Чем отличается призменная прочность от кубиковой
Перейти к содержимому

Чем отличается призменная прочность от кубиковой

  • автор:

Г л а в a III. ПРОЧНОСТНЫЕ ХАРАКТЕРИСТИКИ БЕТОНА ПРИ КРАТКОВРЕМЕННОМ СТАТИЧЕСКОМ НАГРУЖЕНИИ

Марку бетона выбирают исходя из технико-экономических соображений, при этом учитывают условия изготовления конструкций, их эксплуатации и т. д.

В зависимости от наибольшей крупности зерен заполнителя бетона действующими в СССР нормами предусматривается испытывать образцы в виде кубов и призм, размер которых указан в табл 2.

По ГОСТ 10180—67 предел прочности тяжелого бетона при сжатии определяют испытанием на сжатие контрольных кубов с размерами ребер 20 см в 28-суточном возрасте. Этот же ГОСТ допускает испытание кубов и других размеров. В данном случае показатели прочности образца приводят к прочности стандартного куба умножением на масштабный коэффициент /С, значение которого можно установить опытным путем, либо по таблице, приведенной в ГОСТе.

Таким образом, приведенные в ГОСТ 10180—67 применительно к высокопрочным бетонам величины масштабных коэффициентов К следует считать заниженными. Это объясняется тем, что наблюдаемые при испытании образцов-кубов одинаковых и неодинаковых размеров колебания прочности вызваны одновременным воздействием ряда факторов. Одним из основных факторов является неоднородность структуры затвердевшего бетона. Поэтому с увеличением прочности бетона, приготовленного на жестких бетонных смесях, требуется применять более эффективные методы уплотнения.

Существенное влияние на показатели прочности оказывает жесткость плит испытательного пресса. Рядом авторов [57, 100] установлено, что прочность образцов различных размеров при испытании на прессах с плитами достаточной толщины практически одинакова, тогда как при испытании на прессах с тонкими опорными плитами она возрастает с уменьшением размеров образца.

Зависимости между призменной и кубиковой прочностью бетонов обычно устанавливают в лабораторных условиях. При этом определяется коэффициент призменной

прочности /Сь.п = -jR На заводах-изготовителях и стройках при изготовлении бетонных и железобетонных конструкций или в целом сооружении обычно контролируется только кубиковая прочность. Истинное же значение прочности бетона при сжатии определяется призменной прочностью, которая указывается в проектах и соответствующих нормативных документах, составленных с учетом экспериментальных данных.

На основании зависимости типа Rnp = f(R), в которой рост призменной прочности Rnp прямо пропорционален росту кубиковой прочности R, Б. Г. Скрамтаев и А. А. Бу-дилов предложили зависимость Rnp = 0,68 R. В нормативных документах она принята в виде Rnp — 0,7 R (для бетона марок 300—600).

Бетонные смеси приготовляли на портландцементе марок от 500 до 800 по ГОСТ 310—41 с различным минералогическим и химическим составом. В опытах [15, 67, 70] и частично [87] использовали высокоактивные быстросхва-тывающиеся цементы ВПЦ и ОБТЦ. В качестве заполнителя применяли гранитный или базальтовый щебень, горный и речной пески с различными модулями крупности. Максимальный размер щебня, как правило, составлял одну четвертую часть наименьшего размера стороны образца. Преимущественно использовали промытые заполнители.

Минимальный расход щебня на 1 м* бетона [103] составлял 825 кг, максимальный [87] — 1660 кг. Расход песка также колебался в значительных пределах: от 300 кг при изготовлении образцов в опытах [67] до 640 кг в опытах [87].

Расход цемента достигал 300 кг в опытах [87] и 835 кг в опытах [103]. При изготовлении образцов из песчаного раствора методом силового проката расход цемента достигал 850 кг. Таким способом в производственных условиях по предложению Мосметростроя были изготовлены блоки обделки метро. Блоки распиливали на призмы размером 15 X 15×60 см и кубики 15 X 15 X 15 еж и испытывали в возрасте 60 суток. Прочность такого бетона достигала в среднем 700 кГ/см*.

Бетонные’смеси имели низкие В1Ц, величина которых колебалась от 0,23 в опытах [70] до 0,42 в опытах [87]; при этом жесткость бетонных смесей в различных опытах принималась от 30 до 240 сек по техническому вискозиметру. Для увеличения пластичности советские исследователи применяли добавку 0,2% ССБ от веса цемента.

Г. Н. Писанко, Е. Н. Щербаков и А. И. Рожков в опытах с песчаным бетоном подтвердили зависимость Rnp от R, которая с достаточной степенью точности совпадает с общей зависимостью для высокопрочных бетонов (см. рис. 22). Для бетона, приготовленного иным методом укладки бетонной смеси (вибровакуум-штампование, силовой прокат и т. д.), общая зависимость Rnv от R сохраняется. Это подтверждается результатами испытания образцов-призм размерами 15x15x60 см и образцов-кубов размерами 15Х X 15×15 см, выпиленных из тоннельной обделки метро. Образцы были изготовлены в производственных условиях и испытаны в возрасте 30 суток. Прочность такого бетона достигала 950 кГ/см2.

На основании данных статистической обработки построена корреляционная зависимость (см. рис. 22), которая описывается уравнением

Япр= 0,783Я. (III. 1)

Коэффициент корреляции г = 0,956 достаточно высокий, что дает основание считать эту зависимость устойчивой.

На зависимость Rup = f(R) в значительной степени оказывает влияние трение, возникающее на поверхности соприкасания образца с плитами пресса, и жесткость плит. Основные же факторы, влияющие на прочность бетона, такие как состав бетонной смеси, качество составляющих и.способы приготовления и укладки бетонной смеси для идентично изготовленных образцов (кубов и призм), мало сказываются на этой зависимости.

Смотрите также: Бетон и строительные растворы Исходные материалы 1.1. Минеральные вяжущие вещества 1.2. Заполнители 1.3. Вода 1.4. Определение потребного количества материалов Строительные растворы 2.1. Свойства строительных растворов 2.2. Виды строительных растворов 2.3. Приготовление строительных растворов 2.4. Составы Бетоны 3.1. Виды бетона 3.2. Свойства бетона 3.3. Приготовление бетонного раствора 3.4. Составы 3.5. Шлакобетон 3.6. Опилкобетон

2.4. Кубиковая и призменная прочность

  • структура бетона;
  • марка цемента;
  • водоцементное отношение В/Ц;
  • вид мелкого и крупного заполнителя;
  • условия твердения;
  • вид напряженного состояния;
  • форма и размеры сечения;
  • длительность действия нагрузки.

Из всех прочностных характеристик бетона наиболее просто определяется его прочность при сжатии, а высокое сопротивление бетона сжатию является его ценным свойством, используемым в железобетонных конструкциях. Поэтому за основную характеристику прочностных и деформативных свойств бетона принята его прочность на осевое сжатие. Для оценки кубиковой прочности применяют раздавливание на прессе изготовленных в тех же условиях, что и реальные конструкции кубов бетона. За стандартные образцы принимают кубы размерами150х150х150 мм, испытание которых происходит при температуре 20 ± 2 ºC через 28 дней твердения в нормальных условиях. Опытами установлено, что прочность бетона одного и того же состава зависит от размера куба: если кубиковая прочность бетона для базового куба с ребром 150 мм равно R (рис. 2.4), то для куба с ребром 200 мм оно уменьшается до 0,93R, а для куба с ребром 100 мм – увеличивается до 1,1R. Рис. 2.4. Стандартный бетонный образец для определения прочности на сжатие Различное временное сопротивление сжатию образцов разной формы объясняется влиянием сил трения, возникающих между гранями образца и опорными плитами пресса, а также неоднородностью структуры бетона. Вблизи опорных плит силы трения, направленные внутрь образца, создают обойму, следовательно, увеличивается прочность образцов при сжатии. Удерживающее влияние сил трения по мере удаления от торцов снижается, таким образом, бетонный куб при разрушении получает форму двух усеченных пирамид, обращенных друг к другу вершинами (рис. 2.5, а). При уменьшении сил трения посредством смазки характер разрушения меняется (рис. 2.5, б): вместо выкалывания с боков образца пирамид происходит раскалывание его по трещинам, параллельным направлению действия усилия. При этом временное сопротивление бетона сжатию уменьшается. а) б)Рис. 2.5. Схема деформирования бетона при сжатииа) – при наличии трения по опорным плоскостям;б) – при отсутствии трения;1 – смазка Поскольку железобетонные конструкции по форме отличаются от кубов, в расчетах их прочности не может быть непосредственно использована кубиковая прочность бетона. Основной характеристикой прочности бетона сжатых элементов является призменная прочность Rb. Опыты на бетонных призмах со стороной основания а и высотой h показали, что призменная прочность Rb меньше кубиковой R и она уменьшается с увеличением отношения . При призменная прочность становится почти стабильной и равной примерно Rb ≈ 0,75R. Как и для кубиков, это явление объясняется различной степенью влияния сил трения по торцам образцов – чем больше размер образца и больше расстояние между его торцами, тем меньше влияние сил трения. Влияние гибкости бетонного образца становится ощутимым при . Кривая, приведенная на рис. 2.6, иллюстрирует зависимость от по усредненным опытным данным. Таким образом, призменная прочность Rb– это временное сопротивление осевому сжатию призмы Rbuс отношением сторон .Рис. 2.6. График зависимости призменной прочности бетона от отношения

14.02.2015 91.14 Кб 60 Билеты спец 1.doc

14.02.2015 3.44 Mб 743 ЖБК 1 курс спец.doc

14.02.2015 587.63 Кб 182 Жбк1.dwg

14.02.2015 13.95 Mб 374 Мои лекции 1 сем.doc

14.02.2015 2.15 Mб 69 СП 63.13330.2012 Бетонные и железобетонные конструкции. Основные положения. Актуализированная. _Тек

Чем отличается призменная прочность от кубиковой

«Куб» — новый завод бетонных изделий в Калуге, телефон 8 (4842) 400-333

Прочность бетона

Так как бетон представляет собой неоднородный материал, внешняя нагрузка создает в нем сложное напряженное состояние. В бетонном образце, подвергнутом сжатию, напряжения концентрируются на более жестких частицах, обладающих большим модулем упругости, вследствие чего по плоскостям соединения этих частиц возникают усилия, стремящиеся нарушить связь между частицами. В то же время в местах, ослабленных порами и пустотами, происходит концентрация напряжений. Из теории упругости известно, что вокруг отверстий в материале, подвергнутом сжатию, наблюдается концентрадия сжимающих и растягивающих напряжений; последние действуют по площадкам, параллельным сжимающей силе. Поскольку в бетоне много пор и пустот, растягивающие напряжения у одного отверстия или поры накладываются на соседние. В результате в бетонном образце, подвергнутом осевому сжатию, возникают продольные сжимающие и поперечные растягивающие напряжения (вторичное поле напряжений).
Разрушение сжимаемого образца, как показывают рпыты, возникает вследствие разрыва бетона в поперечном направлении. Сначала по всему объему возникают микроскопические трещинки отрыва. С ростом нагрузки трещинки отрыва соединяются, образуя видимые трещины, направленные параллельно или с небольшим наклоном к направлению действия сжимающих сил. Затем трещины раскрываются, что сопровождается кажущимся увеличением объема. Наконец, наступает полное разрушение.
Разрушение сжимаемых образцов из различных материалов, обладающих высокой сплошностью структуры, наблюдается вследствие разрыва в поперечном направлении. В бетонных же образцах это явление развивается еще и под влиянием вторичного поля напряжений. Граница образования структурных микроразрушений бетона под нагрузкой может определяться по результатам ультразвуковых измерений. Скорость ультразвуковых колебаний v, распространяющихся поперек линий действия сжимающих напряжений, уменьшается с развитием микротрещин в бетоне. Сжимающее напряжение в бетоне, при котором начинается образование микротрещин, соответствует началу уменьшения скорости ультразвука на кривой. По значению напряжения судят о прочностных и деформативных свойствах бетона.
Отсутствие закономерности в расположении частиц, составляющих бетон, в расположении и крупности пор приводит к тому, что при испытании образцов, изготовленных из одной и той же бетонной смеси, получают неодинаковые показатели прочности — разброс прочности. Прочность бетона зависит от ряда факторов, основньши из которых являются: 1) технологические факторы, 2) возраст н условия твердения, 3) форма и размеры образца, 4) вид напряженного состояния и длительные процессы. Бетон при разных напряжениях — сжатии, растяжении и срезе — имеет разное временное сопротивление.
Классы и марки бетона. В зависимости от назначения железобетонных конструкций и условий эксплуатации устанавливают показатели качества бетона, основными из которых являются:
класс бетона по прочности на осевое сжатие В; указывается в проекте во всех случаях; класс бетона по прочности на осевое растяжение назначается в тех случаях, когда эта характеристика имеет главенствующее значение и контролируется на производстве;
марка бетона по морозостойкости должна назначаться для конструкций, подвергающихся в увлажненном состоянии действию попеременного замораживания и оттаивания (открытые конструкции, ограждающие конструкции и т. п.);
марка по водонепроницаемости W; назначается для конструкций, к которым предъявляют требования непроницаемости (резервуары, напорные трубы и т. п.);
марка по плотности D; назначается для конструкций, к которым кроме требований прочности предъявляются требования теплоизоляции, и контролируется на производстве.
Заданные класс и марку бетона получают соответствующим подбором состава бетонной смеси с последующим испытанием контрольных образцов. Высокое сопротивление бетона сжатию — наиболее ценное его свойство, широко используемое в железобетонных конструкциях. По этим соображениям основная характеристика — класс бетона по прочности на сжатие указывается во всех случаях.
Классом бетона по прочности на осевое сжатие В (МПа) называется временное сопротивление сжатию бетонных кубов с размером ребра 15 см, испытанных через 28 дней хранения при температуре 20±2°С по ГОСТу с учетом статистической изменчивости прочности. Сроки твердения бетона устанавливают так, чтобы требуемая прочность бетона была достигнута к моменту загружения конструкции проектной нагрузкой. Для монолитных конструкций на обычном портландцементе этот срок, как правило, принимается равным 28 дням. Для элементов сборных конструкций заводского изготовления отпускная прочность бетона может быть ниже его класса; она устанавливается по стандартам и техническим условиям в зависимости от условий транспортирования, монтажа, сроков загружения конструкции и др. Классы бетона по прочности на сжатие для железобетонных конструкций нормами устанавливаются следующие: для тяжелых бетонов В7,5; В10; В12,5; В15; В20; ВЗО; В35; В40; В45; В50; В55; В60; для мелкозернистых бетонов вида А на песке с модулями крупности 2,1 и более — в том же диапазоне до В40 включительно; вида Б с модулем крупности менее 1 — в том же диапазоне до ВЗО включительно; вида В, подвергнутого автоклавной обработке — в том же диапазоне до В60 включительно; для легких бетонов — в том же диапазоне до В40 включительно.
Классы бетона по прочности на осевое растяжение ВД8; В 1,2; В 1,6; В2; В2.4; В2,8; В,3,2 характеризуют прочность бетона на осевое растяжение (МПа) по ГОСТу с учетом статистической изменчивости прочности.
Марки бетона по морозостойкости от F25 до F500 характеризуют число выдерживаемых циклов попеременного замораживания и оттаивания в насыщенном водой состоянии.
Марки бетона по водонепроницаемости от W2 до W12 характеризуют предельное давление воды, при котором еще не наблюдается просачивание ее через испытываемый образец.
Марки бетона по плотности от D800 до D2400 характеризуют среднюю плотность (кг/м3).
Оптимальные класс и марку бетона выбирают на основании технико-экономических соображений в зависимости от типа железобетонной конструкции, ее напряженного состояния, способа изготовления, условий эксплуатации и др. Рекомендуется принимать класс бетона для железобетонных сжатых стержневых элементов не ниже В15. Для конструкций, испытывающих значительные сжимающие усилия (колонн, арок и т.п.), выгодны относительно высокие классы бетона — В20—ВЗО; для предварительно напряженных конструкций в зависимости от вида напрягаемой арматуры целесообразны классы бетона В20—В40; для изгибаемых элементов без предварительного напряжения (плит, балок) применяют класс В15.
Легкие бетоны на пористых заполнителях и цементном вяжущем при одинаковых классах и марках по морозостойкости и водонепроницаемости применяют в сборных и монолитных железобетонных конструкциях наравне с тяжелыми бетонами. Для многих конструкций они весьма эффективны, так как приводят к снижению массы.
Влияние времени и условий твердения на прочность бетона. Прочность бетона нарастает в течение длительного времени, но наиболее интенсивный ее рост наблюдается в начальный период твердения. Прочность бетона, приготовленного на портландцементе, интенсивно нарастает первые 28 суток, а на пуццолановом и шлаковом портландцементе медленнее — первые 90 суток. Но и в последующем при благоприятных условиях твердения — положительной температуре, влажной среде — прочность бетона может нарастать весьма продолжительное время, измеряемое годами. Объясняется это явление длительным процессом окаменения цементного раствора — твердением геля и ростом кристаллов. По данным опытов, прочность бетонных образцов, хранившихся в течение 10 лет, нарастала в условиях влажной среды вдвое, а в условиях сухой среды — в 1,4 раза; в другом случае нарастание прочности прекратилось к концу первого года. Если бетон остается сухим, как это часто бывает при эксплуатации большинства железобетонных конструкций, то по истечении первого года дальнейшего нарастания прочности ожидать уже нельзя.
Процесс твердения бетона значительно ускоряется при повышении температуры и влажности среды. С этой целью железобетонные изделия на заводах подвергают тепловой обработке при температуре до 90 °С и влажности до 100 % или же специальной автоклавной обработке при высоком давлении пара и температуре порядка 170 °С. Эти способы позволяют за сутки получить бетон прочностью ~70% проектной. Твердение бетона при отрицательной температуре резко замедляется или прекращается.
Кубиковая прочность бетона при сжатии. При осевом сжатии кубы разрушаются вследствие вазрыва бетона в поперечном направлении. Наклон трещин разрыва обусловлен силами трения, которые развиваются на контактных поверхностях — между подушками пресса и гранями куба. Силы трения, направленные внутрь, препятствуют свободным поперечным деформациям куба и создают эффект обоймы. Удерживающее влияние сил трения по мере удаления от торцовых граней куба уменьшается, поэтому после разрушения куб приобретает форму усеченных пирамид, сомкнутых малыми основаниями. Если при осевом сжатии куба устранить влияние сил трения смазкой контактных поверхностей, поперечные деформации проявляются свободно, трещины разрыва становятся вертикальными, параллельными действию сжимающей силы, а временное сопротивление уменьшается примерно вдвое. Согласно стандарту, кубы испытывают без смазки контактных поверхностей.
Опытами установлено, что прочность бетона одного и того же состава зависит от размера куба: если временное сопротивление сжатию бетона для базового куба с ребром 15 см равно R, то для куба с ребром 20 см оио уменьшается и равно приблизительно 0,93 R, а для куба с ребром 10 см увеличивается и равно ~1,1 R.
Это объясняется изменением эффекта обоймы с изменением размеров куба и расстояния между его торцами. Призменная прочность бетона при сжатии. Железобетонные конструкции по форме отличаются от кубов, поэтому кубиковая прочность бетона не может быть непосредственно использована в расчетах прочности элементов конструкции. Основной характеристикой прочности бетона сжатых элементов является призменная прочность Rb — временное сопротивление осевому сжатию бетонных призм. Опыты на бетонных призмах с размером стороны основания а и высотой h показали, что призменная прочность бетона меньше кубиковой и что она уменьшается с увеличением отношения h/a.
В качестве характеристики прочности бетона сжатой зоны изгибаемых элементов также принимают Rb, при этом вместо действительной криволинейной эпюры напряжений бетона сжатой зоны в предельном состоянии принимают условную прямоугольную эпюру напряжений.
Прочность бетона при растяжении зависит от прочности цементного камня при растяжении и сцепления его с зернами заполнителей. Согласно опытным данным, прочность бетона при растяжении в 10—20 раз меньше, чем при сжатии, причем относительная прочность прн растяжении уменьшается с увеличением класса бетона. В опытах наблюдается еще больший по сравнению со сжатием разброс прочности. Повышение прочности бетона при растяжении может быть достигнуто увеличением расхода цемента, уменьшением W/C, применением щебня с шероховатой поверхностью.
Вследствие неоднородности структуры бетона эта формула не всегда дает правильные значения Rbt. Значение Rbt определяют испытаниями на разрыв образцов в виде восьмерки, на раскалывание образцов в виде цилиндров, на изгиб — бетонных балок .
Прочность бетоиа при срезе и скалывании. В чистом виде явление среза состоит в разделении элемента на две части по сечению, к которому приложены перерезывающие силы. При этом сопротивление срезу зерен крупных заполнителей, работающих как шпонки в плоскости среза, оказывает существенное влияние. При срезе распределение напряжений по площади сечения считается равномерным.
В железобетонных конструкциях чистый срез встречается редко; обычно он сопровождается действием продольных сил. Сопротивление бетона скалыванию возникает при изгибе железобетонных балок до появления в них наклонных трещин. Скалывающие напряжения по высоте сечения изменяются по квадратной параболе. Временное сопротивление скалыванию при изгибе, согласно опытным данным, в 1,5—2 раза больше.
Прочность бетона при длительном действии нагрузки. Согласно опытным данным, при длительном действии нагрузки и высоких напряжениях под влиянием развивающихся значительных неупругих деформаций и структурных изменений бетон разрушается при напряжениях, меньших, чем временное сопротивление осевому сжатию Rb. Если при эксплуатации конструкции в благоприятных для нарастания прочности бетона условиях уровень напряжений постепенно уменьшается, отрицательное влияние фактора длительного загружения может и не проявляться.
Прочность бетона при многократно повторных нагрузках. При действии многократно повторных нагрузок с повторяемостью в несколько миллионов циклов временное сопротивление бетона сжатию под влиянием развития структурных микротрещии уменьшается. Предел прочности бетона при многократно повторных нагрузках или предел выносливости бетона Rr, согласно опытным данным, зависит от числа циклов нагрузки и разгрузки и отношения попеременно возникающих минимальных и максимальных напряжений или асимметрии цикла р. На кривой выносливости по оси абсцисс отложено число циклов п, а по оси ординат — значение изменяющегося периодически предела выносливости бетона Rr. С увеличением числа циклов п снижается Rr; напряжение на горизонтальном участке кривой называют абсолютным пределом выносливости.
Практический предел выносливости Rr зависит от характеристики цикла р почти линейно, его наименьшее значение Rr = 0,5 Rb.
Наименьшее значение предела выносливости, как показывают исследования, связано с границей образования структурных микротрещин. Такая связь между Rr и Rcr позволяет находить предел выносливости по первичному нагружению образца определением границы образования структурных микротрещин ультразвуковой аппаратурой.
Значение Rr необходимо для расчета на выносливость железобетонных конструкций, испытывающих динамические нагрузки, — подкрановых балок, перекрытий некоторых промышленных зданий и т. п.
Динамическая прочность бетона. При динамической нагрузке большой интенсивности, но малой продолжительности, развивающейся вследствие ударных и взрывных воздействий, наблюдается увеличение временного сопротивления бетона — динамическая прочность. Чем меньше время от нагружения бетонного образца заданной динамической нагрузкой (или, что то же самое, чем больше скорость роста напряжений МП а/с), тем больше коэффициент динамической прочности бетона.
Этот крэффициент равен отношению динамического временного сопротивления сжатию Rd к призменной прочности. Например, если время нагружения динамической разрушающей нагрузкой составляет 0,1, то коэффициент ka=l,2. Это явление объясняют энергопоглощающей способностью бетона, работающего в течение короткого промежутка нагружения динамической нагрузкой только упруго.

3.5. Прочность бетона

Для определения прочности бетона на осевое сжатие обычно испытывают в прессе бетонные кубы с размером ребра 150 мм, характер разрушения которых обусловлен наличием или отсутствием сил трения, возникающих на контактных поверхностях между подушками пресса и гранями куба.

  1. Несмазанный куб(рис. 2,а).

Силы трения между подушками пресса и гранями куба препятствуют свободным поперечным деформациям куба и соответственно упрочняют бетон сверху и снизу. По мере удаления от торцевых граней куба влияние сил трения уменьшается, поэтому после разрушения куб приобретает форму 2-х пирамид сверху и снизу.

  1. Смазанный куб(рис. 2,б).

Если устранить силы трения смазкой контактных поверхностей, прочность бетонного куба будет меньше, поперечные деформации проявляются свободно, трещины разрыва становятся вертикальными. Временное сопротивление сжатию бетона для куба с ребром 150 мм равно R, с ребром 200 мм — 0,93R, с ребром 100 мм – 1,1R. Это объясняется изменением эффекта обоймы с изменением размеров куба. а) б) Рис. 2. Характер разрушения бетонных кубов:а – несмазанный куб; б – смазанный куб; Δ – поперечные деформации бетона.

3.5.2. Призменная прочность

Так как железобетонные конструкции по форме отличаются от кубов, основной характеристикой прочности бетона сжатых элементов является призменная прочность Rb– временное сопротивление осевому сжатию бетонных призм. Призменная прочность меньше кубиковой, и она уменьшается с увеличением отношенияh/a. Влияние сил трения на среднюю часть призмы уменьшается с увеличением ее высоты и приh/a=4 значениеRbстановится стабильным и равно приблизительно 0,75R. Рис. 3. Характер разрушения бетонной призмы.

3.5.3. Прочность бетона на осевое растяжение

Прочность бетона на растяжение в 15…20 раз меньше, чем при сжатии. Повышение прочности бетона на растяжение может быть достигнуто увеличением расхода цемента, уменьшением В/Ц, применением щебня с шероховатой поверхностью. Временное сопротивление бетона осевому растяжению Rbtопределяют испытаниями:

  1. на разрыв – образцов в виде восьмерки (рис. 4, а);
  2. на раскалывание – образцов в виде цилиндров (рис. 4, б);
  3. на изгиб – бетонных балок (рис. 4, в):,

где χ – учитывает криволинейный характер эпюры напряжений в бетоне растянутой зоны. а) б) в) Рис. 4. Схемы испытания образцов для определения прочности бетонапри осевом растяжении:а — на разрыв; б – на раскалывание; в – на изгиб.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *