо должно быть расположено в начале и конце шва на расстоянии 100 мм от кольцевого шва. На обечайке с продольным швом длиной менее 400 мм допускается ставить одно клеймо. Для кольцевого шва клеймо необходимо выбивать в месте пересечения кольцевого шва с продольным и далее через каждые 2 м. но при этом должно быть не менее двух клейм на каждом шве.
На кольцевой шов сосуда диаметром не более 700 мм допускается ставить одно клеймо.

Вместо клеймения сварных швов допускается прилагать к паспорту сосуда схему расположения сварных швов с указанием фамилий сварщиков и их подписью.

5.9 Сварные соединения

5.9.1 При сварке обечаек и труб, приварке днищ к обечайкам необходимо применять стыковые швы с полным проплавлением.

Допускается применять угловые и тавровые швы при приварке штуцеров, люков, труб, трубных решеток, плоских днищ и фланцев.

Допускается применять нахлесточные сварные швы для приварки укрепляющих колец и опорных элементов.

Не допускается применение угловых и тавровых швов для приварки штуцеров, люков, бобышек и других деталей к корпусу с неполным проплавлением (конструктивным зазором):

  • в сосудах 1.2,3-й групп при диаметре отверстия более 120 мм, сосудах 4-й группы при диаметре отверстия более 275 мм;
  • в сосудах 1, 2. 3 и 4-й групп из низколегированных марганцовистых и марганцево-кремнистых сталей, находящихся под рабочим давлением, с температурой стенки ниже минус 30 *С без термообработки и ниже минус 40 *С с термообработкой:
  • в сосудах всех групп, предназначенных для работы в средах, вызывающих коррозионное растрескивание. независимо от диаметра патрубка, за исключением случаев, когда предусмотрена засверловка отверстия в зонах конструктивного зазора.

Не допускается применение конструктивного зазора в соединениях фланцев с патрубками сосудов. работающих под давлением более 2.5 МПа и/или при температуре более 300 ºС или ниже минус 40 ºС, и фланцев с обечайками и днищами сосудов, работающих под давлением более 1.6 МПа и/или при температуре более 300 *С или ниже минус 40 ºС. Не допускается конструктивный зазор в этих сварных соединениях независимо от рабочих параметров в сосудах, предназначенных для работы в средах, вызывающих коррозионное растрескивание.

5.9.2 Форма и расположение сварных швов сосудов должны обеспечивать возможность их визуального измерительного контроля и контроля неразрушающим методом (ультразвуковым, радиографическим и др.) в требуемом объеме, а также устранения в них дефектов.

Допускается в сосудах 1, 2, 3 и 4-й групп не более одного стыкового шва корпуса, в сосудах 5-й группы — не более четырех стыковых швов корпуса, в теплообменниках — не более двух стыковых швов корпуса, доступных для визуального и измерительного контроля при изготовлении только с одной стороны.

5.9.3 Продольные сварные швы горизонтально устанавливаемых сосудов должны быть расположены вне центрального угла, равного 140º. нижней части корпуса, если нижняя часть недоступна для визуального контроля, на что должно быть указано в проектной документации.
5.9.4 Места пересечения сварных швов сосудов не следует перекрывать опорами, накладками и другими элементами.

Местное перекрытие кольцевых сварных швов седловыми опорами горизонтальных аппаратов, подвесными опорами вертикальных аппаратов, накладками, подкладными листами и другими элементами допускается на общей длине не более 0.5л£>н (Ои — наружный диаметр) при условии, что перекрываемые участки швов по всей длине проконтролированы визуальным и радиографическим или ультразвуковым методом и выполнены требования 5.2.3.

Перекрытие продольных швов круговыми опорами горизонтальных аппаратов с углом охвата 360º допускается при 100%-ном контроле радиографическим или ультразвуковым методом перекрываемых участков швов.

5.9.5 Расстояние между продольным швом корпуса горизонтального сосуда и швом приварки опоры должно приниматься:

  • на м«нь« ,/св для не термообработанного сосуда (D — внутренний диаметр сосуда, ь — толщина обечайки);
  • в соответствии с требованием 5.9.6 для термообработанного сосуда.

5.9.6 Расстояние между краем шва приварки внутренних и внешних устройств и краем ближайшего стыкового шва корпуса должно быть не менее 20 мм.

Допускается пересечение стыковых швов корпуса угловыми швами приварки внутренних и внешних устройств (опорных элементов, тарелок, рубашек, перегородок и т. п.) при условии, что перекрываемые участки швов по всей длине предварительно проконтролированы визуальным и радиографическим или ультразвуковым методом контроля и выполнены требования 5.2.3.

При пересечении стыковых швов корпуса угловыми швами приварки внутренних и внешних устройств под углом (не в перпендикулярном направлении) длина перекрываемой угловым швом части стыкового шва корпуса не должна превышать трехкратную ширину этого стыкового шва корпуса.

При приварке колец жесткости к обечайке общая длина сварного шва с каждой стороны кольца должна быть не менее половины длины окружности.

Для сосудов из двухслойных сталей с основным металлом из хромомолибденовой и хромомо-либденованадиевой сталей допускается приварка к плакирующему слою корпусов и днищ внутренних устройств, не нагруженных давлением, без удаления плакирующего слоя в местах наложения угловых швов, если толщина привариваемого элемента не превышает 16 мм. При этом приварку осуществляют двусторонним швом.

Возможность приварки к плакирующему слою элементов толщиной более 16 мм либо приварки элементов толщиной не более 16 мм односторонним швом должна быть согласована с автором технической документации.

5.9.7 Продольные швы смежных обечаек и швы днищ в сосудах 1. 2. 3 и 4-й групп должны быть смещены относительно друг друга на трехкратную толщину наиболее толстого элемента, но не менее чем на 100 мм между осями швов.

Допускается не смещать или смещать на меньшее значение указанные швы относительно друг друга.

  • в сосудах, работающих под давлением не более 1.6 МПа и при температуре не более 400 °С, с толщиной стенки не более 30 мм. при условии что эти швы выполняют автоматической или электрошлаковой сваркой, а места пересечения швов контролируют радиографическим или ультразвуковым методом в 100%*ном объеме;
  • в сосудах 5-й группы независимо от способа сварки.

5.9.8 При сварке стыковых сварных соединений элементов разной толщины необходимо предусмотреть плавный переход от одного элемента к другому постепенным утонением более толстого элемента. Угол скоса а элементов разной толщины [см. рисунки 14 а). 14 6). 14 в), 14 г)) должен быть не более 20е-. Сварку патрубков разной толщины допускается выполнять в соответствии с рисунка-
ми 14 д). 14 е). При этом расстояние t должно быть не менее толщины s. но не менее 20 мм. а радиус r не менее s2 — s.

с. s,. Sj •— толщины элементов; а — угол скоса элементов разной толщины: r — радиус кольцевой выточки; I — длина скоса утоняемого элемента

Рисунок 14. лист 1. Стыковка элементов разной толщины

Рисунок 14. лист 2

Допускается выполнять сварку стыковых швов без предварительного утонения более толстого элемента, если разность в толщинах соединяемых элементов не превышает 30 % толщины более тонкого элемента; при этом форма шва должна обеспечивать плавный переход от толстого элемента к тонкому. В сосудах, выполняемых из двухслойной стали или с антикоррозионной наплавкой, скос осуществляют. как правило, со стороны основного слоя.

5.9.9 Смещение кромок В листов в стыковых соединениях (см. рисунок 15) определяют по срединной поверхности в местах стыка по оси шва. не должно превышать значений, указанных в таблице 12.

в — смещение кромок. в| и Sj — расстояния между поверхностями листов стыкуемых элементов; в — наименьшая толщина листа стыкуемых элементов, s, — большая толщина листа стыкуемых элементов

Рисунок 15. Смещение кромок

Примечание — При измерении смещения В кромок листов толщиной s и в, в стыковых соединениях необходимо учитывать, что: Я, 6> 0,6(8) ~«)+8 &2 S 0,6 (в) -«)-Я

Таблица 12. Смещение кромок в стыковых соединениях монометаллических сосудов

Толщина свариваемых листов в. мм Максимально допустимое смещение стыкуемых кромок, мм
в продольных швах обечаек и штуцеров,
хордовых и меридиональных швах выпуклых
днищ, а также в свариваемых заготовках днищ
в кольцевых швах сосудов*
До 20 включ. 0.1s. но не более 3 0.1S+ 1
Св. 20 до 50 включ. 0.1s. но не более 3 0.15s. но не более 5
Св. 50 до 100 включ. 0.04s + 3.5
Св. 100 0.025s + 5.
но не более 10

При смещении поверхностей стыкуемых элементов с учетом допустимого настоящим пунктом смещения кромок форма шва должна обеспечивать плавные переходы между стыкуемыми элементами с уклоном 1:3 с наружной и внутренней сторон за счет наплавки дополнительного металла шва.

При сварке биметаллических сосудов:

  • смещение кромок в продольных швах обечаек и штуцеров, в хордовых и меридиональных швах выпуклых днищ, а также в свариваемых заготовках днищ со стороны плакирующего слоя не должно превышать 0.1s. но не более 50 % толщины плакирующего слоя, если сваркой шов выполняется без предварительного снятия плакирующего слоя у кромки стыка;
  • смещение кромок по срединной поверхности основного металла не должно превышать значений. указанных в таблице 12. если сварной шов выполняется с предварительным снятием плакирующего слоя у кромки стыка. При этом перед наплавкой коррозионно-стойкого слоя должен быть обеспечен плавный переход между стыкуемыми элементами по основному металлу с уклоном 1:3 с наружной и внутренней сторон за счет наплавки дополнительного металла шва.

5.9.10 Увод (угловатость) и кромок (см. рисунок 16) в стыковых сварных соединениях не должен превышать 0.1s + 3 мм. но не более соответствующих значений для элементов, указанных в таблице 13. в зависимости от внутреннего диаметра D обечаек и днищ.

Г — шаблон. 2 — линейка: Г— увод (угловатость) кромок: а — толщина обечайки (днища): О — диаметр обечайки (днища)

Рисунок 16 — Контроль увода кромок продольных и кольцевых сварных соединений

Таблица 13. Максимально допустимый увод кромок в стыковых сварных соединениях обечаек и днищ

Максимальный угол (угловатость) R кромок в стыковых сварных соединениях, мм
обечаек днищ из лепестков конических днищ
независимо от О О S5000 мм 0 > 5000 мм 0 S 2000 мм 0 > 2000 мм
5 б в 5 7

Увод (угловатость) кромок в продольных сварных соединениях обечаек и конических днищ, стыковых сварных соединениях днищ из лепестков определяют шаблоном длиной не менее 1/60 [см. рисунки 16 а),16 б)], а в кольцевых сварных соединениях обечаек и конических днищ — линейкой длиной не менее 200 мм [см. рисунки 16 в). 16 г)]. Увод (угловатость) кромок определяют без учета усиления шва. для чего в средней части шаблона (или линейки) необходимо предусмотреть местный вырез.

5.9.11 При защите от коррозии элементов сосудов способом наплавки толщина наплавленного слоя после механической обработки должна быть указана в проектной документации.

5.9.12 Сварные стыковые соединения сталей, разнородных по термомеханическим свойствам (например, сталей перлитного и аустенитного классов), допускаются в конструкции при подтверждении расчетом на прочность и с соблюдением следующих условий:

  • толщина материала в местах сварки соединения не должна превышать 36 мм для углеродистых сталей и 30 мм — для марганцево-кремнистых сталей (марок 16ГС. 17ГС. 09Г2С и др.);
  • среда не должна вызывать коррозионное растрескивание.

5.9.13 Технология сварки, качество и контроль сварных соединений из разнородных сталей должны соответствовать требованиям нормативного документа [2р.

5.10 Требования к качеству сварных соединений

5.10.1 Механические свойства сварных соединений после всех циклов термической обработки должны быть не ниже норм, указанных в таблице 14.

Таблица 14. Механические свойства сварных соединений

Наименование показателя Минимальная норма механических свойств сварных соединений
для углеродистых сталей для низколегированных,
марганцовистых и
марганцево-
кремнистых
сталей
для хро-
мистых,
хроммолибденовых
и высоколегированных сталей ферритного класса
для сталей: 10Х2М1А.
10Х2М1А-А.
10Х2ГНМ,
15Х2МФА.
10Х2М1АВД.
10Х2М1А-Ш.
15Х2МФА-А
аустенитно
ферритных
сталей
для аусте
нитных
сталей
Временное сопротивление разрыву при температуре 20 °С Не ниже среднего значения временного сопротивления по разрыву металла по стандарту или техническим условиям для данной марки стали
Минимальная ударная вязкость, Дж/см[1]2): при температуре 20 °С на образцах KCV
на образцах KCU при температуре ниже — 20 °С
на образцах KCV
на образцах KCU
35 (3.5)
50 (5.0)
20 (2.0)
30 (3.0)
35 (3.5)
50 (5.0)
20 (2.0)
30 (3.0)
35 (3.5)
50 (5.0)
20 (2.0)
30 (3.0)
50 (5.0)
50 (5.0)
30 (3.0)
40 (4.0)
20 (2.0)
30 (3.0)
изгиба*: — при толщине не более 20 мм 100 80 50 80 100
— при толщине более 20 мм 100 60 40 60 100
Твердость металла шва сварных соединений НВ, не более 240 225 (для стали
15Х2МФА —235
220

1 Твердость металла шва и переходного слоя в коррозионно-стойком слое сварных соединений из двухслойных сталей не должна превышать 220 НВ.

2 Виды испытаний и гарантированные нормы механических свойств по временному сопротивлению разрыву и ударной вязкости стыковых сварных соединений типа «лист + поковка», «лист + литье», «поковка + поковка». «поковка * труба», «поковка + сортовой прокат» должны соответствовать требованиям, предъявляемым к материалам с более низкими показателями механических свойств.

Контроль механических свойств, а также металлографическое исследование или испытание на стойкость к межкристаллитной коррозии образцов этих соединений предусматриваются разработчиком технической документации.

Для сварных соединений типа «тст + поковка», «лист + литье», «поковка + поковка», «поковка * труба», «поковка + сортовой прокат» угол изгиба должен быть не менее:

  • 70º — для углеродистых сталей и сталей аустенитного класса:
  • 50º — для низколегированных марганцовистых и марганцево-кремнистых сталей, высоколегированных сталей аустенитно-ферритного класса:
  • 30º — для низколегированных и средне легированных (хромистых и хромомолибденовых) сталей и высоколегированных сталей ферритного класса.

3 Твердость металла шва сварных соединений из стали марки 12ХМ. выполненных ручной электродуговой сваркой ванадийсодержащими электродами, должна быть не более 260 НВ. при условии что относительное удлинение металла шва будет не менее 18%. Твердость металла шва сварных соединений из стали марки 15Х5МУ должна быть не более 270 НВ.

Действуют только в Российской Федерации и государствах, упомянутых в предисловии как проголосовавшие за принятие межгосударственного стандарта.

5.10.2 В сварных соединениях не допускаются следующие поверхностные дефекты:

  • трещины всех видов и направлений;
  • свищи;
  • подрезы;
  • наплывы, прожоги и незаплавленные кратеры;
  • смещение и совместный увод кромок свариваемых элементов свыше норм, предусмотренных настоящим стандартом;
  • несоответствие формы и размеров швов требованиям стандартов, технических условий* или проектной документации;
  • поры, выходящие за пределы норм, установленных таблицей 15;
  • чешуйчатость поверхности и глубина впадин между валиками шва. превышающие допуск на усиление шва по высоте.

Таблица 15. Нормы допустимых пор, выявляемых при визуальном контроле сварных соединений

Номинальная толщина наиболее
тонкой детали, мм
Допустимый максимальный
размер дефекта, мм
Допустимое число дефектов
на любые 100 мм шва
От 2 до 3 включ. 0.5 3
Св. 3 до 4 включ. 0.6 4
Св. 4 до 5 включ. 0.7 4
Св. 5 до 6 включ. 0.8 4
Св. 6 до 8 включ. 1.0 5
Св. 8 до 10 включ. 1,2 5
Св. 10 до 15 включ. 1.5 5
Св. 15 до 20 включ. 2.0 6
Св. 20 до 40 включ. 2.5 7
Св. 40 2.5 8

Допускаются местные подрезы е сосудах 3. 4 и 5-й групп, предназначенных для работы при температуре выше 0 ºС. При этом их глубина не должна превышать 5 % толщины стенки, но не более 0.5 мм, а протяженность —10 % длины шва.

Допускаются в сварных соединениях из сталей и сплавов марок 03Х21Н21М4ГБ. 03ХН28МДТ. 06ХН28МДТ отдельные микронадрывы протяженностью не более 2 мм.

5.10.3 В сварных соединениях не допускаются следующие внутренние дефекты:

  • трещины всех видов и направлений, в том числе микротрещины, выявленные при металлографическом исследовании:
  • свищи:
  • смещение основного и плакирующего слоев в сварных соединениях двухслойных сталей выше норм, предусмотренных настоящим стандартом:
  • непровары (несплавления), расположенные в сечении сварного соединения;
  • поры, шлаковые и вольфрамовые включения, выявленные радиографическим методом, выходящие за пределы норм, установленных допустимым классом дефектности сварного соединения по
  • ГОСТ 23055 в соответствии с таблицей 16 или выявленные ультразвуковым методом согласно [3]*.

Таблица 16. Классы дефектности сварного соединения

Вид сварного соединения Группа сосуда
1.2.3 5
Класс дефектности по ГОСТ 230SS
Стыковые 3 4 6
Угловые, тавровые 4 5 6
Нахлесточные 5 6 7

5.11 Термическая обработка

5.11.1 Сосуды (сборочные единицы, детали) из углеродистых и низколегированных сталей (за исключением сталей, перечисленных в 5.11.3), изготовленные с применением сварки, штамповки или вальцовки, подлежат обязательной термической обработке, если:

а) толщина стенки цилиндрического или конического элемента корпуса, днища, фланца или патрубка сосуда в месте их сварного соединения более 36 мм — для углеродистых сталей, более 30 мм — для марганцовистых и марганцевокремнистых сталей, а при проведении сопутствующего подогрева — при толщине стенки более 38 мм;

б) относительная остаточная деформация цилиндрических или конических элементов сосуда (патрубка). работающих под давлением, изготовленных из листовой стали вальцовкой (штамповкой), превышает 5%.

Относительную остаточную деформацию вычисляют по формуле 3)

где ts — относительная остаточная деформация. %:

s — номинальная толщина элемента сосуда, мм;

Rs — радиус срединной поверхности (для конических элементов радиус срединной поверхности определяют по меньшему основанию конуса).

Данное требование не распространяется на отбортованные рубашки;

в) сосуды (сборочные единицы, детали) предназначены для эксплуатации в средах, вызывающих коррозионное растрескивание (жидкий аммиак, растворы едкого натрия и калия, азотнокислого натрия, калия, аммония, кальция, этаноламина. влажные сероводородсодержащие среды и од.);

г) днища сосудов и другие элементы независимо от толщины, изготовленные холодной штамповкой или холодным фланжированием.

5.11.2 Сварные соединения из углеродистых, низколегированных марганцовистых, марганцево-кремнистых и хромомолибденовых сталей, выполненные электрошлаковой сваркой, подлежат нормализации и высокому отпуску.

При электрошлаковой сварке заготовок штампуемых и вальцуемых элементов из сталей марок 16ГС. 09Г2С и 10Г2С1. предназначенных для работы при температуре не ниже минус 40ºС, нормализация может быть совмещена с нагревом под штамповку с окончанием штамповки при температуре не ниже 700 ºС.

5.11.3 Сварные сосуды (сборочные единицы, детали) из сталей марок 12МХ. 12ХМ. 15ХМ. 12Х1МФ. 10Х2М1А, 10Х2М1А-А, 10Х2М1А-ВД. 10Х2М1А-Ш. 15Х2МФА. 15Х2МФА-А. 1Х2М1. 15X5. Х8. 15Х5М. 15Х5ВФ. 12Х8ВФ. Х9М и из двухслойных сталей с основным слоем из сталей марок 12МХ. 12ХМ, 20Х2МА необходимо подвергать термической обработке по режиму, оговоренному в норматив-
ном документе.

5.11.4 Сосуды (сборочные единицы, детали) из сталей марок 08Х18Н10Т. 08Х16Н12Б и других аустенитных сталей, стабилизированных титаном или ниобием, предназначенные для работы в средах, вызывающих коррозионное растрескивание, а также при температурах выше 350 ºС в средах, вызывающих межкристаллитную коррозию, необходимо подвергать термической обработке по режиму, оговоренному в нормативном документе. Необходимость такой термообработки указывают в проектной документации.

5.11.5 Необходимость и вид термической обработки сосудов (сборочных единиц, деталей) из двухслойной стали необходимо определять в соответствии с требованиями перечислений а), б), г) 5.11.1. 5.11.2,5.11.3.

При определении толщины свариваемого элемента принимают толщину основного слоя двухслойной стали.

При наличии в проектной документации требований на стойкость к межкристаллитной коррозии технология сварки и режим термообработки сварных соединений двухслойных сталей должны обеспечивать стойкость сварных соединений коррозионно-стойкого слоя к межкристаллитной коррозии.

5.11.6 Днища и детали из углеродистых и низколегированных марганцево-кремнистых сталей, штампуемые (вальцуемые) вгорячую с окончанием штамповки (вальцовки) при температуре не ниже 700 ºС. а также днища и детали из аустенитных хромоникелевых сталей, штампуемых (вальцуемых) при температуре не ниже 850 ºС. термической обработке не подвергают.

Днища и другие штампуемые (вальцуемые) вгорячую элементы, изготовляемые из сталей марок 09Г2С. 10Г2С1. работающие при температуре от минус 40 ºС до минус 70 ºС. следует подвергать термической обработке — нормализации или закалке и высокому отпуску вне зависимости от температуры окончания штамповки.

Днища и другие элементы из низколегированных сталей марок 12ХМ и 12МХ, штампуемые (вальцуемые) вгорячую с окончанием штамповки (вальцовки) при температуре не ниже 800 ºС. допускается подвергать только отпуску (без нормализации).

Технология изготовления днищ и других штампуемых элементов должна обеспечивать необходимые механические свойства, указанные в стандартах или технических условиях* на материал, а при наличии требования в проектной документации — и стойкость к межкристаллитной коррозии.

5.11.7 Днища и другие элементы, выполненные из коррозионно-стойких сталей аустенитного класса методом холодной штамповки или холодным фланжированием. следует подвергать термической обработке (аустенизации или стабилизирующему отжигу), если они предназначены для работы в средах, вызывающих коррозионное растрескивание. 8 остальных случаях термообработку допускается не проводить. если относительное удлинение при растяжении в исходном состоянии металла не менее 30 % при степени деформации е холодном состоянии не более 15 %.

5.11.8 Гнутые холодным способом участки труб из углеродистых и низколегированных сталей подлежат термообработке, если отношение среднего радиуса изгиба к номинальному наружному диаметру трубы составляет менее 3.5. а отношение номинальной толщины стенки трубы к ее номинальному диаметру превышает 0.05.

5.11.9 Приварку внутренних и наружных устройств к сосудам, подвергаемым термической обработке. необходимо проводить до термической обработки сосуда.

Допускается приварка внутренних и наружных устройств без последующей термической обработки к сосудам, термообработанным в соответствии с перечислениями а), б) 5.11.1. при условии, что катет сварного шва не более 8 мм.

Допускается приварка наружных устройств на монтажной площадке к специальным накладкам, приваренным к корпусу сосуда и прошедшим вместе с ним термическую обработку на предприятии-изготовителе без последующей термической обработки монтажных сварных швов.

5.11.10 Допускается местная термическая обработка сварных соединений сосудов, при проведении которой должны быть обеспечены равномерный нагрев и охлаждение по всей длине шва и прилегающих к нему зон основного металла.

5.11.11 Объемную термическую обработку проводят в печах или способом нагрева изнутри путем подачи теплоносителя во внутреннее пространство (объем) аппарата, изолированного снаружи.

При этом должны быть проведены мероприятия, предохраняющие сосуд (сборочную единицу, деталь) от деформаций, вызванных местным перегревом, неправильной установкой сосуда, действием собственной массы, а также должна быть обеспечена защита металла от воздействия сред, провоцирующих различные виды коррозии.

5.11.12 Свойства металла обечаек, днищ, патрубков, решеток после всех циклов термической обработки должны соответствовать требованиям стандартов (технических условий*) на поставку материалов.

Контроль механических свойств основного металла после термообработки можно не проводить, если температура отпуска не превышала 650 *С для углеродистых и низколегированных марганцовистых и марганцево-кремнистых сталей (СтЗ. 16К. 18К. 20К. 22К. 20КА. 20Юч. 16ГС. 17ГС. 17Г1С. 09Г2С. 10Г2С1) и их зарубежных аналогов.

5.11.13 Виды и режимы термообработки сосудов (сборочных единиц, деталей) должны соответствовать требованиям [4]*.

5.11.14 Для определения степени охрупчивания при эксплуатации основного металла и сварных соединений сталей 10Х2М1А-А. 10Х2М1А(10Х2М1А-ВД. 10Х2М1А-Ш). 12Х2МФА. 15Х2МФА-А проводят испытания на ступенчатое охлаждение при наличии указаний в документации. Рекомендуемая методика проведения термической обработки на ступенчатое охлаждение приведена в приложении Н.

5.11.15 Термическая обработка сварного соединения может проводиться не более трех раз без учета промежуточных отпусков.

Требования к стальным конструкциям резервуаров

2.1.1 Металлоконструкции резервуаров должны изготавливаться по техническим условиям, согласованным ОАО «АК «Транснефть», и отвечающим требованиям настоящих Норм.

2.1.2 Для вновь строящихся резервуаров проектные решения должны обеспечить нормативный срок их эксплуатации продолжительностью 50 лет, и межремонтный интервал — 20 лет.

2.1.3 Расчеты несущей способности конструкций резервуаров следует выполнять по методу предельных состояний, на основании правил строительной механики.

Нагрузки и воздействия на конструкции резервуара должны приниматься в соответствии с требованиями СНиП 2.01.07-85* «Нагрузки и воздействия» для района строительства резервуара и другими нормативными документами, действующими в ОАО «АК «Транснефть», также необходимо учитывать неравномерное распределение снегового покрова на кровле и сейсмичность района строительства резервуара.

2.1.4 Все конструктивные элементы резервуаров по требованиям к материалам разделяются на основные и вспомогательные. Основные конструкции резервуаров в свою очередь подразделяются на подгруппы «А» и «Б».

2.1.5 Основные конструкции резервуара подгруппы «А»:

— люки (патрубки) стенки и их составные части (обечайки, усиливающие накладки, фланцы);

— привариваемые к стенке листы днища;

— привариваемые к стенке усиливающие накладки колец жесткости, опор и кронштейнов трубопроводов, лестниц, площадок и др.;

— опорное кольцо жесткости и каркас стационарной крыши резервуара;

— кольцо жесткости на стенке резервуара с плавающей крышей.

(Измененная редакция, Изм. 2005 г.)

2.1.6 Основные конструкции резервуара подгруппы «Б»:

— центральная часть днища;

— настил стационарных крыш;

— понтоны и плавающие крыши.

2.1.7 К вспомогательным конструкциям резервуаров относятся люки и патрубки на крыше резервуара, лестницы, площадки, ограждения.

2.1.8 Значения рабочего избыточного давления и вакуума в газовом пространстве, используемые при расчете резервуара на прочность и устойчивость, для каждого типа резервуаров должны быть приняты в соответствии с требованиями, приведенными в таблице 2.0.

Проектом должна быть предусмотрена дыхательная арматура, обеспечивающая величину давления и вакуума в газовом пространстве резервуара в соответствии с требованиями, приведенными в таблице 2.0.

Таблица 2.0. Значения рабочего (расчетного) избыточного давления и вакуума в газовом пространстве резервуаров

Тип резервуара Рабочее (расчетное) давление, кПа (мм вод. ст.)
избыточное вакуум
РВС 2,0 (200) 0,25 (25)
РВСП 0,2 (20) 0,2 (20)

(Измененная редакция, Изм. 2005 г.)

2.2 Расчетные температуры

2.2.1 За расчетную температуру металла основных конструкций подгруппы «А» принимать температуру воздуха наиболее холодной пятидневки для данной местности с обеспеченностью 0,98 согласно СНиП 23-01-99.

2.2.2 За расчетную температуру металла основных конструкций подгруппы «Б» и вспомогательных конструкций принимать температуру воздуха наиболее холодной пятидневки для данной местности с обеспеченностью 0,92 согласно СНиП 23-01-99.

2.2.3 При определении расчетной температуры металла не принимать во внимание обогрев и тепловую изоляцию резервуаров.

2.3 Требования к конструкции резервуаров

2.3.1 Требования к сварным соединениям и швам

2.3.1.1 В проекте должны быть указаны размеры сварных конструкций и сварных швов, используемых для соединения элементов резервуара.

2.3.1.2 В сварных конструкциях резервуара должны применяться стыковые, угловые, нахлесточные и тавровые соединения. Для образования вышеуказанных соединений должны применяться стыковые и угловые сварные швы.

2.3.1.3 Для стыковых швов надлежит использовать Х-образную, К-образную или V-образную разделку кромок, либо выполнять их без разделки. Разделка кромок производится в соответствии с требованиями государственных стандартов. Разделка кромок нахлесточного соединения не производится. Виды сварных соединений, используемых для элементов резервуара, приведены в разделах 2.3-2.6 настоящих Норм.

2.3.1.4 Конструктивные элементы сварных соединений и швов должны отвечать требованиям государственных стандартов на применяемый вид сварки.

2.3.1.5 Сварные швы соединений должны быть герметичными, непроницаемыми и иметь значения временного сопротивления, ударной вязкости, угла загиба не менее чем нормативные значения основного металла.

2.3.1.6 Сварные швы должны быть непрерывными и выполнены за два и более прохода.

2.3.2 Требования к конструкции стенки

2.3.2.1 Для стенки использовать листы размером не менее 2,0´8,0 м, но не более 2,5´8,0 м. Для стенок резервуаров рулонной сборки использовать листы размером 1,5´6,0 м.

2.3.2.2 Стенка резервуара должна быть собрана так, чтобы внутренние поверхности листов стенки находились на одной вертикали.

2.3.2.3. Вертикальные соединения листов в прилегающих поясах стенки должны быть смещены друг относительно друга на расстояние не менее 15t, где t — наибольшая из толщин листов прилегающих поясов.

2.3.2.4 Вертикальные и горизонтальные соединения стенки должны быть стыковыми с полным проплавлением по толщине листа. Вертикальные соединения стенки должны быть двусторонними. Нахлесточные и тавровые сварные соединения использовать для крепления к стенке верхнего уторного уголка и колец жесткости.

2.3.2.5 Расстояния между швами патрубков, усиливающих листов и швами стенки должны быть не менее: до вертикальных швов — 250 мм, до горизонтальных швов- 100 мм.

2.3.2.6 Для соединения днища со стенкой применять тавровое соединение. При толщине первого пояса 20 мм и менее использовать тавровое соединение без разделки кромок. Размер катета каждого углового шва должен быть не более 12 мм и не менее толщины окрайки или периферийного листа днища. При толщине первого пояса более 20 мм использовать тавровое соединение с разделкой кромок. Размер катета каждого углового шва принимать согласно ПБ 03-605-03.

2.3.2.7 При проектировании должен быть произведен расчет стенки резервуара на прочность и устойчивость. В расчете должны быть учтены неравномерное расположение снегового покрова на крыше резервуара и сейсмичность района строительства резервуара.

2.3.2.8 Минимальные значения толщин листов должны рассчитываться для каждого пояса стенки резервуара исходя из максимально допустимого уровня взлива нефти при эксплуатации с учетом конструктивных требований. Не допускается использовать для увеличения прочности любого пояса стенки усиливающих бандажей, привариваемых или натягиваемых на стенку резервуара.

Устойчивость стенки проверяется для порожнего резервуара на совместное воздействие осевого сжатия параллельно образующей и сжатия от внешнего равномерного давления нормального к боковой поверхности стенки резервуара. Для резервуаров РВС и РВСП внешнее равномерное давление определяется от ветровой нагрузки и вакуума. Для резервуаров РВСПК ветровая нагрузка заменяется на давление внутри резервуара меньше атмосферного равное половине нормативного скоростного напора ветра. Если по результатам расчета условие устойчивости не выполняется, то значения номинальной толщины стенки для соответствующих поясов стенки резервуара должны быть увеличены до выполнения условия устойчивости.

2.3.2.9 Резервуар, в целом, должен быть рассчитан на устойчивость к опрокидыванию при действии ветровой нагрузки. Методика расчета резервуара на устойчивость к опрокидыванию приведена в приложении Б.

2.3.3 Требования к конструкции днища

2.3.3.1 Днище состоит из периферийных листов, находящихся под стенкой и приваренных к ней, и центральной части.

2.3.3.2 Днища резервуаров должны иметь следующую конструкцию:

— для резервуаров объемом по строительному номиналу менее 2000 м 3 — с периферийными листами, сваренными с центральной частью встык, причем периферийные листы должны иметь прямоугольную форму с одной радиусной кромкой, толщины периферийных листов и центральной части должны быть равны;

— для резервуаров объемом по строительному номиналу 2000 м 3 и более — с периферийными листами в виде кольцевых сегментов (окраек), сваренных с центральной частью днища внахлест, толщина окраек определяется согласно приложения Б настоящих Норм.

2.3.3.3 Толщина центральной части днища должна быть 9 мм.

2.3.3.4. Днища резервуаров должны быть коническими с уклоном 0,01 от центра.

2.3.3.5 Периферийные листы днища и первый пояс стенки должны быть изготовлены из стали одного класса и марки.

2.3.3.6 Кольцо из листов окраек должно быть круговой формы с внешней стороны, внутренняя граница окраек может иметь форму многоугольника с числом сторон равным числу листов окрайки. Радиальная ширина окрайки должна обеспечить расстояние между внутренней поверхностью стенки и швом приварки центральной части днища к окрайке не менее 800 мм. Нахлест центральной части днища на окрайку должен составлять не менее 50 мм.

2.3.3.7 Расстояние между наружной поверхностью стенки и наружным контуром окраек или периферийных листов днища должно составлять 50…60 мм.

2.3.3.8 Окрайки собираются с клиновидным зазором и свариваются между собой односторонними стыковыми швами на остающейся подкладке толщиной 4 мм. Длина подкладки должна превышать длину сварного шва между окрайками на 30 мм во внутреннюю и наружную сторону. При сварке наружной части окраек сварные швы следует выводить на подкладку, а ее выступающую часть — обрезать.

2.3.3.9 Сварные швы окраек и периферийных листов днища должны иметь разбежку с вертикальными сварными швами первого пояса стенки не менее 100 мм.

2.3.3.10 Монтажное нахлесточное соединение полотнищ днища в зоне приварки к стенке резервуара должно быть преобразовано в стыковое соединение на остающейся подкладке длиной не менее 300 мм.

2.3.3.11 При монтаже центральной части днища полистовым методом применяются нахлесточные и стыковые соединения на остающейся подкладке. Стыковые соединения (на подкладке) выполняются вдоль короткой стороны листа, а нахлесточные — вдоль длинной стороны листа, за исключением участков, примыкающих к окрайке днища. Толщина подкладки 4-5 мм. Разбежка поперечных сварных швов при полистовой сборке днища должна быть не менее 500 мм. Соединения центральной части днища с кольцевыми окрайками выполняются внахлест независимо от толщин стыкуемых элементов.

2.3.3.12 Все металлоконструкции, трубопроводы, оборудование, устанавливаемые в резервуаре и передающие нагрузку на днище резервуара должны опираться на днище через подкладные листы. Толщина подкладных листов должна быть не менее 5 мм. Прямоугольные в плане подкладные листы должны иметь закругленные углы радиусом 50 мм. Приварка подкладных листов к днищу осуществляется сплошным угловым швом по всему наружному контуру подкладного листа. Размеры подкладного листа должны превышать на 50 мм с каждой стороны контур опирания деталей или оборудования, привариваемого к днищу резервуара.

(Измененная редакция, Изм. 2005 г.)

2.3.4 Требования к конструкции кольца жесткости РВСПК

2.3.4.1 Резервуары с плавающей крышей должны иметь кольцо жесткости (ветровое кольцо), устанавливаемое на верхнем поясе стенки резервуара.

Кольцо, используемое также в качестве обслуживающей площадки, должно иметь ограждение по внешней стороне и ширину не менее 800 мм.

2.3.4.2 Кольцо жесткости должно иметь момент сопротивления не меньше значения, рассчитываемого по формуле:

где W — момент сопротивления кольца, мм 3 ;

D — диаметр резервуара, м;

Н — геометрическая высота стенки резервуара, м.

2.3.4.3 Площадка кольца жесткости должна располагаться ниже горизонтальных участков трубопроводов охлаждения резервуара и обеспечивать сток воды для охлаждения стенки ниже уровня кольца жесткости.

2.3.4.4 Конструкция кольца жесткости должна исключать возможность накопления на нем дождевых осадков.

2.3.4.5 Сварные соединения секций кольца жесткости между собой выполнять встык с обеспечением полного провара. В горизонтальном элементе конструкции кольца жесткости предусматривать технологические отверстия между стенкой резервуара и кольцом жесткости шириной не менее 50 мм, обеспечивающие пропуск воды для орошения стенки резервуара, а также дренажа дождевой и талой воды.

(Измененная редакция, Изм. 2005 г.)

2.3.4.6 Не допускается установка колец жесткости на стенке для обеспечения ее проектной формы.

2.3.4.7 Установка колец жесткости в районах с сейсмичностью свыше 7 баллов определяется расчетом, выполняемым специализированной организацией.

2.3.5 Требования к патрубкам, люкам и врезкам в стенку резервуара

2.3.5.1 Все патрубки и люки в стенке резервуара должны быть усилены накладками (воротниками). Диаметр накладки патрубка, предназначенного для монтажа пеноподающего устройства в верхнем поясе стенки резервуара, должен составлять 1,8 диаметра патрубка.

2.3.5.2 Ось патрубков (люков) должна быть горизонтальна и направлена по нормали к поверхности стенки резервуара.

2.3.5.3 Края отверстий, вырезанных в стенке резервуара, для установки патрубков и люков, должны быть обработаны абразивным инструментом и не иметь шероховатостей, превышающих 0,5 мм.

2.3.5.4 Химический состав и механические свойства материала накладки должны соответствовать химическому составу, механическим свойствам и группе материала по свариваемости участка стенки, к которому она приварена. Накладка должна быть завальцована в заводских условиях по радиусу того пояса стенки, на который она устанавливается.

2.3.5.5 Патрубки в стенку резервуара должны ввариваться сплошным швом с полным проплавлением стенки.

2.3.5.6 Катет сплошного углового сварного шва, крепящего накладку к стенке резервуара, принимается в соответствии с требованиями, приведенными в таблице 2.1.

2.3.5.7 Катет сплошного углового сварного шва, крепящего накладку к обечайке патрубка резервуара, принимается в соответствии с требованиями, приведенными в таблице 2.2.

2.3.5.8 Катет сплошного углового сварного шва, крепящего накладку к днищу резервуара, принимается в соответствии с требованиями, приведенными в таблице 2.3.

Таблица 2.1 — Требования к величине катета сварного шва стенки

Параметр Значение параметра
Толщина стенки в месте установки патрубка (люка), мм 9. 10 11. 15 16…22 23 и более
Катет углового шва, крепящего накладку к стенке резервуара, мм 1 2 3 4

2.3.5.9 Накладка должна быть снабжена контрольным отверстием с внутренней резьбой М10´1,5 располагаемым на горизонтальной оси патрубка или люка на расстоянии 40-50 мм от края накладки, для патрубков Ду100 и менее — 20 мм от края накладки. Пространство между накладкой патрубка (люка) и стенкой резервуара, после проведения испытания на непроницаемость сварного шва, крепящего накладку к стенке, должно быть заполнено ингибитором коррозии (ВНПП-ИС-1(Б),Tektyl 122A), а отверстие заглушено резьбовой пробкой.

(Измененная редакция, Изм. 2005 г.)

Таблица 2.2 — Требования к величине катета сварного шва обечайки

Параметры Значение параметра
Толщина накладки, мм 9. 10 11…15 16…22 и более
Катет углового шва, крепящего накладку к обечайке патрубка, мм 8 10 12

Таблица 2.3 — Требования к величине катета сварного шва днища

Параметры Значение параметра
Толщина накладки патрубков стенки, мм 9. 10 11…15 16…20 21…26 и более
Катет углового шва, крепящего накладку к днищу резервуара, мм 4 6 8 9

2.3.5.10 Конструктивное исполнение патрубков должно соответствовать, требованиям, приведенными в таблицах 2.2, 2.3. Параметры фланцев патрубков и люков-лазов в стенке должны быть приняты на условное давление не менее 0,6 МПа.

2.3.5.11 Люки-лазы в стенке резервуара должны иметь условный проход не менее 600 мм. Для овального люка-лаза с П-образной накладкой (до днища резервуара) катет углового шва накладки к днищу, принимается в соответствии с требованиями, приведенными в таблице 2.3.

Крышки люков-лазов должны быть оборудованы механизмами для облегчения их открывания и закрывания.

2.3.5.12 Обечайки, накладки, заглушки патрубков и люков стенки должны быть изготовлены в заводских условиях, поступать на монтаж комплектно и иметь документ, подтверждающий качество. Фланец, располагаемый снаружи резервуара, к обечайке патрубка должен быть приварен в заводских условиях, а положительные результаты испытаний шва на непроницаемость должны быть подтверждены документально.

2.3.5.13 Обечайки патрубков и круглых люков должны изготавливаться из бесшовных или прямошовных труб.

Продольные швы обечаек, изготовленных вальцеванием из листа и швы обечайки овального люка-лаза, должны быть проконтролированы методом радиографирования в объеме 100 % их протяженности.

Таблица 2.4 — Тип и количество патрубков на стенке резервуаров типа РВС

Тип резервуара ПРП Люк-лаз 600´900 Люк-лаз Ду 600 Люк для «Диоген» Патрубки СППТ Патрубок для зачистки Сифонный кран
РВС-1000 Два, Ду 250 1 1 Нет Нет Один, Ду 150 Один, Ду 80
РВС-2000 Два, Ду 250 1 1 Нет Нет Один, Ду 150 Один, Ду 80
РВС-3000 Два, Ду 300 1 1 Один, Ду 600 Два, Ду 200 Один, Ду 150 Один, Ду 80
РВС-5000 Два, Ду 500 2 1 Один, Ду 600 Два, Ду 200 Один, Ду 150 Один, Ду 80
РВС-10000 Два, Ду 500 2 1 Один, Ду 700 Три, Ду 200 Один, Ду 150 Два, Ду 80
РВС-20000 Два Ду 700 2 1 Один, Ду 700 Три, Ду 200 Один, Ду 150 Два, Ду 80
РВС-30000 Два, Ду 700 2 1 Два, Ду 700 Три, Ду 200 Один, у 150 Два, Ду 80
Примечание — Все патрубки, указанные в таблице, расположены в первом поясе стенки.

(Измененная редакция, Изм. 2005 г.)

Таблица 2.5 — Тип и количество патрубков на стенке резервуаров типа РВСП

Тип
резер
вуара
В первом поясе Во
вто
ром
поя
се
В верхнем поясе
ПРП Люк-лаз 600´900 Люк-лаз Ду 600 Люк
для
«Дио
ген»
Патруб
ки СППТ
Пат
ру
бок
для
зачис
тки
Патру
бок
сифон
ного
крана
Люк-
лаз
Ду600
(600х900)
КНП
РВСП
3000
Два,
Ду 300
2 2 Один, Ду 600 Два, Ду 200 Один, Ду 150 Один, Ду 80 2 Количество принять в соответствии
с РД «Нормы проектиро
вания АСПТ»
РВСП
5000
Два,
Ду 500
2 2 Один, Ду 600 Два, Ду 200 Один, Ду 150 Один, Ду 80 2
РВСП
10000
Два,
Ду 500
2 2 Один, Ду 700 Три, Ду 200 Один, Ду 150 Два, Ду 80 2
РВСП
20000
Два,
Ду 700
2 2 Один, Ду 700 Три, Ду 200 Один, Ду 150 Два, Ду 80 2
РВСПА
20000
Два,
Ду 700
2 2 Один, Ду 700 Три, Ду 200 Один, Ду 150 Два, Ду 80 2
РВСП
30000
Два,
Ду 700
2 2 Два, Ду 700 Три, Ду 200 Один, Ду 150 Два, Ду 80 2
РВСПА
30000
Два,
Ду 700
2 2 Два, Ду 700 Три, Ду 200 Один, Ду 150 Два, Ду 80 2
РВСПА
50000
Четыре,
Ду 700
4 0 Два, Ду 700 3 1 2 2

(Измененная редакция, Изм. 2005 г.)

Таблица 2.6 — Тип и количество патрубков на стенке резервуаров типа РВСПК

Тип
резер
вуара
В первом поясе На втором поясе В щите
над
верх
ним
поя
сом
Люк-лаз 600´900 Люк-лаз Ду 600 Люк
для
«Дио
ген»
Патруб
ки СППТ
Патру
бок для зачис
тки
Сифон
ный кран
Патру
бок
водос
пуска
Люк-лаз 600´900 КНП
РВСПК
30000
Два,
Ду 700
2 2 Два,
Ду 700
3 1 2 2 2 6
РВСПК
50000
Четыре,
Ду 700
4 0 Два,
Ду 700
3 1 2 2 2 9

(Измененная редакция, Изм. 2005 г.)

Таблица 2.7 — Основные параметры патрубков в стенке резервуара

Условный проход патрубка, мм Минимальные толщины, мм Толщина усили
вающей накладки
Минимальное расстояние от стенки до фасадной поверхности фланца, мм Диаметр усилива
ющей накладки, мм
Минимальное расстояние от днища до оси патрубка, мм
обечайки патрубка фланца с усили
вающей
кольце
вой нак
ладкой
с усили
вающей
П образ
ной нак
ладкой
80 6 21 Не менее толщины стенки резервуара 200 180 200
100 6 23 200 220 250
150 7 25 200 320 300
200 7 27 250 440 340
250 8 28 250 550 390
300 8 28 250 650 450
350 10 30 300 760 500
400 10 34 300 860 550
500 12 44 350 1060 650 530
600 12 45 350 600
700 12 47 350 600

2.3.6 Лестницы, площадки, переходные мостики

2.3.6.1 Для подъема на кольцевую площадку на стационарной крыше или кольцо жесткости РВСПК, резервуары должны оборудоваться стальными лестницами.

2.3.6.2 Проектом должны быть предусмотрены лестницы, в соответствии с требованиями, приведенными в таблице 2.8.

Таблица 2.8 — Тип и количество лестниц, используемых на резервуарах

Тип резервуар Обозначение резервуара Кольцевая площадка на крыше Тоннельные лестницы Лестница для подъема на резервуар
Для доступа к люк-лазам во втором поясе стенки Для обслуживания пенокамер Шахтная Маршевая
РВС 1000 1 1
2000 1 1
3000 1 1
5000 1 1
10000 1 1
20000 1 1
30000 1 1
РВСП 3000 1 2 По количеству пенокамер 1
5000 1 2 1
10000 1 2 1
20000 1 2 1
30000 1 2 1
РВСПК 20000 1
3000 1
50000 1

2.3.6.3 Лестницы, площадки, переходные мостики и ограждения должны соответствовать требованиям ГОСТ 23120.

2.3.6.4 Маршевые лестницы должны быть прикреплены к стенке на каждом поясе резервуара.

Шахтные лестницы должны опираться на собственный фундамент, с креплением к резервуару на уровне верхнего пояса стенки (или к верхнему элементу жесткости) и средних поясов.

Для доступа к люкам-лазам, расположенным на стенке, обслуживания пеногенераторов (пенокамер), должны использоваться вертикальные стальные лестницы тоннельного типа.

2.3.6.5 Крепление лестниц к резервуару должно обеспечивать возможность перемещения стенки при изменении уровня взлива в резервуаре, исключать возникновение дополнительных напряжений в стенке при осадке резервуара или лестницы.

2.3.6.6 Угол подъема маршевых и шахтных лестниц относительно горизонтали должен составлять не более 50°, расстояние между ступенями по вертикали — не более 250 мм, ширина лестницы — не менее 650 мм, уклон ступеней внутрь — 2…5°. Рабочая поверхность ступеней должна изготавливаться из просечно-вытяжного листа.

2.3.6.7 Лестницы тоннельного типа должны быть шириной не менее 0,6 м и оснащены, начиная с высоты 2 м, предохранительными дугами радиусом не менее 0,35 м из металлических полос, сваренных между собой. Дуги располагаются на расстоянии по вертикали не более 0,8 м друг от друга, расстояние по вертикали между ступенями лестниц не более 0,35 м.

Лестницы тоннельного типа оборудуются промежуточными площадками, установленными на расстоянии не более 6 м по вертикали одна от другой.

2.3.6.8 Минимальная высотная отметка любого конструктивного элемента маршевой или тоннельной лестницы должна превышать отметку периферийной части днища на 250 мм.

Для безопасного доступа при обслуживании оборудования на кровле и стенке должны быть устроены площадки обслуживания.

2.3.6.9 Площадки обслуживания (как и площадки лестниц) должны иметь настил из просечно-вытяжного листа. При расположении площадок выше 0,75 м от поверхности земли они должны иметь перила на расстоянии 1,25 м от поверхности настила, продольные планки и бортовое ограждение высотой не менее 0,15 м, образующее с настилом зазор не более 10 мм. Расстояние между продольными планками не более 0,4 м.

2.3.6.10 В местах прохода персонала над трубопроводами, расположенными на высоте по верхней образующей 0,25 м и выше от поверхности земли, должны быть устроены переходные мостики. Если высота расположения трубопровода более 0,75 м, переходные мостики должны быть оборудованы перилами и ограждениями.

2.3.7 Конструктивные элементы, присоединяемые к стенке резервуара

2.3.7.1 Конструктивные элементы, присоединяемые к стенке резервуара, подразделяются на временные (технологические приспособления) и постоянные.

2.3.7.2 Временные конструктивные элементы служат для закрепления монтажных, сборочных приспособлений на стенке или днище при монтаже резервуара. Временные конструктивные элементы на стенке или днище должны быть удалены до гидравлических испытаний, а возникающие при этом повреждения или неровности должны быть устранены зачисткой абразивным инструментом шероховатостью не более RZ 80. Зачистка поверхности допускается на глубину, не выводящую толщину проката за пределы минусовых допусков. После зачистки данные участки проконтролировать в соответствии с требованиями раздела 2.10 настоящих Норм.

2.3.7.3 Присоединение кронштейнов и других постоянных конструктивных элементов к стенке должно удовлетворять следующим требованиям:

— кронштейны, опоры должны привариваться к стенке через листовые накладки, выполненные из того же материала, что и лист стенки, к которому он приваривается;

— толщина накладки должна быть не менее толщины сечения привариваемого элемента, и не более 0,8 толщины листа стенки, к которому он приваривается. Накладка должна иметь закругленные радиусом не менее 25 мм углы, и минимальный размер не менее 100´100 мм;

— сварной шов приварки накладки к стенке должен быть сплошным по всему контуру накладки, а катет углового шва должен быть не менее толщины накладки, и не более 12 мм;

— постоянные конструктивные элементы должны располагаться не ближе 5-ти номинальных толщин стенки от оси горизонтальных швов стенки и днища резервуара, и не ближе 10-ти номинальных толщин стенки от оси вертикальных швов стенки, а также от края любого другого постоянного конструктивного элемента на стенке;

— временные конструктивные элементы должны привариваться на расстоянии более 100 мм от сварных швов стенки.

2.4 Требования к стационарным крышам

2.4.1 Требования к конструкции крыш

2.4.1.1 Для оснащения резервуаров типа РВС и РВСП должны использоваться следующие типы конструкций стационарных крыш:

— каркасная коническая крыша, состоящая из элементов каркаса и настила;

— купольная крыша, поверхность которой образована изогнутыми элементами каркаса и элементами настила.

Все крыши по периметру опираются на стенку резервуара с использованием кольцевого элемента жесткости, сечением не меньше чем у уголка 75´6.

2.4.1.2 Все элементы и узлы крыши должны быть запроектированы таким образом, чтобы максимальные напряжения в них не превышали расчетных, без учета припуска на коррозию. Каркас и узел крепления к стенке резервуара должны быть рассчитаны на прочность от воздействия расчетной нагрузки, в том числе от неравномерно расположенного снегового покрова и устойчивость. Кроме того, прочность и устойчивость конструкций крыши должны быть проверены при действии нагрузки от собственного веса крыши, определенной по максимальной толщине элементов и с учетом сейсмических нагрузок в районе строительства. Уклон образующей каркасной конической крыши должен составлять 1:6.

2.4.1.3 Сборные щитовые конические крыши, состоят из трапециевидных щитов, каждый из которых образован элементами каркаса и настила, и центрального кольца. Щиты крепятся к стенке резервуара и центральному кольцу. Минимальная номинальная толщина элементов настила должна быть не менее 4 мм. Щиты крыш свариваются между собой внахлест сверху непрерывным угловым швом. Крепление настила крыши к верху стенки должно осуществляться через кольцевой уголок жесткости с минимальным размером 75

2.4.1.4 Самонесущие купольные (сферические) крыши должны иметь радиус сферической поверхности от 0,8D до 1,5D, где D — диаметр резервуара. Толщина элементов стального настила должна быть не менее 4 мм.

2.4.1.5 Для исключения попадания загрязненных атмосферных осадков на стенку резервуара по периметру стационарной крыши должен быть устроен карниз для сбора и отведения атмосферных осадков в водосточные трубопроводы.

2.4.1.6 Требования к купольным алюминиевым крышам определены в РД 16.00-60.30.00-КТН-025-1-04 «Нормы проектирования купольных крыш и понтонов из алюминиевых сплавов для вертикальных стальных и железобетонных резервуаров, правила их эксплуатации» утвержденным ОАО » АК «Транснефть». Все соединения элементов и узлов стационарных крыш независимо от их конструкции и материала, из которого они изготовлены, включая соединение стенки с крышей резервуара, должны быть герметичными.

2.4.2 Требования к патрубкам, люкам и врезкам в крышу резервуара

2.4.2.1 Патрубки, люки, врезаемые в кровлю резервуара должны соответствовать следующим требованиям:

— продольная ось патрубков (люков) должна быть вертикальна;

— минимальное расстояние от фланца до поверхности крыши для патрубков составляет 150 мм, световых и монтажных люков — 300 мм;

— минимальная толщина накладки 4 мм;

— минимальный катет сварного шва, соединяющего накладку с кровлей, и патрубок с накладкой 4 мм;

— обечайки патрубков (люков) к настилу кровли не приваривать;

— патрубок (люк) на кровле должен размещаться таким образом, чтобы несущие элементы кровли при его монтаже демонтажу не подвергались.

Конструктивные параметры патрубков на кровле должны соответствовать таблице 2.9.

2.4.2.2 Фланцы патрубков на кровле резервуара должны соответствовать устанавливаемому на них оборудованию, и быть рассчитаны на условное давление не менее 0,25 МПа.

2.4.2.3 На все патрубки, расположенные на кровле резервуаров типа РВС, должны быть установлены временные заглушки, для герметизации резервуара на период проведения испытаний.

Таблица 2.9 — Конструктивные параметры патрубков (люков) на крыше

Тип резервуара Люки Патрубки
Диаметр Кол-во Min толщ. обечайки Диаметр накладки Диаметр Кол-во Min толщ. обечайки Диаметр накладки
РВС 1000 Ду 150 Ду 500 Ду 1000 1 3 1 5 6 8 320 1060 2040 Ду 100 Ду 150 Ду 350 Ду 500 4 3 2 1 5 5 6 6 220 320 760 1060
РВС 2000 Ду 150 Ду 500 Ду 1000 1 3 1 5 6 8 320 1060 2040 Ду 100 Ду 150 Ду 350 Ду 500 6 3 2 1 5 5 6 6 220 320 760 1060
РВС 3000 Ду 150 Ду 500 Ду 1000 1 3 1 5 6 8 320 1060 2040 Ду 100 Ду 150 Ду 300 Ду 500 6 3 2 1 5 5 6 6 220 320 650 1060
РВС 5000 Ду 150 Ду 500 Ду 1000 1 4 1 5 6 8 320 1060 2040 Ду 100 Ду 150 Ду 350 Ду 500 6 3 4 1 5 5 6 6 220 320 760 1060
РВС 10000 Ду 150 Ду 500 Ду 1000 1 4 1 5 6 8 320 1060 2040 Ду 100 Ду 150 Ду 30 Ду 500 10 3 4 1 5 5 6 6 220 320 650 1060
РВС 20000 Ду 150 Ду 500 Ду 1000 1 4 1 5 6 8 320 1060 2040 Ду 100 Ду 150 Ду 300 Ду 500 12 3 6 1 5 5 6 6 220 320 650 1060
РВС 30000 Ду 150 Ду 500 Ду 1000 1 4 1 5 6 8 320 1060 2040 Ду 100 Ду 150 Ду 300 Ду 500 14 3 8 1 5 5 6 6 220 320 650 1060
РВСП 3000 Ду 150 Ду 500 Ду 1000 1 3 1 5 6 8 320 1060 2040 Ду 100 Ду 150 Ду 300 Ду 500 6 3 2 1 5 5 6 6 220 320 650 1060
РВСП 5000 Ду 150 Ду 500 Ду 1000 1 3 1 5 6 8 320 1060 2040 Ду 100 Ду 150 Ду 350 Ду 500 6 3 4 1 5 5 6 6 220 320 760 1060
РВСП 10000 Ду 150 Ду 500 Ду 1000 1 4 1 5 6 8 320 1060 2040 Ду 100 Ду 150 Ду 300 Ду 500 10 3 4 1 5 5 6 6 220 320 650 1060
РВСП 20000 Ду 150 Ду 500 Ду 1000 1 4 1 5 6 8 320 1060 2040 Ду 100 Ду 150 Ду 300 Ду 500 12 3 6 1 5 5 6 6 220 320 650 1060
РВСПА-20000 В соответствии с РД 16.00-60.30.00-КТН-025-1-04
РВСП 30000 Ду 150 Ду 500 Ду 1000 1 4 1 5 6 8 320 1060 2040 Ду 100 Ду 150 Ду 300 Ду 500 14 3 8 1 5 5 6 6 220 320 650 1060
РВСПА-30000 В соответствии с РД 16.00-60.30.00-КТН-025-1-04
РВСПА-50000 В соответствии с РД 16.00-60.30.00-КТН-025-1-04
РВСПК 30000 Ду 150 Ду 500 Ду 1000 1 4 1 5 6 8 320 1060 2040 Ду 100 Ду 150 Ду 500 14 3 1 5 5 6 220 320 1060
РВСПК 50000 Ду 150 Ду 500 Ду 600 Ду 1000 4 74 4 1 5 6 6 8 320 1060 1100 2040 Ду 100 Ду 150 Ду 250 Ду 500 Ду 850 18 3 2 1 1 5 5 8 5 220 320 — 1060 1030

(Измененная редакция, Изм. 2005 г.)

2.5 Требования к плавающим крышам

2.5.1 Плавающие крыши применяются в резервуарах без стационарной крыши. При расположении резервуара в III и IV районах по снеговой нагрузке отношение высоты стенки H резервуара к диаметру D должно быть менее 0,4.

2.5.2 В резервуарах для нефти следует использовать плавающие крыши двухдечного типа и разрешенные к применению ОАО «АК «Транснефть».

2.5.3 Плавающие крыши должны быть запроектированы таким образом, чтобы при заполнении и опорожнении резервуара не происходило потопление крыши или повреждение ее конструктивных элементов, а также технологических элементов и приспособлений, находящихся на днище и стенке резервуара.

При расчете плавающей крыши на плавучесть и остойчивость необходимо дополнительно учитывать вес неравномерно расположенного снегового покрова на крыше резервуара.

При этом оборудование, размещенное на крыше или стенке резервуара не должно ограничивать перемещение плавающей крыши от минимально допустимого до максимального аварийного уровня нефти.

2.5.4 Плавучесть двухдечной крыши должна быть обеспечена при заполнении продуктом двух соседних коробов.

2.5.5 Плавающая крыша, находящаяся на стойках в ремонтном положении, и ее элементы должны быть рассчитаны на прочность, в том числе и при действии снеговой нагрузки. (Приложение снеговой нагрузки по схеме 10, Приложения 3*, СНиП 2.01.07-85*).

2.5.6 Плавающая крыша должна быть изготовлена из стали и контактировать с нефтью по всей площади своей нижней поверхности, чтобы исключить испарение нефти и образование паровоздушной смеси под ней.

2.5.7 Номинальный зазор между бортом плавающей крышей и стенкой резервуара на уровне второго пояса при сборке плавающей крыши должен составлять 275±10 мм.

(Измененная редакция, Изм. 2005 г.)

2.5.8 Для сварки плавающих крыш могут применяться стыковые, стыковые на подкладке, нахлесточные и тавровые соединения.

Все сварные швы плавающей крыши должны быть непроницаемы и проконтролированы в соответствии с п. 2.10 настоящих Норм. Каждый замкнутый отсек плавающей крыши должен быть испытан на непроницаемость внутренним давлением.

2.5.9 Высота патрубков, обечаек люков, установленных на плавающей крыше, должна быть такова, чтобы превышать уровень продукта в них при максимальном погружении на 50 мм.

2.5.10 Каждый замкнутый отсек плавающей крыши в верхней части должен быть оснащен люк-лазом Ду500 для доступа внутрь отсека для обслуживания и ремонта. Люк-лазы в процессе эксплуатации должны быть герметично закрыты для предотвращения попадания нефти и воды в отсеки.

(Измененная редакция, Изм. 2005 г.)

2.5.11 Конструкция плавающих крыш должна обеспечивать сток ливневых вод с их поверхности к водосбору и отведение в систему канализации резервуарного парка с помощью системы водоспуска.

2.5.12 Система водоспуска должна располагаться под плавающей крышей и осуществлять отведение воды с плавающей крыши самотеком.

Номинальный диаметр трубопроводов и количество трубопроводов водоспуска должен быть следующим:

  • для резервуаров объемом по строительному номиналу до 30000 м 3 — Ду 150 мм, 1 шт;
  • для резервуаров объемом по строительному номиналу свыше 30000 м 3 — Ду 150 мм, 2 шт.

При проектировании рабочее давление в системе водоспуска принимается равным 0,25 МПа.

В конструкции плавающих крыш должны быть предусмотрены два патрубка Ду 150 аварийного слива воды в нефть в случае отказа основных водоспусков.

(Измененная редакция, Изм. 2005 г.)

2.5.13 Доступ на плавающую крышу при любом уровне взлива в резервуаре должен обеспечиваться катучей лестницей. Верхний шарнир лестницы должен опираться на ферму, прикрепленную к стенке резервуара. Конструкция крепления катучей лестницы к резервуару должна обеспечивать перемещение лестницы в вертикальной и горизонтальной плоскостях. Пути, по которым перемещаются колеса катучей лестницы, должны располагаться на отметке не менее 1 м от уровня плавающей крыши. Конструкция путей катучей лестницы должна исключать образование наледи.

Катучая лестница должна иметь ограждения с двух сторон и ступени, остающиеся горизонтальными при любом угле ее наклона. Колеса лестницы должны иметь подшипники качения для исключения их заклинивания. Верхняя и нижняя оси лестницы должны иметь диаметр не менее 50 мм и быть изготовлены из стали марки Ст 20 ГОСТ 1050-74, при изготовлении осей из другой стали их диаметр определяется расчетом.

Катучая лестница должна быть рассчитана на вертикальную нагрузку 5 кН, приложенную в середине пролета лестницы при нахождении плавающей крыши в крайнем верхнем положении.

2.5.14 Кольцевой зазор между плавающей крышей и стенкой резервуара должен быть уплотнен затвором. Затвор плавающей крыши должен быть жесткого типа, оснащен вторичным уплотнением и скребками, исключающими попадание нефти со стенок на поверхность плавающей крыши.

2.5.15 Скользящие листы затвора должны быть изготовлены из нержавеющей стали аустенитного класса толщиной не менее 1,5 мм.

2.5.16 Износостойкость затвора должна быть такова, чтобы в течение межремонтного интервала (не менее 20 лет с установленной цикличностью) в элементах затвора не образовывались сквозные отверстия, и затвор оставался герметичным.

2.5.17 Зазор между патрубком в крыше и направляющей должен быть уплотнен затвором направляющей. Затвор направляющей должен исключать попадание нефти с направляющей на поверхность плавающей крыши.

2.5.18 Плавающие крыши должны иметь опорные стойки. Опорные стойки должны фиксировать крышу в эксплуатационном и ремонтном положениях. Прочность и устойчивость опорных стоек, а также мест их крепления к плавающей крыше, должна быть подтверждена расчетом.

2.5.19 Опорные стойки должны быть изготовлены из труб. Нижний торец стойки должен быть заглушен приваренной плоской заглушкой, шов между стойкой и заглушкой должен быть проконтролирован на непроницаемость избыточным давлением воздуха.

2.5.20 (Исключен, Изм. 2005 г.)

2.5.21 На днище резервуара, под опорными стойками плавающей крыши должны быть установлены подкладки толщиной 9 мм, приваренные к днищу резервуара сплошным угловым швом, проконтролированным в соответствии с п. 2.10 настоящих Норм.

2.5.22 В эксплуатационном положении должен быть обеспечен зазор между плавающей крышей и оборудованием, расположенным под ней, не менее 100 мм. В ремонтном положении отметка нижней точки плавающей крыши должна превышать отметку окрайки днища не менее чем на 2,0 м.

2.5.23 Плавающие крыши должны иметь два люк-лаза диаметром не менее Ду 600, позволяющие осуществлять вентиляцию и доступ персонала под плавающую крышу.

2.5.24 Все части плавающей крыши, включая катучую лестницу, должны быть электрически взаимосвязаны. Электрическую связь с резервуаром осуществлять тремя гибкими многожильными изолированными медными проводниками сечением не менее 16 мм 2 каждый, присоединенными к крыше и стенке в трех равномерно распределенных точках. Проводники должны быть оконцованы наконечниками.

2.5.25 В резервуарах с плавающей крышей должна быть одна направляющая стойка, имеющая отверстия на высоту до 1700 мм, через которые пространство под плавающей крышей должно сообщаться с атмосферой в период заполнения и в период опорожнения резервуара. Площадь окон должна определяться, исходя из производительности заполнения-опорожнения и допустимой скорости перемещения плавающей крыши, указанной в таблицах 4.4-4.5 настоящих Норм.

(Измененная редакция, Изм. 2005 г.)

2.6 Требования к понтонам

2.6.1 Понтоны устанавливаются в резервуарах со стационарной крышей и они должны удовлетворять следующим требованиям:

  • срок службы понтонов должен быть не менее 50 лет, а межремонтный интервал — не менее межремонтного интервала конструкций резервуара;
  • понтоны должны быть изготовлены из негорючих электропроводных материалов;
  • для изготовления понтонов следует применять коррозионно-стойкие материалы.

(Измененная редакция, Изм. 2005 г.)

2.6.2 В резервуарах для нефти следует использовать металлические понтоны, разрешенные к применению ОАО «АК «Транснефть».

2.6.3 Конструкция понтона должна обеспечивать его работоспособность по всей высоте резервуара без перекосов и вращения. Номинальный зазор между бортом понтона и стенкой резервуара на уровне второго пояса должен составлять 200±10 мм

(Измененная редакция, Изм. 2005 г.)

2.6.4 Коэффициент запаса плавучести понтонов должен быть не менее 2,0.

Высота периферийного борта понтона в этом случае должна превышать ватерлинию не менее чем на 200 мм. Высота патрубков, обечаек люков, установленных на понтоне должна превышать уровень продукта в них при максимальном погружении понтона на 50 мм.

Расчет непотопляемости понтона при наличии пустотелых коробов (поплавков) должен производиться для случая, если два любых короба и центральная часть понтона потеряют герметичность.

(Измененная редакция, Изм. 2005 г.)

2.6.5 Понтон должен иметь достаточную прочность, чтобы, находясь на стойках в опорожненном резервуаре, мог выдерживать временную нагрузку от слоя воды не менее 50 мм, а также, чтобы в состоянии наплаву или на опорных стойках он мог удерживать, по крайней мере, четырех человек (4 кН), которые перемещаются в любом направлении по его поверхности. При этом понтон не должен разрушаться, а продукт не должен поступать на поверхность понтона.

2.6.6 Для сварки понтонов могут применяться стыковые, стыковые на подкладке, нахлесточные и тавровые соединения.

Все соединения понтона, подверженные непосредственному воздействию нефти или ее паров, должны быть плотными и проконтролированы на герметичность, как указано в п. 2.10 настоящих Норм.

2.6.7 Кольцевой зазор между стенкой резервуара и понтоном должен быть уплотнен затвором, зазоры между патрубками и проходящими сквозь патрубки элементами должны быть также уплотнены

Затвор понтона должен быть мягким или комбинированным. Износостойкость затвора должна удовлетворять требованиям, изложенным в подразделе 2.5.16 настоящих норм. Конструкция затвора должна исключать попадание парафина и нефти со стенки резервуара на поверхность понтона.

(Измененная редакция, Изм. 2005 г.)

2.6.8 В эксплуатационном положении должен быть обеспечен зазор между нижней точкой понтона и наивысшей отметкой находящихся под понтоном металлоконструкций, оборудованием или трубопроводами не менее 100 мм. В ремонтном положении отметка нижней точки понтона должна превышать отметку окрайки днища не менее чем на 2,0 м.

2.6.9 Резервуар с понтоном должен иметь одну направляющую, имеющую отверстия на высоте не более 1,2 м от днища резервуара. Количество и размер окон определяется расчетом из условий прочности направляющей стойки и пропускной способности паровоздушной смеси. Зазор между направляющей и понтоном должен быть уплотнен затвором, исключающим попадание нефти на верхнюю поверхность понтона.

(Измененная редакция, Изм. 2005 г.)

2.6.10 Для доступа на понтон в стенке резервуара должно быть предусмотрено два люк-лаза, расположенных диаметрально противоположно так, чтобы через них можно было осматривать и обслуживать понтон, находящийся на опорных стойках.

Понтон должен иметь по меньшей мере один люк-лаз диаметром не менее Ду 600, позволяющий осуществлять вентиляцию и доступ персонала под понтон.

В стационарной крыше резервуара с понтоном должны быть установлены смотровые люки в количестве не менее двух для осуществления визуального контроля состояния понтона и его затвора.

(Измененная редакция, Изм. 2005 г.)

2.6.11 Закрытые короба понтона, требующие визуального контроля и имеющие доступ с верхней части понтона, должны быть снабжены люками с крышками или иными устройствами для контроля за возможной потерей герметичности.

2.6.12 Все токопроводящие части понтона должны быть электрически взаимосвязаны. Электрическую связь понтона с конструкцией резервуара осуществлять с помощью трех гибких многожильных изолированных медных проводников сечением не менее 16 мм 2 каждый, присоединенных к понтону в трех равномерно распределенных точках. Противоположные участки проводников должны быть закреплены на обечайках световых люков на кровле резервуара. Проводники должны быть оконцованы наконечниками.

2.7 Требования к изготовлению конструкций резервуаров

2.7.1 Конструкции резервуаров, определенные п.п. 2.1.5, 2.1.6, 2.1.7 настоящих норм, должны быть изготовлены на специализированных предприятиях, изготавливающих металлоконструкции резервуаров, имеющих сертификат соответствия продукции, выданной органом по сертификации в системе сертификации ОАО «АК «Транснефть».

(Измененная редакция, Изм. 2005 г.)

2.7.2 Заводское изготовление конструкций резервуаров по настоящим Нормам должно производиться на основании:

— утвержденных ОАО «АК «Транснефть» технических условий на изготовление и технологического процесса, обеспечивающего выполнение требований настоящих Норм;

— рабочих (деталировочных) чертежей КМД конструкций резервуаров, разработанных заводом-изготовителем в соответствии с рабочими чертежами серии КМ рабочего проекта.

2.7.3 Обязательной правке на многовалковых листоправильных машинах подлежат листы, используемые для изготовления стенки и днища резервуара. Правка металлопроката должна проводиться способами, исключающими образование вмятин, забоин и других повреждений поверхности.

2.7.4 Продольные и поперечные кромки листовых деталей, предназначенных для изготовления стенок, окраек днищ резервуаров должны подвергаться обработке строганием или фрезерованием.

Листы центральной части днищ толщиной до 10 мм допускается резать на гильотинных ножницах без последующей обработки кромок строганием или фрезерованием.

2.7.5 Сборка конструкций должна производиться в кондукторах. При сборке конструкций не должно допускаться изменение их формы, не предусмотренное технологическим процессом, а при хранении, кантовке и транспортировании должна быть исключена возможность возникновения остаточных деформаций конструкций (искривление, смятие поверхностей, повреждение кромок и т.п.).

2.7.6 Конструкции резервуаров полистовой сборки изготавливаются в виде габаритных отправочных марок — сборочных единиц и деталей.

Линейные размеры и форма деталей должны обеспечивать собираемость конструкций с учетом заданных размеров и предельных отклонений, а также совмещение кромок деталей для выполнения предусмотренных проектом сварных соединений.

Предельные отклонения линейных размеров и формы деталей, обеспечивающие собираемость конструкций на монтаже, должны быть указаны в рабочих чертежах, но не превышать значений указанных в таблице 2.10. Предельные отклонения конструкций, не указанных в таблице 2.10 принимать по ПБ 03-605-03.

Таблица 2.10 — Предельные отклонения конструкций резервуаров, монтируемых методом полистовой сборки

Наименование детали Наименование параметра Предельное отклонение, мм
1 Элемент стенки Ширина ±0,5
Длина ±1,0
Радиус вальцовки (зазор между шаблоном длинной 2 м и поверхностью листа) 3,0
2 Элемент центральной части днища Ширина ±0,5
Длина ±1,0
3 Окрайка днища Расстояние между стыковыми кромками ±2,0
Радиус наружной кромки (зазор между шаблоном длинной 2 м и радиусной кромкой) 3,0

2.7.7 Изготовитель должен гарантировать соответствие изготовленных конструкций рабочему проекту и требованиям настоящих Норм. Согласованные изменения проектов хранятся у Изготовителя.

2.7.8 Конструкции, имеющие брак, допущенный Изготовителем, подлежат ремонту или замене за счет Изготовителя независимо от того, на каком этапе был выявлен брак.

2.8 Требования к монтажу металлоконструкций

2.8.1 Работы по монтажу резервуаров должна осуществлять специализированная организация, имеющая соответствующую требованиям действующего законодательства лицензию на выполнение данного вида работ, имеющая сертификат соответствия продукции и услуг, выданный органом по сертификации в системе сертификации ОАО «АК «Транснефть». Монтаж резервуара следует производить в соответствии с рабочим проектом.

Контроль качества поставляемых металлоконструкций производится на соответствие их чертежам КМ, КМД и требованиям норм и регламентов». Заказчик должен обеспечить соответствие чертежей КМ и КМД. По результатам контроля соответствия чертежей составляется акт.

(Измененная редакция, Изм. 2005 г.)

2.8.2 К сварочным работам допускаются сварщики, аттестованные в соответствии с действующими правилами аттестации сварщиков и специалистов сварочного производства и «Дополнительными требованиями к аттестации сварщиков и специалистов сварочного производства, допускаемых к работам на объектах магистральных нефтепроводов ОАО «АК «Транснефть».

До начала производства сварочно-монтажных работ технологический процесс сварки резервуара должен быть аттестован в порядке установленном РД 03-615-03 «Порядок применения сварочных технологий при изготовлении, монтаже, ремонте и реконструкции технических устройств для опасных производственных объектов» для обеспечения указанных в п. 2.3.1 механических свойств сварного шва, а также недопущения значительных сварочных деформаций и остаточных напряжений в конструкциях резервуара.

2.8.3 Для сварки конструкций резервуаров должна применяться дуговая сварка. Выбор видов и способов сварки элементов резервуара должен осуществляться в соответствии с табл. 2.11.

2.8.4 При производстве монтажных работ запрещаются ударные воздействия на сварные конструкции резервуаров.

2.8.5 При сборке днища должна быть обеспечена сохранность основания (фундамента) и гидроизолирующего слоя резервуара от воздействия монтажных нагрузок. Перетаскивание листов днища волоком по основанию запрещается.

(Измененная редакция, Изм. 2005 г.)

2.8.6 Монтаж стенки резервуара при полистовой сборке должен осуществляться методом наращивания. В процессе монтажа должна быть обеспечена устойчивость стенки от ветровых и других нагрузок путем установки расчалок и секций временных колец жесткости, служащих в качестве подмостей для сборки и сварки монтажных стыков.

2.8.7 Допускается для резервуаров объемом по строительному номиналу до 5000 м 3 включительно использовать метод подращивания при условии предотвращения потери несущей способности, обеспечения целостности основания и фундамента резервуара.

Таблица 2.11 — Виды и способы сварки металлоконструкций резервуаров

Наименование шва резервуара Способ сварки шва в зависимости от метода сборки резервуара
Рулонный Полистовой
Швы окраек днища Механизированная дуговая сварка плавящимся электродом в защитном газе.
Швы центральной части днища Механизированная дуговая сварка плавящимся электродом в защитном газе. Автоматическая или механизированная дуговая сварка плавящимся электродом под флюсом.
Швы центральной части днища, понтонов и плавающих крыш Заводская: Автоматическая дуговая сварка плавящимся электродом под флюсом. Монтажная: Механизированная дуговая сварка плавящимся электродом в защитном газе. 1. Механизированная дуговая сварка плавящимся электродом в защитном газе от специальных источников сварочного тока, обеспечивающих управляемый перенос электродного металла. 2. Автоматическая или механизированная дуговая сварка плавящимся электродом под флюсом 3. Механизированная дуговая сварка самозащитной порошковой проволокой.
Вертикальные швы стенки Заводская: Автоматическая дуговая сварка плавящимся электродом под флюсом. Монтажная: 1 Механизированная дуговая сварка плавящимся электродом в защитном газе. 2 Ручная дуговая сварка. 1 Механизированная дуговая сварка плавящимся электродом в защитном газе. 2 Механизированная дуговая сварка самозащитной порошковой проволокой.
Горизонтальные швы стенки Автоматическая дуговая сварка плавящимся электродом под флюсом. 1 Автоматическая дуговая сварка плавящимся электродом в защитном газе. 2 Механизированная дуговая сварка плавящимся электродом в защитном газе. 3 Автоматическая дуговая сварка плавящимся электродом под флюсом.
Швы в сопряжении стенки и днища Механизированная дуговая сварка плавящимся электродом в защитном газе.
Швы люков, патрубков, усиливающих листов на стенке и крыше 1 Механизированная дуговая сварка плавящимся электродом в защитном газе. 2 Ручная дуговая сварка.
Швы каркаса щитов крыши при укрупнении в блоки, настила крыши 1 Механизированная дуговая сварка плавящимся электродом в защитном газе. 2 Ручная дуговая сварка.
Швы опорных колец кровли, колец жесткости 1 Механизированная дуговая сварка плавящимся электродом в защитном газе. 2 Ручная дуговая сварка.

2.8.8 Сборка листов стенки между собой и с листами днища должна выполняться с применением сборочных приспособлений, обеспечивающих проектные зазоры и совмещение кромок, вертикальность образующих поясов стенки после выполнения сварки, отсутствие недопустимой угловатости сварных швов.

2.8.9 Детали, приваренные к поверхности резервуара, необходимые только для проведения монтажа, должны быть удалены после окончания работ, а места их установки на стенке зашлифованы так, как указано в п. 2.3.7 настоящих Норм.

2.9 Требования к антикоррозионной защите

2.9.1 Защитные покрытия резервуаров для нефти, технологию подготовки защищаемой поверхности и нанесения покрытий, контроль качества работ принимать в соответствии с РД-05.00-45.21.30-КТН-005-1-05 «Правила антикоррозионной защиты резервуаров».

2.9.2. Антикоррозионная защита резервуаров РВС и РВСПК производится после завершения гидравлических испытаний.

Антикоррозионное покрытие внутренней поверхности крыши и верхнего пояса резервуаров с алюминиевым понтоном наносится до монтажа понтона и гидравлического испытания резервуара. До нанесения покрытия на внутреннюю поверхность крыши и верхнего пояса резервуара должен быть произведен контроль сварных швов согласно табл. 2.13. Антикоррозионная защита днища, внутренней поверхности 1 пояса и наружной поверхности резервуара проводится после гидравлических испытаний.

Приварка любых элементов к конструкциям резервуара при и после проведения антикоррозионных работ запрещается.

2.9.3. При назначении типа защитного покрытия внутренней поверхности резервуара степень агрессивного воздействия на элементы металлоконструкций в зависимости от нефти (в соответствии с классификацией по ГОСТ Р 51858 к 4 классу, вид 2,3 относятся нефти с содержанием массовой доли серы свыше 3,5 %, сероводорода 20-100 ppm, метил и этилмеркаптанов в сумме 40-100 ppm) принимать по СНиП 2.03.11-85, объемы и типы покрытий по табл. 2.12.

Таблица 2.12 — Объем и применяемые типы покрытий для антикоррозионной защиты внутренней поверхности резервуара

Элементы конструкций резервуара Площадь поверхности, подлежащая защите в %, тип покрытия
РВС РВСП РВСПК
Днище
Центральная часть и периферийные листы (окрайки) 100 %, особо усиленный для нефти 4 класса агрессивности, 100 %, усиленный для нефти 1,2,3 класса агрессивности
Стенка
Первый пояс на всю высоту +100 мм 100 %, особо усиленный для нефти 4 класса агрессивности, 100 %, усиленный для нефти 1,2,3 класса агрессивности
Верхний пояс на всю высоту +100 мм 100 %, усиленный 100 %, усиленный 100 %, нормальный или усиленный
Остальная поверхность 100 %, усиленный нет нет
Крыша
Настил, балки, опорное кольцо, патрубки и люки 100 %, усиленный 100 %, усиленный
Плавающая крыша (стальной понтон)
Нижняя поверхность, борт 100 %, усиленный 100 %, усиленный
Опорные стойки 100 %, усиленный 100 %, особо усиленный для нефти 4 класса агрессивности, 100 %, усиленный для нефти 1,2,3 класса агрессивности
Направляющие на высоту 1 метр от днища 100 %, особо усиленный для нефти 4 класса агрессивности 100 %, усиленный для нефти 1,2,3 класса агрессивности
Трубопроводы в резервуаре
Система подслойного тушения 100 %, усиленный
Приемо-раздаточное устройство 100 %, усиленный
Трубопроводы системы водоспуска 100 %, усиленный
Пенокамеры 100 %, усиленный 100 %, нормальный или усиленный

2.9.4. При назначении типа защитного покрытия наружной поверхности резервуара следует учитывать степень агрессивного воздействия среды на элементы металлоконструкций, находящиеся на открытом воздухе, в зависимости от температурно-влажностных характеристик окружающего воздуха и концентраций содержащихся в атмосфере воздуха коррозионно-активных газов в соответствии со СНиП 2.03.11-85.

2.9.5 На наружную поверхность стенки резервуара должны быть нанесены логотипы и фирменный знак ОАО «АК «Транснефть», надписи «Огнеопасно» и номер резервуара в соответствии с методическими рекомендациями «Фирменный стиль ОАО «АК «Транснефть».

Раздел 2.9 (Измененная редакция, Изм. 2005 г.)

2.10 Требования к качеству изготовления и монтажа резервуаров

2.10.1 При монтаже резервуаров должен проводиться входной контроль металлоконструкций, геодезический контроль, пооперационный контроль, разрушающий и неразрушающий контроль сварных соединений на предмет соответствия настоящим Нормам.

2.10.2 К моменту окончания работ по монтажу резервуара, до проведения гидравлических испытаний, сварные швы и участки металлоконструкций резервуара должны быть проконтролированы в объеме, предусмотренном таблицей 2.13, а резервуар в целом — в объеме предусмотренном таблицами 2.15, 2.16, 2.17, 2.18 настоящих Норм.

Таблица 2.13 — Объем контроля сварных соединений и металлоконструкций резервуаров

Зона контроля Метод контроля и протяженность контролируемых зон, % от общей длины (площади)
Визуально-измери
тельный
Вакууми
рование
Радио
графиро
вание
Ультра
звуковой
Магнитный (цветной) Избыточным давлением
Днище
Швы днища, накладок и пластин с днищем 100% 100%
Швы днища на расстоянии 250 мм от наружной кромки 100% 100% 100%
Стенка
Вертикальные швы 1-2 поясов 100% 100% 100%
Вертикальные швы остальных поясов 100% 100%
Горизонтальные швы поясов 100% 100%
Шов между патрубком и стенкой 100% 100% (мел-керосин)
Шов между воротником патрубка (люка) и первым поясом стенки 100% 100% 100%
Шов между воротником патрубка (люка) и стенкой 100% 100%
Места удаления сборочных приспособлений 100% 100%
Шов стенки с днищем 100% 100%
Кровля
Радиальные швы опорного кольца 100% 100%
Швы настила кровли, щитов кровли 100% 100%
Шов патрубка с кровлей 100% 100%
Плавающая крыша (стальной понтон)
Швы коробов (отсеков) и заглушек стоек 100% 100% каждый короб, отсек
Швы центральной части 100% 100%
Швы патрубков с крышей 100% 100%
Алюминиевый понтон
Клеммные соединения полос настила 100% 100%
стыки периферийной юбки 100% 100%
Примечание — Участок уторного шва с наружной стороны резервуара контролируется до наложения участка шва с внутренней стороны резервуара. Герметичность 100% протяженности соединений настила алюминиевого понтона контролируется после монтажа понтона в резервуаре пробой мел-керосин

(Измененная редакция, Изм. 2005 г.)

2.10.3 Визуальному контролю должны подвергаться все сварные соединения резервуара по всей их протяженности.

2.10.4 По внешнему виду сварные швы должны удовлетворять следующим требованиям:

— по форме и геометрическим размерам швы должны соответствовать требованиям проекта и настоящих норм;

— швы должны иметь гладкую или равномерно чешуйчатую поверхность (высота заусенец или глубина впадин не более 1 мм);

— металл шва должен иметь плавный переход к основному металлу;

— швы не должны иметь недопустимых внешних дефектов (трещин всех видов и направлений, несплавлений, наплывов, грубой чешуйчатости, пористости, прожогов, свищей, незаваренных кратеров).

2.10.5 Не допускаются подрезы основного металла длинной, превышающей 10% длины шва, глубиной более величин, указанных в таблице 2.14, причем под длинной шва следует понимать длину в пределах отдельного листа.

2.10.6 Смещение свариваемых кромок относительно друг друга для стыковых соединений из деталей одной толщины допускается не более:

— для деталей толщиной до 10 мм — 1,0 мм;

— для деталей толщиной более 10 мм — 10% толщины, но не более 3 мм.

2.10.7 Выпуклость, вогнутость, углового шва не должна превышать более чем на 20% величину катета шва. Уменьшение катета углового шва допускается не более 1,0 мм. Увеличение катета углового шва допускается не более 1,0 мм для катетов до 5 мм и не более 2,0 мм для катетов свыше 5 мм.

2.10.8 Радиографический контроль выполняется в соответствии с требованиями ГОСТ 7512. Снимки должны иметь длину не менее 240 мм, а ширину — согласно ГОСТ 7512. Чувствительность снимков должна соответствовать 3 классу по ГОСТ 7512.

2.10.9 Квалификация дефектоскопистов при радиографическом контроле должна быть не ниже 4-го разряда. Просмотр и расшифровка рентгеновских пленок должны производиться специалистом не ниже II-го уровня по ИСО 9712. Оценка внутренних дефектов сварных швов при радиографическом контроле должна производиться по ГОСТ 23055 и должна соответствовать 4 классу. Допускаемые виды и размеры дефектов в сварных соединениях регламентируются ГОСТ 23055.

Таблица 2.14 — Допускаемая величина подреза сварных швов

Характеристика сварного соединение Допускаемая величина подреза
Вертикальные швы стенки, швы стенки с днищем не более 0,2 мм
Горизонтальные соединения стенки 5% толщины, но не более 0,3 мм
Прочие соединения 5% толщины, но не более 0,5 мм

2.10.11 При контроле пересечений швов рентгеновские пленки (не менее двух пленок на каждое пересечение) должны обеспечивать контроль примыкающих участков горизонтальных и вертикальных швов на расстояние не менее 120 мм в каждую сторону.

2.10.12 Ультразвуковая дефектоскопия должна проводиться в соответствии с требованиями ГОСТ 14782. Квалификация дефектоскопистов при ультразвуковом контроле должна быть не ниже II-го уровня по ИСО 9712.

2.10.14 Отклонения размеров основания (фундамента) вновь сооружаемого резервуара, должны соответствовать значениям, приведенным в таблице 2.15.

2.10.15 Отклонения формы и размеров металлоконструкций вновь сооружаемого резервуара в целом, выявленные при пооперационном контроле, должны соответствовать значениям, приведенным в таблицах 2.16-2.18.

2.10.16 Контроль качества сварных швов резервуаров производится с применением ультразвуковых измерительных установок (типа «Сканер» или LSP).

Таблица 2.15 — Допускаемые отклонения формы и размеров оснований и фундаментов вновь сооружаемых резервуаров

Наименование параметров Предельное отклонение при диаметре резервуара, мм
До 12 м Св. 12 м до 23 м Свыше 23 м
Отметка центра основания -15 -20 -25
Разность отметок поверхности периметра грунтового основания в зоне расположения стенки:
— смежных точек через каждые 6 м 6
— любых других точек 12
Разность отметок поверхности кольцевого фундамента в зоне расположения стенки:
— смежных точек через каждые 6 м 8
— любых других точек 12
Наружный диаметр кольцевого фундамента, восемь измерений ±20 ±30 ±40
Отклонение отметки любой точки на поверхности основания от проектной 5 10 15

Таблица 2.16 — Допускаемые отклонения формы и размеров днища, стационарной, плавающей крыши и понтона вновь сооружаемого резервуара

(Измененная редакция, Изм. 2005 г.)

Таблица 2.17 — Допускаемые отклонения формы и размеров стенки вновь сооружаемого резервуара методом полистовой сборки

Наименование параметров Предельное отклонение при диаметре резервуара, мм
до 25 м свыше 25 м
Внутренний диаметр (измерять шесть диаметров с шагом 30 градусов):
— на высоте 300 мм от днища ±37 ±50
— на любой другой высоте ±110 ±150
Высота стенки:
— высота стенки до 12 м включительно ±20
— высота стенки свыше 12 м до 18 м ±30
Отклонение от вертикали верха стенки относительно ее низа 1/200 проектной высоты стенки
Отклонение от вертикали каждого листа любого пояса на расстоянии 50 мм от его верха 1/200 вертикального расстояния от окрайки днища до контролируемого пояса стенки
Местные отклонения от проектной формы в вертикальном направлении (зазор между стенкой и установленной вертикально линейкой длинной 1 м, прижатой к стенке) 14 12
Местные отклонения от проектной формы в горизонтальном направлении (зазор между стенкой и горизонтально установленным шаблоном длинной 1 м, выполненным по проектному радиусу стенки) 14 12

Таблица 2.18 — Допускаемые отклонения формы и размеров стенки вновь сооружаемого резервуара методом рулонной сборки

Наименование параметров Предельное отклонение для диаметра менее 20 м, мм
Внутренний диаметр (измерять шесть диаметров с шагом 30 градусов):
— на высоте 300 мм от днища ±37
Высота стенки ±20
Отклонение от вертикали верха стенки относительно ее низа 1/200 высоты стенки
Отклонение от вертикали любого пояса на расстоянии 50 мм от его верха (измерять с шагом 6 м по всему периметру стенки) 1/200 вертикального расстояния от окрайки днища до контролируемого пояса стенки
Местные отклонения от проектной формы в вертикальном направлении (зазор между стенкой и установленной вертикально линейкой длинной 1 м, прижатой к стенке) 1
Местные отклонения от проектной формы в горизонтальном направлении (зазор между стенкой и горизонтально установленным шаблоном длинной 1 м, выполненным по проектному радиусу стенки) 14

2.11 Требования к составу рабочих чертежей КМ резервуара:

В состав рабочих чертежей серии КМ резервуара должны входить:

1. Общие указания с разделом по проведению гидравлических испытаний резервуара;

2. Техническая спецификация металла;

4. Чертежи элементов конструкции:

— стенка и днище резервуара со схемами раскроя монтажных марок;

— плавающая крыша с водоспуском, катучей лестницей, устройствами защиты от статического электричества, опорными стойками переменной высоты;

— для РВСПК ветровое кольцо;

— направляющие понтона (плавающей крыши);

— приемо-раздаточные патрубки, люки-лазы в стенке резервуара, патрубки для дыхательной арматуры, патрубки под оборудование для систем автоматики и подслойного пожаротушения, патрубок для зачистки;

— патрубки и люки на стационарной, плавающей крыше, понтоне резервуара;

— лестницы, площадки и переходы, опоры для крепления трубопроводов, закрепляемые на стенке или кровле резервуара.

— узлы присоединения к резервуару заземления и средств ЭХЗ.

5. Нагрузки на основание и патрубки ПРП.

(Измененная редакция, Изм. 2005 г.)

2.12 Требования к гидравлическому испытанию резервуара

2.12.1 Все резервуары должны быть подвергнуты гидравлическому испытанию. После проведения гидроиспытания проведение сварочных работ на металлоконструкциях резервуара запрещается.

2.12.2 Испытание резервуаров проводят после окончания всех сварочно-монтажных работ на резервуаре и после завершения работ по устройству обвалования. Антикоррозионная защита металлоконструкций резервуара проводится в соответствии с разделом 2.9 настоящих норм.

(Измененная редакция, Изм. 2005 г.)

2.12.3 До начала испытаний должны быть устранены все дефекты, выявленные при контроле резервуара в объеме, предусмотренном п. 2.10.2 настоящих Норм.

2.12.4 До начала испытания должна быть представлена техническая документация, предусмотренная действующими регламентами ОАО «АК «Транснефть».

2.12.5 Испытания следует проводить по индивидуальной программе, разработанной проектной организацией, разрабатывающей ППР.

(Измененная редакция, Изм. 2005 г.)

2.12.6 Гидравлические испытания следует проводить наливом воды на установленный в проектной документации уровень взлива. Налив воды производить с остановкой налива на 2, 4, 8 поясах РВС (для РВСП и РВСПК при подъеме понтона (ПК) и на 3, 6, 7 поясах резервуара при сливе (опускании понтона (ПК) на время, достаточное для проведения осмотра и измерений. Промежуток времени между ступенями должен составлять 6 часов. За это время необходимо выполнить контрольные осмотры.

Резервуары типа РВС должны быть испытаны на внутреннее избыточное давление и вакуум.

(Измененная редакция, Изм. 2005 г.)

2.12.7 На время испытания должна быть обозначена предупредительными знаками граница опасной зоны. Граница опасной зоны определяется радиусом от центра резервуара, равным двум диаметрам резервуара.

Не допускается нахождения людей в опасной зоне, не связанных с испытаниями. Все контрольно-измерительные приборы, запорная арматура временных трубопроводов для подачи воды должны находиться за пределами обвалования.

Лица, производящие испытание, должны находиться вне границ опасной зоны. Допуск к осмотру резервуара разрешается не ранее, чем через 10 минут после окончания очередной ступени нагружения.

2.12.8 Испытание следует производить при температуре окружающего воздуха не ниже плюс 5 °С.

В течение всего периода гидравлического испытания все люки и патрубки в стационарной крыше резервуара должны быть открыты.

2.12.9 Гидравлическое испытание резервуаров с плавающей крышей (понтоном) необходимо производить вместе с уплотняющими затворами. Скорость подъема (опускания) понтона (плавающей крыши) при испытаниях не должна превышать эксплуатационную.

2.12.10 По мере подъема плавающей крыши (понтона) на 2, 4, 8 и опускания на 3, 5, 7 поясах резервуара с остановкой налива и слива производят:

  • визуальный осмотр внутренней поверхности стенки резервуара и сварных швов;
  • измерение зазоров между бортом или коробом понтона (плавающей крыши) и стенкой резервуара,
  • измерение зазоров между направляющими и их патрубками в понтоне (плавающей крыше);
  • визуальный осмотр катучей лестницы, затворов плавающей крыши (понтона) и других конструкций.
  • визуальный осмотр понтонов и внутренней полости коробов плавающих крыш и стальных понтонов на отсутствие признаков воды и отпотевания швов;
  • замер глубины погружения понтона (плавающей крыши);

В процессе испытания следует убедиться в том, что понтон (плавающая крыша) свободно ходит на всю высоту и что он герметичен. Появление влажного пятна на поверхности понтона (плавающей крыше) должно рассматриваться как признак негерметичности.

(Измененная редакция, Изм. 2005 г.)

2.12.11 По мере заполнения резервуара водой необходимо наблюдать за состоянием конструкций и сварных швов. При обнаружении течи из-под края днища или появления мокрых пятен на поверхности отмостки необходимо прекратить испытание, слить воду установить и устранить причину течи.

2.12.12 Резервуар, залитый водой до расчетного уровня, выдерживается под этой нагрузкой в течение:

— резервуар объемом по строительному номиналу менее 20000 м 3 — 24 часа;

— резервуар объемом по строительному номиналу 20000 м 3 и более — 72 часа.

2.12.13 Испытание на внутреннее избыточное давление и вакуум резервуаров типа РВС проводят после гидравлического испытания и понижения уровня воды от испытательного на 2 метра. Контроль давления и вакуума осуществляют U-образным манометром, выведенным по отдельному трубопроводу за обвалование. Избыточное давление принимается на 25%, а вакуум — на 50% больше проектной величины, если в проекте нет других указаний. Продолжительность нагрузки 30 минут. По окончании испытаний на избыточное давление и вакуум люки и патрубки на кровле должны быть вновь открыты, что должно быть оформлено актом.

(Измененная редакция, Изм. 2005 г.)

2.12.14 Резервуар считается выдержавшим испытания, если в течение указанного в Программе испытаний времени не появляются течи на поверхности стенки и по краям днища, уровень воды не снижается, предельные отклонения формы и размеров металлоконструкций и фундаментов не превышают установленных настоящими Нормами. Результаты гидравлического испытания резервуара оформляются актом.

2.12.15 Порядок приемки резервуара в эксплуатацию после строительства, капитального ремонта (реконструкции) определяется действующими регламентами ОАО «АК «Транснефть».

Устройство деформационных швов

Деформационные швы — это разрезы (зазоры) в конструкции бетонного пола, делящие (дробящие) общую площадь на отдельные участки с целью снижения и равномерного распределения нагрузок на пол. Тем самым, повышая целостность и эксплуатационные характеристики как каждого участка в отдельности, так и всей конструкции в целом.

Деформационные швы в бетоном полу - патио
Деформационные швы в бетонном полу (патио)

Функции деформационных швов:

  1. Минимизировать возможные деформации путём разделения монолитного бетона на определённое количество участков
  2. Возможность избежать дорогостоящего ремонта с заменой подстилающего и финишного покрытия
  3. Повысить устойчивость к динамическим нагрузкам, тем самым увеличив срок службы конструкции

Необходимость выполнения деформационных швов в бетонной (или цементно-песчаной) стяжки обусловлена тем, что конструкция пола испытывает различные нагрузки и напряжения. Которые по отдельности или в комплексе могут значительно ухудшить состояние пола.

Бетонный пол испытывает следующие нагрузки:

  • Тепловое расширение
  • Переменчивый влажностный режим
  • Динамические нагрузки (от работающего оборудования, механизмов, людей)
  • Нагрузки передающиеся от примыкающих конструкций (стена, парапет, фундамент)
  • Усадка грунта, как следствие усадка здания и движения конструкций относительно друг друга
  • Напряжения возникающие в теле бетона вовремя его твердения (усадка бетона)

Деформационные швы это общее понятие, включающее в себя различные виды швов, которые отличаются между собой в их устройстве (выполнении) и функциональном назначении. В бетонных (цементно-песчаных) стяжках используют три вида швов.

ustroistvo_deformacionnih_shvov_v_polu
Устройство деформационных швов

Виды деформационных швов:

  • Изоляционные
  • Усадочные
  • Конструкционные

Изоляционные швы

ustroistvo_izolyacionnih_shvov-new
Устройство изоляционных швов

Изоляционные швы выполняются преимущественно по периметру в местах примыкания стяжки (горизонтальной плоскости к вертикальной) к стенам, парапетам, фундаментам, колонам, встроенному громоздкому оборудованию. Главная задача изоляционных швов исключить жёсткое сцепление торца стяжки с примыкающей конструкцией.

Зачем делать изоляционные швы

Устройство деформационных швов данного вида используется в бетонных конструкциях пола с целью предотвращения передачи деформаций на стяжку от капитальных архитектурных сооружений.

Каждая строительная конструкция должна быть независимой от тех, с которыми она граничит. Это нужно для того, чтобы напряжение, возникающее в одном элементе, не передавалось на другие структурные составляющие здания. То есть, стяжка при расширении не должна давить на стену. В свою очередь стена, при возможной подвижке, не должна «тянуть» за собой пол.

Как сделать изоляционные швы

Перед устройством стяжки по периметру стен закрепляется специальная лента из упругого материала. Это демпферная лента, которая представляет собой полосу из вспененного полиэтилена. Другие названия: кромочная, краевая лента.

По своей сути, демпферная лента это моток пенополиэтилена, нарезанный на полосы определенной ширины. Из этого можно сделать вывод, что при отсутствии демпферной ленты её можно заменить материалом с аналогичными свойствами, а именно — обычным рулонным пенополиэтиленом (изолон, фольгоизол, пенофол), самостоятельно нарезанным на полосы шириной согласно толщине стяжки + 2 см. (с запасом). Причем это будет дешевле в разы по сравнению с покупкой фирменной демпферной ленты.

Демпферная лента на самоклейке Демпферная лента своими руками
Фирменная демпферная лента Самодельная демпферная лента

Изоляционные швы выполняются на всю толщину стяжки по периметру стен и простенков, а также вокруг колонн, если таковые имеются. Толщина зазора около 6÷10 мм. Высота ленты должна быть выше на несколько см. от уровня стяжки.

Прикрепить ленту можно точечно жидкими гвоздями или подпереть раствором, суть в том чтобы она перед заливкой стяжки прилегала к вертикальной плоскости, а далее её ужа сама стяжка (под своим собственным весом) разопрёт. После высыхания стяжки лента не вынимается, а обрезается канцелярским ножом «заподлицо» с уровнем пола.

Особое внимание стоит уделить правильности выполнения изоляционных швов возле колонн. Помимо закладывания демпфера между бетоном и колонной, также необходимо грамотно нарезать изоляционные швы.

Правильность выполнения изоляционных швов возле колонн
Устройство изоляционных швов вокруг колонн

Рассмотрим четыре варианта показанных на эскизе выше. В случае невыполнения нарезки изоляционных швов вовсе (см. вариант «с») — в последствии от углов колонн возникнут трещины. Не лучше нарезка швов параллельно граням колонны в варианте «d», так как трещины могут пойти как от нарезанных углов, так и от угла колонны до угла шва.

Наилучшими вариантами принято считать «а» (окружность) и «b» (квадрат у которого углы относительно к углам колонн развёрнуты на 45°). Эти два варианта выигрывают тем, что расстояние от углов колонны до изоляционного шва является минимальным (допускается не более двух, трёх толщин стяжки). При этом углы изоляционного шва варианта «b» корректно стыкуются с температурно-усадочными. В варианте «а» (окружность) углы отсутствуют вовсе, но этот вариант, в силу его непростого выполнения, на реальных объектах практически не встречается.

Конструктивные швы

В тех случаях когда площадь пола является таковой, что невозможно осуществить бесперебойную подачу бетонной смеси для заливки пола за один раз – следует выполнять конструкционные швы (другие названия: рабочие, холодные, строительные швы). Иными словами, это швы которые вызваны технологическим перерывом в работе. Они разграничивают участки стяжки, уложенной в разное время (обычно вчера/сегодня).

Зачем делать конструкционные швы

Участки стяжки пола, которые выполнялись с технологическими перерывами набирают прочность неравномерно (вчерашняя быстрее, чем сегодняшняя), поэтому пол должен быть разделен на отдельные фрагменты. В противном случае, некорректная стыковка бетона залитого в разное время, в последствии может привести к отслоению, трещинообразованию и уменьшению прочности конструкции пола.

Как сделать конструкционные швы

Самый простой (но не самый надёжный) способ стыка разных участков стяжки выполняется по принципу гребня (или шип-паз). Суть этого способа заключается в том, чтобы после заливки очередного участка, торцевой край необходимо сформировать в виде гребня. В этом случае, при заливке свежий бетон заходит в пазы затвердевшего. Выполнить подобие гребня на торце можно при помощи металлических конусов, поперечных реек. Или, как вариант, на опалубке набить бруски с определенным шагом.

Более прогрессивным и надёжным способом устройства деформационного конструкционного шва является использование металлических профилей. Деформационные профиля представляют собой уже готовые (заводские) конструкции различного размера и назначения. В полах в основном используются профиля из стальных и алюминиевых направляющих с резино подобной компенсирующей вставкой. По типу монтажа металлический профиль может быть как встроенный, так и накладной.

Накладной профиль - деформационный шов Встроенный профиль - деформационный шов
Накладной профиль Встроенный профиль

На больших, ответственных объектах конструкционные швы должны выполняться согласно проекту. В котором конструктор учитывая условия эксплуатации и все прикладываемые нагрузки грамотно спроектирует узел конструкционного шва. Если в процессе устройства шва возникают какие-то изменения (напр. расположение, ширина шва или необходимость в замене материала), то механизм устройства деформационного шва необходимо согласовать по новой с проектной организацией.

Температурно-усадочные швы

Этот вид деформационных швов препятствует растрескиванию стяжки в следствии усадки и теплового расширения бетона. Своевременное и правильное выполнение температрно-усадочных швов способно значительно увеличить несущую способность и срок службы бетонного пола.

Усадочные швы в бетонном полу
Устройство усадочных швов

Зачем делать усадочные швы

Главная задача усадочных швов – минимизировать возможность хаотичного растрескивания стяжки пола.

Природа появления трещин такова. Вне зависимости от того, каким раствором выполняется стяжка пола, классическим или полусухим, созревание (высыхание, твердение) бетона происходит неравномерно. Верхний слой высыхает быстрей и усаживается сильнее, чем нижний, так как при высыхании, освобождаясь от воды, любой цементный раствор уменьшается в объёме. Как результат, верхние слои, сжимаясь, перестают объемно соответствовать нижним. Это приводит к тому, что стяжка стремится завернуться, края становятся выше, чем середина, тем самым в теле бетона возникают внутренние напряжения, приводящие к образованию трещин.

Трещины, это своего рода роздых (продых) стяжки, при помощи которых снимаются внутренние напряжения.

Чтобы уменьшить эти негативные процессы и обеспечить контроль мест появления трещин в бетонной стяжке, необходимо нарезать деформационные швы. Они предотвращают хаотичное растрескивание стяжки пола во время её твердения. Такой прием позволяет создать прямые полосы слабины, тем самыми по мере созревания и стремления к заворачиванию швы немного приоткрываются, и трещины образуются не хаотично, а в заданных местах

Как сделать усадочные швы

Углубления нарезаются профессиональным инструментом – шворезчиком, при малых объёмах можно обойтись обычной болгракой (угловая шлифмашина). Процедура проводится на свежеуложенном бетоне, спустя 4÷10 часов после заливки (при низких температурах время выполнения работ можно продлить до 24 часов). Работы следует выполнять, как только бетон наберет достаточную прочность, чтобы его не повредило лезвием, но до того, как в бетоне могут возникнуть произвольные трещины. Для этого рабочий делает пробный шов спустя несколько часов после начала твердения бетона. Если при нарезке пробного шва частицы заполнителя вываливаются из тела бетона, то начинать работу еще рано. Начинать необходимо тогда, когда лезвие вместе с бетоном разрезает зерна заполнителя. Впоследствии швы заполняются полиуретановым герметиком.

Общие правила устройства температурно-усадочных швов:

  1. Глубина шва должна составлять 1/3 толщины стяжки. Этой глубины достаточно для того, чтобы создать в стяжке зону слабины, и бетон при усадке даст трещину именно в этой зоне, то есть растрескивается направленно, а не хаотично.
  2. Ширина реза. Для внутренних помещений 3÷5 мм, для наружных (кровли, террасы) – от 5 до 10 мм.
  3. Разметку под нарезку швов выполняют отбивочным шнуром или мелом под верёвку
  4. Последовательность нарезки швов начинают с бетона уложенного ранее. При этом, в случае быстрого высыхания стяжки (напр. в жаркую погоду или теплом помещении) и возможного преждевременного образования трещин, следует нарезать каждый третий-четвёртый шов, а только потом промежуточные.
  5. Форма участка (карты) по возможности должна быть квадратной, длина не должна превышать ширину в 1.5 раза.
  6. Нарезка швов выполняется во взаимоперпендикулярном направлении интервалом (шагом):
    — для внутренних помещений площадь в 20 м.кв. считается неделимой (если выполняется пункт 5), если площадь больше 20 м.кв., то следует выполнять деформационные швы. При этом на больших площадях швы нарезаются по осям колонн (карта не более 6 м х 6 м) и стыкуются с углами изоляционных швов.
    — для наружных конструкций (кровли, террасы) – швы делят стяжку из цементно-песчаного раствора на карты не более 4,5 м x 4,5 м, а из асфальтобетона — не более 3 м x3 м.

При резки швов нет необходимости стремиться к максимальным размерам карт (6 м х 6 м.), если у вас есть сомнения на счёт состава бетона или в том, что вы не сможете создать оптимальные условия за его уходом, то делайте карты меньшими. Чем меньше размер участка ограниченного швами, тем меньше риск образования в нём хаотичных трещин. Меньше карта — меньше трещин. Но здесь нужно учитывать, что если размеры карт уменьшаются, то их количество увеличивается. Соответственно и погонаж швов увеличивается. Больше швов — больше работ и материала по устройству их герметичности, но меньше нежелательных трещин.

Эти правила являются общими (ознакомительными), они не могут являться универсальной инструкцией к применению, так как каждый случай (объект) индивидуальный, и там могут быть свои нюансы. Оптимальным вариантом является наличие проекта, в котором конструктор учитывает все факторы влияющие на пол (конструктивные особенности подстилающего слоя, динамические нагрузки, влажностный режим, температурный режим, и т.д). Исходя из этого, конструктор рассчитывает: интервал швов, глубину, ширину и т.д.

Видео: резка деформационных швов

Заключение: Устройство деформационных швов это вынужденная мера, продиктованная реалиями и строительными нормами (СП 17.13330.2011, СП 29.13330.2011, СНБ 5.08.01-2000, ДБН В.2.6-220:2017).

Можно ли утверждать, что выполнение всех деформационных швов гарантировано избавит от возможных трещин? К сожалению, нет. Так как устройство швов это всего лишь часть защитного комплекса. На трещинообразование стяжки могут влиять: слабое (дефектное) основание, содержание воды в смеси выше нормы, неправильный уход за стяжкой во время её созревания, уровень влажности, перепад температур и т.д.

Иными словами, выполнить бетонный пол без малейшей трещинки весьма непросто. Чего только стоят примеры больших строительных гипермаркетов , где промышленный пол (топпинг) имеет трещины, «паутинку». Ведь говорить, что строительные гипермаркеты (торгующие всевозможными смесями и в курсе всех технологий) сэкономили на полах не приходиться. Поэтому, важно понимать характер трещин, (ширина, глубина, «бухтит» ли стяжка) и их последствия на конкретное финишное покрытие. То есть, наличие трещин это не всегда тот дефект, после которого нужно демонтировать всю стяжку, и выполнять новую.

Не пропустите скидки, акции и интересные публикации, подписывайтесь в Facebook Instagram

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *