Диод в цепи затвора полевого транзистора
Перейти к содержимому

Диод в цепи затвора полевого транзистора

  • автор:

Защита затвора полевого транзистора

Не будет преувеличением назвать изолированный затвор полевого транзистора довольно чувствительной его частью, которая нуждается в индивидуальной защите. Пробой затвора — явление довольно нехитрое. Оно может произойти по нескольким причинам: электростатическая наводка, паразитные колебания в цепях управления, и конечно эффект Миллера, когда возникающее на коллекторе перенапряжение через емкостную связь оказывает вредоносное действие на затвор.

Полевые транзисторы

Так или иначе, данные причины можно предотвратить, надежно обеспечив соблюдение правил эксплуатации транзистора: не превышать предельно допустимое напряжение затвор-исток, обеспечить надежное и своевременное запирание во избежание сквозных токов, сделать соединительные проводники цепей управления как можно более короткими (для достижения наименьшей паразитной индуктивности), а также максимально защитить сами цепи управления от помех. В таких условиях ни одна из перечисленных причин просто не сможет проявить себя и нанести вред ключу.

Итак, что касается непосредственно затвора, то для его защиты полезно применять специальные цепи, особенно если соединение драйвера с затвором и истоком невозможно выполнить вплотную в силу конструктивных особенностей разрабатываемого устройства. В любом случае, когда речь заходит о защите затвора, выбор падает на одну из четырех основных схем, каждая из которых идеально подходит для тех или иных условий, о которых будет сказано ниже.

Одиночный резистор

Элементарную защиту затвора от статического электричества способен обеспечить одиночный резистор номиналом в 200 кОм, будучи установлен вплотную между стоком и истоком транзистора. В некоторой мере такой резистор способен помешать и перезаряду затвора, если по какой-то причине негативную роль сыграет импеданс цепей драйвера.

Решение с одиночным резистором как нельзя идеально подойдет для защиты транзистора в низкочастотном устройстве, где он непосредственно коммутирует чисто активную нагрузку, то есть где в цепь коллектора включена не индуктивность дросселя или обмотки трансформатора, а нагрузка типа лампы накаливания или светодиода, когда об эффекте Миллера не может быть и речи.

Стабилитрон с диодом Шоттки или супрессор (TVS)

Классика жанра для защиты затворов транзисторов в сетевых импульсных преобразователях — стабилитрон в паре с диодом Шоттки или супрессор. Данная мера позволит защитить цепь затвор-исток от разрушительного влияния эффекта Миллера.

В зависимости от режима работы ключа, выбирается стабилитрон на 13 вольт (при напряжении драйвера 12 вольт) или супрессор с аналогичным типовым рабочим напряжением. При желании можно добавь сюда и резистор на 200 кОм.

Назначение супрессора — быстро поглотить импульсную помеху. Поэтому, если сразу известно, что режим работы ключа будет жестким, соответственно и условия защиты потребуют от ограничителя рассеивать высокие импульсные мощности и очень быстрой реакции — в этом случае лучше выбрать супрессор. Для режимов же более мягких — подойдет стабилитрон с диодом Шоттки.

Диод Шоттки на цепь питания драйвера

Когда низковольтный драйвер установлен на плате вплотную к управляемому транзистору, можно использовать для защиты одиночный диод Шоттки, подключенный между затвором транзистора и цепью низковольтного питания драйвера. И даже если по какой-то причине напряжение на затворе и окажется превышено (станет выше, чем напряжение питания драйвера плюс падение напряжения на диоде Шоттки), лишний заряд просто уйдет в цепь питания драйвера.

Профессиональные разработчики силовой электроники рекомендуют использовать данное решение только в том случае, если расстояние от ключа до драйвера не превышает 5 см. Не помешает здесь и защитный резистор от статики, о котором было сказано выше.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Диод в цепи затвора полевого транзистора

Формула

MOSFET-транзистор, определение и типы

MOSFET-транзисторы – полевые транзисторы с изолированным затвором. Расшифровка аббревиатуры — Metal-Oxide-Semiconductor (металл – окисел – полупроводник) и Field-Effect-Transistors (транзистор, управляемый электрическим полем) Вообще класс полевых транзисторов включает полупроводниковые приборы, управляемые внутренним полем. Внутреннее поле создается напряжением, поэтому полевые транзисторы, в отличие от биполярных транзисторов управляются напряжением! Именно это свойство обеспечивает широкое применение полевых транзисторов.

Ключевыми преимуществами MOSFET-транзисторов являются:

— малая энергия на переключение транзисторы (фактически нужно только перезарядить емкость затвора);

— высокая скорость переключения;

— во включённом состоянии представляет собой омическое сопротивление.

MOSFET-транзисторы как и биполярные транзисторы имеют две основных типа структуры: n-канальные и p-канальные.

Не вдаваясь во внутренние подробности строения MOSFET транзисторов укажем основные отличия в принципе управления:

— n-канальный MOSFET-транзистор открывается положительной полярностью напряжения затвор-исток, и в открытом состоянии пропускает ток от стока к истоку;

— p-канальный MOSFET-транзистор открывается отрицательной полярностью напряжения затвор-исток, и в открытом состоянии пропускает ток от истока к стоку.

По той же причине, что и в биполярных транзисторах, n-канальные MOSFET-транзисторы шустрее p-канальных MOSFET-транзисторов.

Условные обозначения транзисторов n-канального и p-канального MOSFET-транзисторов представлены на рисунке MOSFET.1.

Особенности MOSFET-транзисторов. Реверсный диод в составе MOSFET-транзистора

MOSFET-транзистор в открытом состоянии фактически представляет собой сопротивление. То есть падение напряжения на транзисторе зависит только от его тока. Это очень важное отличие от биполярного транзистора и IGBT-транзистора, всегда имеющих некоторое падение напряжение в открытом состоянии.

В закрытом состоянии сопротивление MOSFET-транзистора составляет десятки-сотни МОм. В открытом – от единиц Ом до единиц миллиОм. Впрочем, сопротивление MOSFET-транзистора в открытом состоянии непостоянно – оно несколько увеличивается с ростом тока. Как правило, не более чем 20-25% при изменении тока от минимального значения до максимального.

Необходимо отметить, что из-за особенностей внутренней структуры MOSFET-транзистор имеет в своем составе паразитный обратный диод, включенный параллельно стоку-истоку, который иногда приводят в условном обозначении транзистора (рисунок MOSFET.2). Если быть до конца точным, то паразитный диод является следствием паразитного транзистора присутствующего в конструкции MOSFET-транзистора. При изготовлении база транзистора электрически соединяется с истоком и коллекторный переход выполняет роль обратного диода.

Падение напряжения на обратном диоде составляет 0,6-0,8 В, что меньше падения напряжения на обычном кремниевом p-n диоде (рисунок MOSFET.3). Именно по этой причине параллельное включение внешних обратных диодов бессмысленно. Ложку дегтя еще добавляет и то, что этот диод достаточно медленный, то есть достаточно долго (порядка 0,3-1 мкс) переходит в непроводящее состояние при смене полярности тока. Существуют схемотехнические способы обойти этот диод например путем последовательного включения в цепь стока диода Шоттки и «обходного» быстродействующего диода включаемого параллельно цепи транзистора и диода.

Достаточно подробно про внутреннюю структуру MOSFET-транзисторов изложено в [Энциклопедия устройств на полевых транзисторах. Дьяконов В.П.,Максимчк А.А.,Ремиев А.М.,Смердов В.Ю. СОЛОН-Р. 2002. 512 с.].

Применение MOSFET-транзисторов

Области использования MOSFET-транзисторов:

— в импульсных преобразователях и стабилизаторах;

— в генераторных устройствах;

— в усилительных каскадах (особенно в звуковых Hi-Fi усилителях);

— в твердотельных реле;

— в качестве элемента логических схем.

Основные преимущества MOSFET-транзисторов проявляются при их использовании в качестве ключевых элементов.

При всех преимуществах MOSFET-транзисторы достаточно «нежные» существа: боятся статического электричества, разрушаются при перегреве свыше 150 °С. Из этого следует то, что полевые транзисторы более критичны к перегреву при пайке по сравнению с биполярными, а также то, что с ними целесообразно работать при условии защиты от статического электричества.

Основные параметры MOSFET-транзистора

Ниже перечислены основные параметры MOSFET-транзистора данные на которые приводятся в справочных листках — datasheet-ах:

1. Максимальное напряжение сток-исток (Drain-Source Voltage) VDS – максимально допустимое напряжение между стоком и истоком транзистора.

2. Сопротивление сток-исток RDS – сопротивление между стоком и истоком в открытом состоянии. При заданном напряжении затвор-исток. И токе стока.

3. Максимальное напряжение затвор-исток (Gate-Source Voltage) VGS ­– максимальное управляющее напряжение затвор-исток. При превышении этого напряжения возможен пробой затворного диэлектрика и выход транзистора из строя.

4. Максимальный ток стока в непрерывном режиме (Continuous Drain Current) ID – максимальная величина постоянно протекающего тока стока в непрерывном режиме. Зависит от температуры корпуса транзистора и условий теплоотвода.

5. Максимальный импульсный ток стока (Pulsed Drain Current) IDM — максимальная величина импульсного тока стока. Зависит от коэффициента заполнения, условий теплоотвода. Принципиально ограничивается энергией рассеивания кристалла.

6. Энергия рассеивания кристалла (Single Pulse Avalanche Energy) EAS – максимальная энергия, которая может быть рассеяна на кристалле транзистора без его разрушения.

7. Максимальная рассеиваемая мощность (Maximum Power Dissipation) PD – максимальная тепловая мощность, которая может быть отведена от корпуса транзистора (при заданной температуре корпуса транзистора).

8. Диапазон рабочих температур — диапазон температур, в пределах которого допускается эксплуатация транзистора.

8. Тепловое сопротивление транзистор-воздух RthJA (Maximum Junction-to-Ambient) — максимальное тепловое сопротивление транзистор-воздух (при условии свободного конвективного теплообмена).

9. Тепловое сопротивление корпус транзистора – теплоотвод (Case-to-Sink, Flat, Greased Surface) RthCS — максимальное тепловое сопротивление перехода корпус транзистора – теплоотвод. При условии плоской блестящей поверхности теплоотвода.

10. Тепловое сопротивление корпус транзистора (Maximum Junction-to-Case (Drain) RthJC — максимальное тепловое сопротивление кристалл — корпус транзистора.

11. Пороговое напряжение затвор-исток (Gate-Source Threshold Voltage) VGS(th) — пороговое напряжение затвор-исток, при котором начинается переход транзистора в проводящее состояние.

12. Ток утечки стока (Zero Gate Voltage Drain Current) IDSS – ток стока выключенного транзистора (при нулевом напряжении затвор-исток). Значительно зависит от температуры.

13. Ток утечки затвора (Gate-Source Leakage) IGSS – ток через затвор при некотором (как правило максимальном) напряжении затвор-исток.

14. Входная емкость (Input Capacitance) Ciss – суммарная емкость затвор-исток и емкость затвор-сток (при некотором напряжении сток-исток).

15. Выходная емкость (Output Capacitance) Coss – суммарная емкость затвор-сток и емкость сток-исток.

16. Проходная емкость (Reverse Transfer Capacitance) Crss – емкость затвор-сток.

17. Общий заряд затвора (Total Gate Charge) Qg – суммарный заряд затвора, необходимый для перевода транзистора в проводящее состояние.

18. Заряд затвор-исток (Gate-Source Charge) Qgs – заряд емкости затвор-исток.

20. Заряд затвор-сток (Gate-Drain Charge) Qgd — заряд емкости затвор-сток.

21. Время задержки включения (Turn-On Delay Time) td(on) – время за которое транзистор накапливает заряд до напряжения на затворе, при котором транзистор начинает открываться.

22. Время роста тока через транзистор (Rise Time) – время, за которое происходит нарастание тока стока транзистора от 10% до 90%.

23. Время задержки выключения (Turn-Off Delay Time) td(off) – время за которое заряд затвора становится меньшим заряда включения, и транзистор начинает закрываться.

24. Время спада тока через транзистор (Fall Time) — время, за которое происходит спад тока стока транзистора от 10% до 90%.

25. Индуктивность вывода стока (Internal Drain Inductance) LD – паразитная индуктивность вывода стока транзистора.

26. Индуктивность вывода истока (Internal Source Inductance) LS – паразитная индуктивность вывода истока транзистора.

27. Постоянный прямой ток через обратный диод (Continuous Source-Drain Diode Current) IS – максимальное значение постоянно протекающего прямого тока через паразитный p-n диод.

28. Импульсный ток через обратный диод (Pulsed Diode Forward Current) ISM – максимальное значение постоянно протекающего прямого тока через паразитный p-n диод.

29. Падение напряжения на диоде (Body Diode Voltage) VSD – прямое падение напряжения на диоде. При заданных температуре и токе истока.

30. Время восстановления паразитного диода (Body Diode Reverse Recovery Time) trr — время восстановления обратной проводимости паразитного диода.

31. Заряд восстановления паразитного диода (Body Diode Reverse Recovery Charge) Qrr – заряд необходимый для восстановления обратной проводимости паразитного диода.

32. Время включения паразитного диода (Forward Turn-On Time) ton — время перехода диода в проводящее состояние. Обычно составляет пренебрежимо малую величину.

33. Паразитное сопротивление затвора (Gate resistance) RG – паразитное последовательное сопротивление затвора. Именно оно ограничивает скорость переключения при управляющем драйвере с большим выходным током.

Паразитные емкости MOSFET-транзистора

На рисунке MOSFET.4 представлены паразитные емкости MOSFET-транзистора. Их всего три – емкость «затвор-исток», «затвор–сток», «сток-исток». И три их производные – входная емкость (Input Capacitance), проходная емкость (Reverse Transfer Capacitance), выходная емкость (Output Capacitance).

Инерционность MOSFET-транзистора, определяющая времена включения и выключения лимитируется, прежде всего, паразитными емкостями транзистора.

Рисунок-схема

В реальности паразитные емкости не являются постоянными величинами: их величина сильно зависит от напряжения между их «обкладками»: при малых значениях напряжения сток-исток ёмкости имеют значительную величину (например, на порядок превышающие численные значения, указанные в справочных листках) которые быстро уменьшается с ростом напряжения сток-исток (рисунок MOSFET.5). Поэтому все справочные значения емкости справедливы при определенном значении напряжения сток-исток.

Для мощных MOSFET-транзисторов на динамику включения-выключения влияет и паразитное сопротивление затвора.

Детально влияние емкостей на процесс коммутации MOSFET транзистора и проявление так называемого эффекта Миллера представлено в разделе «Управление MOSFET и IGBT транзисторами. Схемотехнические решения. Расчет».

Параллельное включение MOSFET-транзисторов

По причине того, что во включенном состоянии MOSFET-транзистор фактически представляет собой сопротивление, MOSFET-транзисторы легко объединяются параллельно. При этом пропорционально увеличиваются токовые и мощностные характеристики.

Для подавления возможных паразитных осцилляций целесообразно развязывать управляющие затворы через затворные резисторы (рисунок MOSFET.6).

Управление затвором полевого транзистора

В большинстве схем самодельных генераторов высокого напряжения для электростатической коптильни используется полевой транзистор, но к сожалению управление его затвором часто организовано неправильно.

Речь пойдёт о схемах высоковольтных источников напряжения для получения электростатики, их мощность как правило не превышает 7 ватт – большего и не нужно. Хотя небольшая мощность источников позволяет достаточно вольно обходиться с выбором применяемых компонентов, для успешного построения рабочего блока требуется соблюдение некоторых правил, некоторые из которых мы и рассмотрим.

Для начала возьмем любую типовую схему на достаточно древнем чипе UC384x, стоит он копейки, есть в любом ларьке, имеет минимальную обвязку и неплохой ток выходного каскада в 1 Ампер. Рассмотрим выходной каскад:

В выходном каскаде мы видим диод, как правило это 1n4148: с помощью него идёт разряд затвора и резистор Rg, через который происходит заряд. Сделаем резистор Rg равным 12 Ом и посмотрим осциллограммы:

Здесь и далее цена клетки 2v/200ns, красный щуп на выходе чипа а желтый непосредственно на гейте, транзистор IRF3710. Затвор достаточно тяжелый: Qg = 130nC. Открытие транзистора происходит достаточно шустро, управляющий чип даёт нужный ток а закрытию помогает диод. Особых нареканий всё это не вызывает.

Теперь заменим резистор Rg с 12 на 100 Ом:

Картина стала значительно хуже: время увеличилось в несколько раз, так делать не стоит. Теперь посмотрим работу с таймером 555, фото макетки выше, схема выходного каскада ниже:

Резистор Rg сделаем равным 100 Ом, диод ставить не будем. Почему это плохо:

Время открытия и закрытия затянуто: в таком режиме работы транзистор перегреется даже на небольших мощностях.

Поставим резистор Rg 12 Ом:

Несмотря на всего 200мА тока, который даёт выходной каскад чипа NE555, транзистор открывается неплохо, для быстрого закрытия параллельно резистору Rg требуется диод как на вышеприведенной схеме.

Как сделать совсем хорошо? Для этого нам потребуется комплементарная пара биполярных транзисторов, из которых мы соберем примитивный драйвер. Транзисторы рекомендую SS8050 и SS8550, имея ток коллектора 1,5 Ампер они с избытком покроют все наши потребности, посмотрим схему:

Плёночный или керамический конденсатор С1 – 1-2u, равно как и резистор Rp – 5-10k можно не ставить, но правильнее что б они были. Резистор Rg – 1 Ом, Rb – 47-100 Ом. Запустим схему:

Бинго! Так и нужно дёргать полевик, несколько деталей общей ценой до 50 рублей заменили полноценный драйвер, который кстати стоит примерно так же 🙂

Дополнительно снял видеоролик в котором так же отражены некоторые нюансы управление полевым транзистором:

MOSFET паразитный диод, или таки защитный?

MOSFET (metal‑oxide‑semiconductor field‑effect transistor) — транзистор по технологии металл‑оксид‑полупроводник с полевым эффектом. Данный тип транзисторов уверенно вошёл в обиход во всех областях применения, как наиболее эффективное решение многих задач. Вы наверняка в курсе, что он применяется в качестве ключей в силовой электронике, причём не только в «чистом» виде, но и в составе IGB‑транзисторов. В частности, в вычислительной технике все цепи питания построены на базе MOSFET’ов.

Но статья не о самом транзисторе, материалов по которому очень много, а про его небольшую часть — встроенный диод, который иногда называют защитным, а иногда — паразитным. Данный диод характерен для наиболее распространённых транзисторов с индуцированным каналом (транзисторы со встроенным каналом настолько редки, что я как‑то искал пример их существования в природе продаже пару дней).

а) n-канальный и б) p-канальный MOSFET

Изначальная природа данного диода — внутренняя структура самого транзистора. У него имеются области разной проводимости, которые можно рассматривать, как обычный биполярный транзистор, который в свою очередь, как бы состоит из двух диодов. При этом в «правильную» сторону диод можно игнорировать — сопротивление индуцированного канала намного меньше сопротивления данного диода, и через последний пойдёт минимальный ток. А вот обратный диод, вот он — таки паразит!

Эквивалентные схемы MOSFETУпрощенная внутренняя структура n-канального MOSFET

Почему этот диод является паразитным? Дело в том, что он проводит ток даже в закрытом состоянии транзистора. Точнее, в диапазоне состояний, когда основной канал уже закрыт и почти не проводит ток. Для схемотехников это является большой головной болью. Одна радость — проводит ток он в «неправильную» сторону, т. е. при штатной эксплуатации транзистора к нему просто не прикладывают напряжение в «неправильную» сторону и он всегда закрыт.

Однако, при коммутации индуктивной нагрузки, типа реле, дросселя или обмоток двигателя всегда возникает обратный выброс напряжения, что связано с ЭДС самоиндукции, которая накапливается в магнитном поле катушки (отдельная тема, если что). То есть, данный диод будет проводить ток этого самого обратного выброса. В 99% случаев это хорошо и погасит паразитный импульс. Но! Данный диод имеет очень «плохие» характеристики — высокое падение на нём напряжения, а значит — высокое сопротивление, что приводит к большому тепловыделению, а тепловыделение может спровоцировать выход транзистора из строя. Отдельно необходимо заметить, что данный диод не очень толерантен к высоким напряжениям, а обратный выброс напряжения, при резком отключении проходящего тока, всегда намного выше номинального напряжения питания данной индуктивности (на чём построены все повышающие DC‑DC преобразователи). Что же делать?

Разработчики MOSFET’ов не долго думали и воткнули внутрь самого транзистора ещё один диод, но уже специальный «защитный», который ставится в ту же сторону, что и паразитный, но имеет уже вполне приличные характеристики. Часто это диод Шотки, у которого низкое падение напряжения (малое сопротивление). В даташитах MOSFET’ов всегда указывают характеристики этого диода. По ним легко определить — является ли диод паразитным или защитным. Если падение напряжения на нём велико (около одного вольта) — диод паразитный, мало (менее полувольта) — защитный.

Ещё пару слов про «неправильный» режим работы MOSFET’а. Существуют топологии, где требуется включить транзистор так, чтобы защитный диод работал в прямом направлении. Например, при коммутации двух источников питания:

Схема включения повышающего преобразователя в режиме UPS (с муськи)

Здесь p‑канальный MOSFET включен так, чтобы 5 вольт питания не попадали на выход TP4056, что привело бы к отключению батареи от зарядки (связано с особенностями топологии TP4056). Данная схема имеет несколько мелких недостатков, но сейчас не об этом. Если для реализации данной схемы вы выберете транзистор с защитным диодом, то всё будет работать так, как задумано. Но если диод окажется «паразитным» велика вероятность того, что в тот момент, когда исчезнет напряжение на входе блока питания, вы получите «провал» по току, который приведет к перезагрузке вашего ардуино, роутера, или того устройства, что вы пытались от пропадания питания и защитить.

Почему это может произойти? — Питание 5 вольт не исчезнет мгновенно, так как на выходе блока питания имеются ёмкие конденсаторы, что приведёт к плавному снижению напряжения при разряде этих конденсаторов на нагрузку. Условием же открытия p‑канального MOSFET’а является отрицательный потенциал на затворе (G — gate) относительно истока (S — source). У разных транзисторов он разный (см. даташит, параметр «Vgs(th)»), но суть в том, что даже если он не очень велик, мы можем попасть в «мёртвую область». Например, Vgs(th) = -1.5V, а напряжение на источнике питания упало уже до двух вольт, а на выходе TP4056, скажем, 3.4V (аккумуляторы не успели зарядиться полностью). т. е. разница напряжений всего 1.4 вольта, чего недостаточно для открытия транзистора, а MT3608 в этом случае уже не сможет обеспечивать работу нагрузки, если нет диода, который пропустит ток «мимо» транзистора. Если же мы имеем «защитный» диод, то он отработает корректно — падение напряжение на нём невелико, и нагрузка будет в порядке, а вот паразитный диод «скушает» добрый вольт от 3.4, останется 2.4V на входе повышайки (MT3608), и она с большой вероятностью уже не сможет корректно работать, хоть и заявлена работа от двух вольт, но при внятной нагрузке это точно не так — уже при трёх вольтах подобные повышайки не держат ток больше 200мА.

Надеюсь, что изложил всё понятно, и оно было вам полезно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *