Чем можно регулировать частоту вращения якоря электродвигателя
Перейти к содержимому

Чем можно регулировать частоту вращения якоря электродвигателя

  • автор:

Регулирование частоты вращения якоря тягового двигателя и изменение направления его вращения

Способы регулирования частоты вращения якоря. Из формулы (1) следует, что частота вращения якоря двигателя постоянного тока зависит от питающего напряжения ?/, падения напряжения 1ягя в цепи обмотки якоря и магнитного потока Ф. Поэтому ее можно регулировать тремя способами:

изменением питающего напряжения 11\

включением реостата в цепь обмотки якоря;

изменением магнитного потока Ф.

Так как напряжение в контактной сети метрополитена постоянное, то изменить питающее напряжение тяговых двигателей можно их перегруппировкой. Для того чтобы получить минимальную скорость вагона, к каждому из четырех тяговых двигателей подводится минимальное напряжение, что обеспечивается тогда, когда двигатели соединены последовательно (рис. 48, а). При таком соединении напряжение, подводимое к одному двигателю, в 4 раза меньше напряжения в контактном рельсе.

Соединение тяговых двигателей 1-4 в две параллельные группы (рис. 48, б) по два последовательно включенных в каждой условно называют параллельным. В этом случае напряжение, подводимое к каждому двигателю, будет в 2 раза меньше напряжения в контактном рельсе, и частота вращения якоря двигателя увеличится вдвое по сравнению с частотой вращения при последовательном соединении.

При включении реостата напряжение питающей сети распределяется между тяговыми двигателями и реостатом. По мере выведения ступеней реостата увеличивается напряжение на зажимах двигателей и соответственно частота вращения якорей двигателей.

Такой способ регулирования прост и позволяет плавно изменять частоту вращения в широком диапазоне. Однако при этом возникают большие потери энергии в реостате.

Схемы последовательного (а) и последовательно-параллельного (б) соединения тяговых двигателей

Рис. 48. Схемы последовательного (а) и последовательно-параллельного (б) соединения тяговых двигателей

Для регулирования частоты вращения якоря изменением магнитного потока шунтируют обмотки главных полюсов — обмотки возбуждения (рис. 49, а). В этом случае параллельно обмоткам возбуждения включают резистор 7?ш, и через обмотку возбуждения будет протекать только часть тока обмотки якоря (другая часть этого тока в точке О ответвляется в шунтирующий резистор), что приводит к ослаблению возбуждения тягового двигателя и возрастанию частоты вращения его якоря.

Степень ослабления возбуждения зависит от сопротивления шунтирующего резистора. На подвижном составе метрополитена для плавного изменения частоты вращения якоря применяют несколько ступеней ослабления возбуждения.

Рассмотрим пример ослабления возбуждения двумя ступенями (рис. 49, б). При включении только контактора 7 образуется первая ступень, при которой параллельно обмотке возбуждения включаются две последовательно соединенные секции шунтирующего резистора. При включенных контакторах 7 и 2 получают вторую ступень ослабления возбуждения, при которой параллельно обмотке возбуждения включена одна секция шунтирующего резистора (вторая замкнута контактором 2).

Скоростные ходовые характеристики, показанные на рис. 50, соответствуют последовательному (С) и параллельному (77) соединениям тяговых двигателей с различными ступенями ослабления возбуждения. При полном возбуждении (#77) последовательно соединенных тяговых двигателей вагон имеет определенную скорость. Включив первую ступень ослабления возбуждения (ОП1), получают новую возросшую скорость движения. Второй ступени ослабления возбуждения (0772) соответствует еще одна скорость движения вагона при последовательном соединении тяговых двигателей. То же самое можно сделать и при параллельном соединении тяговых двигателей (77).

Если в тяговом режиме для увеличения частоты вращения якоря возбуждение тяговой машины уменьшают, то в тормозном режиме для уменьшения частоты вращения якоря возбуждение увеличивают.

Назначение индуктивного шунта. Обмотка возбуждения тягового двигателя обладает большой индуктивностью, поскольку через ее витки протекает большой ток, а сердечник имеет большую массу. В цепях же с большой индуктивностью при изменении или отключении тока и его последующем включении (например, при отрыве токоприемника от контактного рельса) возникает значительная э. д. с. самоиндукции. Так как э. д. с. направлена против тока и препятствует его протеканию по обмотке возбуждения, то большая часть тока пойдет по шунтирующему резистору, что приведет к нарушению принятого распределения токов 1 и /ш в параллельных ветвях и к недопустимому ослаблению магнитного потока тягового двигателя.

Для того чтобы избежать чрезмерного ослабления магнитного потока тягового двигателя при резком изменении тока, что может привести к возникновению кругового огня на коллекторе, последовательно с шунтирующим резистором включают катушку индуктивности ИШ, называемую индуктивным шунтом (рис. 49, в). Изменение тока в цепи двигателя будет вызывать возникновение э. д. с. самоиндукции как в обмотке возбуждения, так и в индуктивном шунте. При этом индуктивность шунта выбирают близкой к индуктивности обмотки возбуждения, чтобы э.д.с. самоиндукции не нарушала принятого распределения токов 1 и /ш между обмоткой возбуждения и шунтирующей цепью.

Изменение направления вращения якоря. Для изменения направления вращения якоря (реверсирования) двигателя нужно изменить или направление магнитного потока главных полюсов машины, или направление тока в обмотке якоря. Одновременное изменение магнитного потока и тока якоря не приведет к изменению направления вращения, в чем можно убедиться, применив правило левой руки.

Скоростные характеристики тягового двигателя

Рис. 50. Скоростные характеристики тягового двигателя

Рис. 51 Схемы изменения направления вращения якоря тягового двигателя

Для упрощения силовых цепей реверсирование двигателей осуществляют, изменяя направление тока в обмотках якорей (рис. 51, а и б)

Реверсируют тяговые двигатели аппаратами, называемыми реверсорами, в которых в зависимости от задаваемого направления вращения включаются контакторы Вперед или Назад.

Контрольные вопросы 1. Какими способами регулируют частоту вращения якоря тягового двигателя?

2. Каким образом осуществляется ослабление возбуждения двигателя?

3. Какими способами можно менять напряжение на зажимах тягового двигателя?

4. Как изменяют направление вращения вала тягового двигателя?

Электропоезда метрополитена

  • Введение
  • Кузов вагона
  • Оборудование салона
  • Тележки. Рамы тележек
  • Колесные пары
  • Буксовые узлы
  • Рессорное подвешивание кузова
  • Тяговая передача и узел подвешивания редуктора
  • Карданная муфта
  • Узлы подвешивания тягового двигателя и бруса токоприемника
  • Тормозное оборудование
  • Автосцепка
  • Механическая часть. Узел подвешивания автосцепки
  • Пневматическая и электрическая части
  • Порядок сцепления и расцепления вагонов. Уход за автосцепкой
  • Тяговые двигатели. Мотор-компрессоры
  • Устройство тягового двигателя
  • Работа тягового двигателя
  • Пуск тягового двигателя
  • Регулирование частоты вращения якоря тягового двигателя и изменение направления его вращения
  • Электрическое торможение
  • Мотор-компрессоры
  • Уход за двигателями
  • Электрические аппараты и приборы
  • Токоприемники
  • Главный разъединитель
  • Заземляющие устройства
  • Главный предохранитель
  • Электропневматические вентили
  • Индивидуальные контакторы
  • Групповые контакторы
  • Реле управления и защиты
  • Выключатели
  • Регулятор давления
  • Резисторы, электрические печи и индуктивные шунты
  • Плавкие предохранители
  • Соединительные устройства
  • Измерительные приборы
  • Аккумуляторная батарея
  • Радиооборудование
  • Виды схем, принципы их построения
  • Условные графические и буквенные обозначения
  • Способы управления тяговыми двигателями
  • Перечень электрооборудования силовых цепей вагона Е
  • Силовые цепи вагона Е в тяговом режиме
  • Силовые цепи вагона Е в тормозном режиме
  • Перечень электрооборудования силовых цепей вагона ЕжЗ
  • Силовые цепи вагона ЕжЗ в тяговом режиме
  • Силовые цепи вагона ЕжЗ в тормозном режиме
  • Общие сведения о схеме цепей управления
  • Цепи управления вагона Е в тяговом режиме
  • Цепи управления вагона Е в тормозном режиме
  • Цепи управления вагона ЕжЗ в тяговом режиме
  • Цепи управления вагона ЕжЗ в тормозном режиме
  • Резервное управление поездом
  • Система АЛС — АРС. Контроль эффективности торможения и бдительности машиниста
  • Общие сведения о схеме вспомогательных цепей
  • Вспомогательные цепи высокого напряжения
  • Вспомогательные цепи низкого напряжения
  • Защита электрических цепей вагона
  • Цепи сигнализации неисправностей
  • Система планово-предупредительного ремонта
  • Причины производственного травматизма
  • Электротравматизм и его предупреждение
  • Правила безопасной работы с инструментами и приспособлениями
  • Правила безопасности при осмотре и ремонте вагонного оборудования
Электродинамический тормоз электровозов ЧС2 Т и ЧС200

Рассмотрены устройство и работа основного электронного оборудования, применяемого в электродинамическом (реостатном) тормозе системы «Шкода». Применительно к электродинамическому тормозу электровозов ЧС2 Т и его модификации на скоростном электровозе ЧС200

Системы тормозов

Автоматические тормоза и тормозные системы

Регулирование частоты вращения асинхронного двигателя изменением скольжения

Регулирование частоты вращения асинхронного двигателя изменением скольжения является одним из простых способов регулирования. В то же время при изменении (увеличении) скольжения в соответствии с формулами (32), (34) изменяются (увеличиваются) потери в обмотке ротора, что приводит к уменьшению КПД при регулировании. Регулирование скольжения можно осуществлять как со стороны статора, так и со стороны ротора. Естественно, что во втором случае ротор должен быть фазным и иметь выведенную на контактные кольца обмотку.

При регулировании со стороны статора изменяют приложенное к его обмотке напряжение. Увеличение напряжения сверх номинального приводит к насыщению магнитной цепи двигателя и потому не применяется. Для регулирования частоты вращения асинхронного двигателя уменьшают напряжение питания. При этом развиваемый двигателем момент изменяется пропорционально квадрату напряжения и соответственно изменяются механические характеристики двигателя (рис. 28,а), в результате чего изменяются и значения рабочих скольжений. Очевидно, что регулирование возможно в диапазоне изменения скольжения от 0 до sкр. Для получения достаточно большого диапазона изменения частоты вращения необходимо увеличивать sкр, т. е. применять двигатели с повышенным скольжением типа 4АС (рис. 28,б).

Рис. 28. Механические характеристики асинхронных двигателей при различных значениях первичного напряжения: а — двигатель нормального исполнения; б — двигатель с повышенным скольжением

Этот метод регулирования частоты вращения асинхронного двигателя применяется также для двигателей с фазным ротором, причем в этом случае в цепь ротора включаются добавочные сопротивления для увеличения sкр.

В связи с пониженным КПД и трудностями регулирования напряжения рассматриваемый метод применяется только для двигателей относительно малой мощности. При этом для регулирования U1 можно использовать регулируемые автотрансформаторы или резисторы, включенные последовательно в первичную цепь, а также реакторы насыщения, регулируемые путем подмагничивания постоянным током (магнитные усилители). При изменении постоянного тока подмагничивания индуктивное сопротивление реактора изменяется, что приводит к изменению напряжения на зажимах двигателя. Путем автоматического регулирования тока подмагничивания можно расширить зону регулирования частоты вращения в область s>sкр и получить при этом, жесткие механические характеристики.

Кроме магнитных усилителей применяются также управляемые и полууправляемые полупроводниковые регуляторы напряжения, также позволяющие в широком диапазоне регулировать приложенное напряжение и осуществлять автоматическое регулирование частоты вращения двигателя .

Частным случаем рассмотренного способа является импульсное регулирование частоты вращения, при котором асинхронный двигатель периодически подключается к сети и отключается от нее. При этом двигатель постоянно находится в переходном режиме ускорения (подключен к сети) или торможения (отключен от сети). Подбирая соотношение времени включения ко времени отсутствия питания, можно регулировать среднюю частоту вращения двигателя в широком диапазоне.

При регулировании со стороны ротора в основном применяется реостатное регулирование частоты вращения путем введения в цепь обмотки ротора добавочных активных сопротивлений (резисторов). При этом важно заметить, что изменение в широких пределах частоты вращения двигателя при данном способе регулирования не повлечет за собой изменения максимального (критического) момента Мmах (см. рис. 22). Таким образом, перегрузочная способность двигателя при регулировании не снижается.

Если асинхронный двигатель работает с некоторым приводимым механизмом на валу со статическим моментом сопротивления Мс (см. рис. 22), то на естественной характеристике установившемуся режиму его работы будет соответствовать точка 1. При введении добавочных сопротивлений — резисторов Rд1 — Rд3 — в цепь ротора произойдет соответствующий переход двигателя в новые режимы работы с меньшими частотами вращения: n1>n2>n3>n4. Характеристики двигателя по мере увеличения сопротивления резисторов в цепи ротора Rд становятся более мягкими. Наиболее жесткой характеристикой в данном случае будет естественная характеристика.

Работа двигателя на естественной характеристике в данном случае будет наиболее стабильной и устойчивой. Это означает, что при изменении момента сопротивления Мс в процессе работы производственного механизма отклонения частоты вращения двигателя будут минимальными.

Технические показатели данного способа регулирования следующие:

  • диапазон регулирования сравнительно небольшой — порядка 2 : 1 и ограничивается вероятностью нестабильности работы двигателя при больших значениях сопротивлений резисторов Rд;
  • плавность регулирования при реостатном регулировании небольшая и определяется числом ступеней регулирования. Переключение ступеней осуществляется, как правило, с помощью магнитных контроллеров, контакторов и реле.

Кроме реостатного регулирования применяется регулирование частоты вращения путем введения добавочной ЭДС в обмотку ротора асинхронного двигателя.

Регулирование частоты вращения асинхронного двигателя путем увеличения его скольжения всегда связано с выделением во вторичной цепи двигателя значительной электрической мощности скольжения Ps= sPэм, большая часть которой при реостатном регулировании теряется в реостате. Поэтому, естественно, возникает мысль о полезном использовании этой мощности и о повышении таким образом КПД установки.

Полезное использование мощности скольжения возможно, если вместо реостата присоединить к контактным кольцам ротора двигателя приемник электрической энергии в виде вспомогательной электрической машины. Эта машина должна работать в режиме двигателя, обеспечивая требуемое напряжение на своих зажимах (и соответственно на контактных кольцах самого асинхронного двигателя).

Поясним, как влияет на работу асинхронного двигателя введение добавочной ЭДС Eд в обмотку ротора, при условии, что частота Eд всегда равна частоте токов ротора f2 = sf1.

Пусть в отсутствие ЭДС Eд по цепи ротора протекает ток I2, определяемый в соответствии с формулой (25) как I2=sE2/(r2+jsx2). Этот ток, взаимодействуя с полем обмотки статора, создает электромагнитный момент М, численно равный моменту сопротивления нагрузки Мс, так что двигатель работает при некоторой частоте вращения n.

Если теперь во вторичную цепь ввести ЭДС Eд встречно ЭДС скольжения E2s в этой же цепи, то вторичный ток

в первый момент времени уменьшится. Поэтому развиваемый двигателем момент М также уменьшится, двигатель начнет тормозиться, а скольжение s увеличиваться. При этом согласно равенству (56) ток I2, а вместе с ним и момент М будут увеличиваться. Это будет происходить до тех пор, пока опять не наступит равновесие моментов на валу: М=Мс. Двигатель при этом будет работать с увеличенным скольжением s. Очевидно, что регулированием Eд можно регулировать s и, следовательно, частоту вращения двигателя.

Предположим теперь, что ЭДС Ед имеет по сравнению с рассмотренным случаем противоположное направление и совпадает по фазе с ЭДС sE2. Тогда вместо (56) получаем

В первый момент после введения ЭДС Eд ток I2 и момент М возрастут, асинхронный двигатель будет ускоряться и s будет уменьшаться. При достаточной величине Ед величина s уменьшится до нуля, и если ток I2, создаваемый в этом случае только за счет действия Eд, все еще будет велик по сравнению с током, необходимым для создания момента М=Mс, то ускорение двигателя будет продолжаться и скорость превысит синхронную. Скольжение s и ЭДС E2s при этом изменят знаки и будут расти по абсолютной величине до тех пор, пока в соответствии с выражением (57) ток не упадет до необходимой величины. При sрис. 18). Ток I2 при этом будет иметь составляющую, совпадающую с потоком Ф. Поэтому намагничивающий ток, потребляемый из первичной цепи, уменьшится и cos φ двигателя повысится.

Таким образом, с помощью добавочной ЭДС Eд путем изменения ее значения и направления можно осуществить плавное двухзонное регулирование частоты вращения двигателя ниже и выше синхронной.

Реализация этого весьма экономичного способа регулирования частоты вращения сопряжена с усложнением схемы регулирования и требует применения электромеханического (электромашинного) или вентильного каскада для преобразования выделяемой при регулировании мощности потерь скольжения в полезную электрическую или механическую мощность. Каскадные установки выполняются на мощности до тысяч киловатт с диапазоном регулирования частоты вращения порядка 3 : 1.

Регулирование скорости двигателей постоянного тока

Регулирование скорости двигателей постоянного тока

Из уравнения электромеханической характеристики двигателя постоянного тока независимого возбуждения следует, что возможны три способа регулирования его угловой скорости:

1) регулирование за счет изменения величины сопротивления реостата в цепи якоря,

2) регулирование за счет изменения потока возбуждения двигателя Ф,

3) регулирование за счет изменения подводимого к обмотке якоря двигателя напряжения U . Ток в цепи якоря I я и момент М, развиваемый двигателем, зависят только от величины нагрузки на его валу.

Рассмотрим первый способ регулирования скорости двигателя постоянного тока изменением сопротивления в цепи якоря . Схема включения двигателя для этого случая представлена на рис. 1 , а электромеханические и механические характеристики — на рис. 2 , а.

Схема включения двигателя постоянного тока независимого возбуждения

Рис. 1. Схема включения двигателя постоянного тока независимого возбуждения

Механические характеристики двигателя постоянного тока при различных сопротивлениях цепи якоря (а) и напряжениях (б)

Рис. 2. Механические характеристики двигателя постоянного тока при различных сопротивлениях цепи якоря (а) и напряжениях (б)

Изменяя сопротивление реостата в цепи якоря можно получить при номинальной нагрузке различные угловые скорости электродвигателя на искусственных характеристиках — ω1, ω2, ω3.

Проведем анализ данного способа регулирования угловой скорости двигателей постоянного тока с помощью основных технико-экономических показателей. Так как при данном способе регулирования изменяется жесткость характеристик в широких пределах, то при скоростях менее половины номинальной стабильность работы двигателя резко ухудшается. По этой причине диапазон регулирования скорости ограничен ( D = 2 — З).

Скорость при данном способе можно регулировать в сторону уменьшения от основной, о чем свидетельствуют электромеханические и механические характеристики. Высокую плавность регулирования трудно обеспечить, так как потребовалось бы значительное количество ступеней регулирования и соответственно большое число контакторов. Полное использование двигателя по току (нагреву) в этом случае достигается при регулировании с постоянным моментом нагрузки.

Недостатком рассматриваемого способа является наличие значительных потерь мощности при регулировании, которые пропорциональны относительному изменению угловой скорости. Достоинством рассмотренного способа регулирования угловой скорости являются простота и надежность схемы управления.

Учитывая большие потери в реостате при малых скоростях, данный способ регулирования скорости применяется для приводов с кратковременным и повторно-кратковременным режимами работы.

Регулирование скорости двигателей постоянного тока

При втором способе регулирование угловой скорости двигателей постоянного тока независимого возбуждения осуществляется изменением величины магнитного потока за счет введения в цепь обмотки возбуждения дополнительного реостата. При ослаблении потока угловая скорость двигателя как при нагрузке, так и при холостом ходе возрастает, а при усилении потока — уменьшается. Практически возможно изменение скорости только в сторону увеличения ввиду насыщения двигателя.

При увеличении скорости ослаблением потока допустимый момент двигателя постоянного тока изменяется по закону гиперболы, а мощность остается постоянной. Диапазон регулирования скорости для данного способа D = 2 — 4 .

Механические характеристики для различных значений потока двигателя приведены на рис. 2 , а и 2 , б, из которых видно, что характеристики в пределах номинального тока имеют высокую степень жесткости.

Обмотки возбуждения двигателей постоянного тока независимого возбуждения обладают значительной индуктивностью. Поэтому при ступенчатом изменении сопротивления реостата в цепи обмотки возбуждения ток, а следовательно, и поток будут изменяться по экспоненциальному закону. В связи с этим регулирование угловой скорости будет осуществляться плавно.

Существенными преимуществами данного способа регулирования скорости являются его простота и высокая экономичность.

Данный способ регулирования используют в приводах в качестве вспомогательного, обеспечивающего повышение скорости при холостом ходе механизма.

Третий способ регулирования скорости заключается в изменении напряжения, подводимого к обмотке якоря двигателя. Угловая скорость двигателя постоянного тока независимо от нагрузки изменяется прямо пропорционально напряжению, подводимому к якорю. Поскольку все регулировочные характеристики являются жесткими, а степень их жесткости остается для всех характеристик неизменной, работа двигателя является стабильной на всех угловых скоростях и, следовательно, обеспечивается широкий диапазон регулирования скорости независимо от нагрузки. Этот диапазон равен 10 и может быть расширен за счет специальных схем управления.

При данном способе угловую скорость можно уменьшать и увеличивать относительно основной. Повышение скорости ограничено возможностями источника энергии с регулируемым напряжением и U ном двигателя.

Если источник энергии обеспечивает возможность непрерывного изменения подводимого к двигателю напряжения, то регулирование скорости двигателя будет плавным.

Данный способ регулирования является экономичным, так-так регулирование угловой скорости двигателя постоянного тока независимого возбуждения осуществляется без дополнительных потерь мощности в силовой цепи якоря. По всем перечисленным выше показателям данный способ регулирования по сравнению с первым и вторым наилучший.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Вопрос 15. Регулирование частоты вращения двигателей постоянного тока различными способами. Схемы регулирования частоты вращения.

Регулировать частоту вращения двига­теля параллельного возбуждения можно изменением сопротивле­ния в цепи якоря, изменением основного магнитного потока Ф, изменением напряжения в цепи якоря.

Введение дополнительного сопротивления в цепь якоря. Дополнительное сопротивление (реостат ) включают в цепь яко­ря аналогично пусковому реостату. Однако в отличие от по­следнего оно должно быть рассчитано на продолжительное проте­кание тока. С увеличением возрастает , что ведет к уменьшению час­тоты вращения. Этот способ обеспечи­вает плавное регулирование частоты вращения в широком диапа­зоне (только в сторону уменьшения частоты от номинальной), од­нако он неэкономичен из-за значительных потерь электроэнергии в регулировочном реостате , которые интенсивно растут с увеличением мощности двигателя.

Изменение основного магнитного потока. Этот способ ре­гулирования в двигателе параллельного возбуждения реализуется посредством реостата в цепи обмотки возбуждения. Так, при уменьшении сопротивления реостата возрастает магнитный поток обмотки возбуждения, что сопровождается по­нижением частоты вращения. При увеличении час­тота вращения растет. Недостаток рассмотренного способа регулирования частоты вращения состоит в том, что при изменении магнитного потока Ф меняется угол наклона механической характеристики двигателя. Рассмотренный способ регулирования частоты вращения прост и экономичен, так как в двигателях параллельного возбуж­дения ток , а поэтому потери в регулировочном реостате невелики.

Изменение напряжения в цепи якоря. Регулирование часто­ты вращения двигателя изменением питающего напряжения при­меняется лишь при , т. е. при раздельном питании цепей обмотки якоря и обмотки возбуждения при независимом возбуж­дении. Для осуще­ствления этого способа регулирования необходимо цепь якоря двигателя подключить к источнику питания с регулируемым на­пряжением. Изменение напряжения в цепи якоря позволяет регулировать частоту вращения двигателя вниз от номинальной, так как напря­жение свыше номинального недопустимо.

Импульсное регулирование частоты вращения. Цепь обмотки якоря двигателя параллельного возбуждения периодически прерывается ключом К. Во время замыкания цепи якоря на время к обмотке якоря подводится напряжение и ток в ней достигает значения . Затем ключом К цепь якоря размыкают и ток в ней убывает, достигая к моменту следующего замыкания цепи значения (при размыкании ключа К ток в обмотке якоря замыкается через диод VD). При следующем замыкании ключа К ток достигает зна­чения и т. д. Таким образом, к обмотке якоря подводится не­которое среднее напряжение.

Частоту вращения двигателей последовательного возбуждения можно регулировать изменением либо напряжения , либо маг­нитного потока обмотки возбуждения. В первом случае в цепь якоря последовательно включают регулировочный реостат (рис. 29.10, а). С увеличением сопротивления этого реостата уменьшаются напряжение на входе двигателя и частота его вра­щения. Этот метод регулирования применяют главным образом в двигателях небольшой мощности. В случае значительной мощно­сти двигателя этот способ неэкономичен из-за больших потерь энергии в . Кроме того, реостат , рассчитываемый на рабочий ток двигателя, получается громоздким и дорогостоящим.

Регулировать частоту вращения двигателя изменением маг­нитного потока можно тремя способами: шунтированием обмотки возбуждения реостатом , секционированием обмотки возбужде­ния и шунтированием обмотки якоря реостатом . Включение реостата , шунтирующего обмотку возбуждения (рис. 29.10, в), а также уменьшение сопротивления этого реостата ведет к сниже­нию тока возбуждения , а следовательно, к росту частоты вращения. Этот способ экономичнее предыдущего (см. рис. 29.10, а), применяется чаще и оценива­ется коэффициентом регули­рования . Обычно сопротивление рео­стата принимается таким, чтобы . При секционировании об­мотки возбуждения (рис. 29.10, г) отключение части витков об­мотки сопровождается ростом частоты вращения. При шунти­ровании обмотки якоря реоста­том (см. рис. 29.10, в) увели­чивается ток возбуждения , что вызывает уменьшение частоты вращения. Этот способ регулирования, хотя и обеспечивает глубокую регулировку, неэкономичен и применяется очень редко.

Регулировать частоту вра­щения двигателя смешанного возбуждения можно реостатом в цепи параллельной об­мотки возбуждения. Однако наличие двух обмоток возбуждения делает двигатель смешанного возбуждения более дорогостоящим по сравнению с двигателями рассмотренных выше типов, что не­сколько ограничивает его применение.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *