Допустимый перекос по фазам в трехфазной сети
Перейти к содержимому

Допустимый перекос по фазам в трехфазной сети

  • автор:

Допустимый перекос фаз, причины возникновения и способы устранения

Это явление, возникающее в трехфазных четырех- и пятипроводных электрических сетях с глухозаземленной нейтралью. Данное состояние сети отличается несимметрией токов и напряжений с разными амплитудами напряжений углами между ними.

Векторные диаграммы напряжения, перекос фаз

Для лучшего понимания и большей наглядности процесса предлагаем сравнить векторные диаграммы напряжений трехфазных сетей. Диаграмма 1 отличается идеальной взаимосвязью линейных и фазных напряжений, на диаграмме 2 хорошо видна несимметрия напряжений сети, т. е. имеет место перекос фаз.

Причины возникновения

В большинстве случаев к этому аварийному режиму приводит неравномерное распределения нагрузки — когда одна или две фазы перегружены. В этом случае высокие токи потребления на них приводят к неизбежному увеличению напряжения на других фазах.

Нередко, причиной несимметрии напряжения сети является неполнофазный режим, опасный не только для нагрузок с питающим напряжением 220 В, но и для трехфазного оборудования. Так, отсутствие одной фазы в линии может привести к возрастанию токов в остальных.

Обрыв нулевого провода. Режим работы линии при отсутствии рабочего нуля (N) можно отнести к разряду неполнофазных. Нарушение соотношений токов нагрузки на в таких случаях неизбежно вызывает изменение фазных напряжений (Uф). Отклонения напряжений зависит от соотношения мощностей нагрузки по фазам. В некоторых случаях Uф может достигать линейных значений (380 В).

Замыкание одной из фаз с рабочей нейтралью («нулем») и несработка по каким-либо причинам автомата защиты (неисправность, большая длина участка линии между местом КЗ и автоматом и пр.). В этом случае также происходит увеличение Uф на других проводниках.

Способы устранения

Несомненно, лучшим способом предотвращения несимметрии напряжения является планирование равномерного распределения предполагаемой нагрузки по фазам сети еще на стадии проектирования электроустановки.

Для устранения возникшей несимметрии напряжения в ходе эксплуатации электрической сети производят замеры токов по фазам и перераспределением нагрузок (переключение с более загруженных на менее нагруженные фазы) добиваются равных токов потребления.

В быту для обеспечения допустимого напряжения питания отдельных приборов или их группы нередко используют однофазные стабилизаторы напряжения, в трехфазных сетях — соответственно, трехфазные устройства.

Однако, следует учитывать, что выравнивание значения Uф до допустимого с использованием трехфазного стабилизатора неизбежно сопровождается отклонением от нормы на других фазах.

Таким образом, можно говорить об эффективности его использования для предотвращения отклонения напряжения на одной (контролируемой) фазе, но его отклонение от нормы на других может стать вторичной причиной возникновения несимметрии напряжении.

Допустимый перекос фаз

Главным действующим документом, определяющим качество электроэнергии и регламентирующим нормы несимметрии напряжений является ГОСТ 13109-97 (п.п 5.5). Допустимое отклонение соотношений нагрузок, согласно требований СП 31-110 (9.5) — 15% в панелях ВРУ и 30% в распредщитах.

  • Главная
  • Электромонтаж
  • Допустимый перекос фаз, причины возникновения и способы устранения

Перейти на форум

Данный сайт создан исключительно в ознакомительных целях. Материалы ресурса носят справочный характер.

При цитировании материалов сайта активная гиперссылка на l220.ru обязательна.

ПУЭ-7

Документ, определяющий правила устройства, регламентирующий принципы построения и требования как к отдельным системам, так и к их элементам, узлам и коммуникациям ЭУ, условиям размещения и монтажа.

ПТЭЭП

Требования и обязанности потребителей, ответственность за выполнение, требования к персоналу, осуществляющему эксплуатацию ЭУ, управление, ремонт, модернизацию, ввод в эксплуатацию ЭУ, подготовке персонала.

ПОТЭУ

Правила по охране труда при эксплуатации электроустановок — документ, созданный на основе недействующих в настоящее время Межотраслевых правил по охране труда (ПОТ Р М-016-2001, РД 153-34.0-03.150).

Перекос фаз — в чем опасность?

Состояние всей техники в доме, офисе напрямую зависит не только от условий эксплуатации, обслуживания, но и от качества электроэнергии. Многие из нас даже не задумаются о том, что в этом вопросе важно соблюдать все стандарты, которые прописаны в соответствующей документации. Касается это, в том числе, и перекоса фазы.

Согласно ГОСТу этот показатель должен быть 4% по нулевой последовательности и 2% — по обратной.

Перекос фаз

Что значит перекос фаз?

Этонесовпадение величин в трехфазных электросетях, вызванное неравномерным распределением нагрузки. Чаще всего возникает оно при раздаче напряжения устройствам однофазным. К примеру, это разводка сети на этаже по квартирам. Добиться паритета практически невозможно. С глухозаземленнойнейтралью в трехфазной сети выравнивает напряжение нейтраль. Именно она выполняет защитную роль, не допускает перекоса.

Меняют ситуацию и обрывы нуля. Тогда один из проводов фазы выполняет их функции, а величинаповрежденного нуля приближается к 380В.

Почему перекос фаз опасен?

Трехфазные устройства, способные работать с симметричными фазами, при перекосе вызывают нагрев обмотки, падение мощности. Это приводит не только к износу оборудования, но и иным неприятным и небезопасным ситуациям. Негативно сказываются перекосы и на источниках энергии:

  • Расход топлива существенно увеличивается, что влечет дополнительные затраты.
  • Генератор испытывает огромную нагрузку, которая уменьшает срок службы устройства.
  • При работе на пределе велик риск серьезных поломок.

Стоит упомянуть и о том, что это несет угрозу человеку. К примеру, это может спровоцировать поражение токов, вывести из строя бытовые устройства и прочее.

Что такое перекос фаз

Можно ли избежать перекоса фаз?

Безусловно, об этом стоит позаботиться еще при проектировании электросети. Важно правильно распределить нагрузку между фазами, а также учесть ее изменение при эксплуатации. Устранить перекосы позволяет и частотный преобразователь Данфос, использование стабилизаторов.

Спасти ситуацию может и защитная автоматика. К ней относится реле контроля. При аварийной ситуации оно отключает цепь, тем самым предотвращая трагедию.

Однофазные сети защитить от аварий можно с помощью реле напряжения. Оно отключает питание, если напряжение выходит за определенные пределы. Установка защитного оборудования позволит избежать больших финансовых потерь и при этом обеспечить безопасность.

Заключение

Перекос фаз довольно опасен, поэтому не стоит экономить на оборудовании. Правильнее установить защитные устройства и доверять обслуживание электросетей специалистами.Так вы не только будете уверены в своей безопасности, но и сэкономите средства на технике. Подобрать реле или приобрести частотный преобразователь Данфос вы можете у нас. Мы предлагаем качественное и надежное оборудование. Все изделия сертифицированы. Кроме того, наши специалисты проконсультируют вас по любому вопросу, в том числе и выбора.

Перекос фаз и напряжений в трехфазной сети

В современном электроснабжении чаще всего используется схема с тремя фазами и 4-мя или 5-ю проводами. В случае когда используется сеть, состоящая из пяти проводов, то три из них являются фазами, а оставшиеся два рабочими проводниками: нулевым и защитным. В сетях, состоящих из четырех проводов, три провода — это фазы, а четвертый сочетает в себе функции нулевого и защитного рабочего проводника.

Как в идеале должна работать трехфазная сеть?

    • Линейные напряжения тока равны между собой, их значение – 380В;
      • Векторы фаз относительно друг друга сдвинуты на угол 120 градусов;
        • Напряжение любой из фаз будет составлять 220В.

        Эта ситуация изображена на диаграмме с равносторонним треугольником с вершинами A, B и C. Фазные напряжения NA, NB и NC равны между собой и сдвинуты друг относительно друга на угол 120°. Данная модель является идеальной и перекос фазных напряжений в ней отсутствует.

        Сущность явления перекоса фаз

        Перекос фаз (перекос напряжения) как явление происходит в электрической цепи, когда одна или несколько фаз испытывают большую нагрузку, относительно других. В промышленных сетях при таком явлении наблюдается снижение мощности двигателей и трансформаторов. В бытовых условиях перекос может стать причиной поломки электрических приборов, у которых преобладающей является реактивная нагрузка.

        Векторная диаграмма при перекосе фаз приобретает следующие характеристики (красный цвет на диаграмме):

          • Векторы фаз сдвигаются по отношению друг к другу на произвольные углы;
            • Напряжение фаз имеют различные значения;
              • Линейные напряжения при этом останутся прежними и равны 380В.

              Причины перекоса фаз

              На практике можно отметить явления внешних и внутренних перекосов. Первый из них вызван источником электроэнергии (горэлектросеть), второй вызван потребителями на предприятии.

              В случае когда энергия по фазам распределяется неравномерно, возникает перекос. Однако даже при равномерной нагрузке могут возникнуть факторы, являющиеся причиной возникновения перекоса:

                • Разные типы нагрузок в сети (индуктивная и емкостная);
                  • Энергопотребители в разные моменты времени могут потреблять различную мощность. Например, в момент запуска прибора возникают пусковые токи, увеличивающие нагрузку;
                    • Длительность и неравномерность включения приборов.

                    Тем самым, в любой трехфазной сети эффект перекоса фаз можно встретить практически всегда. Исключение составляют сети, в которых применяется симметрирующий трансформатор. Небольшие перекосы могут стать причиной уменьшения срока работы прибора, а сильные приводят к аварийным отключениям и возможным отказам.

                    Последствия перекоса фаз

                    Возникновение перекоса в работе приборов могут привести к негативным последствиям как для электроприемников и источников электроэнергии, так и для потребителей. Среди таковых могут возникнуть:

                      • замыкание и перегрев обмоток электродвигателей;
                        • потребление большего количества топлива генератором;
                          • аварийное отключение генератора;
                            • выход энергопотребителей из строя;
                              • уменьшение срока службы приборов в сети;
                                • рост потребления энергии;
                                • увеличение затрат на ремонт и расходные материалы для генератора.

                                Устранение перекоса фаз: традиционные способы

                                Для повышения качества электроэнергии и обеспечения заданного напряжения тока на каждой из фаз традиционно используются стабилизаторы напряжения. В бытовых условиях применяют однофазные стабилизаторы напряжения, которые обеспечивают защиты отдельных электроприемников или небольшой их группы. В промышленных условиях используются трехфазные стабилизаторы напряжения различной мощности, которые конструктивно состоят из трех однофазных стабилизаторов.

                                В основе их принципа действия лежит реагирование на отклонения в каждой отдельно взятой фазе и поднятие или опускание напряжения до необходимого уровня в этой конкретной фазе, что провоцирует изменения напряжений на двух других фазах. Таким образом, стабилизаторы становятся вторичной причиной возникновения перекоса фаз.

                                Из изложенного выше ясно, что трехфазные стабилизаторы напряжения фактически не решают поставленную перед ними задачу, так как сами провоцируют несимметрию трехфазной системы. Помимо своего основного недостатка трехфазные стабилизаторы напряжения потребляют значительное количество электроэнергии и требуют серьезных сервисных расходов, так как обладают низкой надежностью — и электромеханические, и электронные стабилизаторы напряжения имеют быстроизнашивающиеся и часто отказывающие детали.

                                Как устранить перекос фаз альтернативными способами?

                                Для решения задачи по устранению перекоса в трехфазной сети и обеспечения заданного фазного напряжения необходимо использовать технологию, которая позволит выравнивать напряжение не на каждой из фаз по отдельности, а симметрировать фазы между собой, то есть симметрировать всю трехфазную систему. Самым эффективным решением проблемы перекоса фаз на предприятиях является использование симметрирующего трансформатора. Принцип работы таких трансформаторов заключается в эффекте симметрирования, который заключается в распределении возникающей нагрузки на все три фазы. Тем самым нагрузка перераспределяется на соседние фазы, и трехфазная сеть приходит в равновесное состояние за счет приближению напряжения на каждой фазе к номинальному значению.

                                Модельный ряд изготавливаемых трансформаторов по мощности составляет от 10 КВА до 1 МВА. Также есть возможность выбора модели устройства в зависимости от его функциональных возможностей.

                                Преимущества симметрирования нагрузок в трехфазной сети

                                Установка симметрирующего трансформатора в сети принесет следующие положительные эффекты:

                                  • Возможность подключения различных одно- или двухфазных потребителей;
                                    • Реальность подключения однофазных потребителей к генератору, даже при условии, что мощность потребителя превышает мощность фазы генератора;
                                      • Высокая устойчивость работы дизель-генераторов на однофазную нагрузку;
                                        • Увеличение срока службы оборудования и его безотказной работы;
                                          • Значительное снижение уровня потребления электроэнергии;
                                            • Снижение износа оборудования, уменьшение расходов на его ремонт и обслуживание.

                                            Функции симметрирующего трансформатора

                                            Устройство имеет следующие основные функции работы:

                                              • Равномерное токораспределение нагрузки по всем фазам, позволяющее устранить возможность образования перекоса фаз при питании от автономных источников электроснабжения с ограниченной мощностью;
                                                • При питании потребителя от городской сети происходит равномерное распределение нагрузки по всем фазам и фазные напряжения будут симметрированы.

                                                Выводы

                                                Что дает технология симметрирования фаз:

                                                Устранение перекоса фазных напряжений, т. е. выравнивание фаз сети друг относительно друга.

                                                • Равномерное распределение нагрузок по фазам.
                                                • Обеспечение заданной величины линейных напряжений.
                                                • Обеспечение заданной величины фазных напряжений.
                                                • Преобразование трехфазной сети в одно-(двух) фазную:
                                                  • с гальванической развязкой
                                                  • без гальванической развязки питающей сети и потребителя;
                                                  • с изменением (увеличением или уменьшением) выходного напряжения;

                                                  Ниже на рисунках представлены варианты подключения нагрузки без использования представленной технологии и с использованием представленной технологии.

                                                  Подключение нагрузки напрямую к сети. Максимальная нагрузка на одну фазу составляет треть от трехфазной мощности источника электроэнергии.

                                                  Максимальная нагрузка на одну фазу составляет треть от трехфазной мощности источника электроэнергии.

                                                  Подключение мощного однофазного электроприемника вызывает перекос фаз и повышает риск его повреждений и повреждений других электроприемников. Если мощность такого фазного потребителя превышает треть трехфазной мощности, это вызывает его неправильную работу (сбой, отключение, отказ).

                                                  Подключение более мощной нагрузки к тому же (см. рис. 4) источнику электроэнергии с использованием представленной технологии.

                                                  Максимальная нагрузка на одну фазу может составлять 50% от трехфазной мощности источника электроэнергии. Источник электроэнергии воспринимает нагрузку как равномерно распределенную по фазам.

                                                  Подключение той же нагрузки (см. рис. 4) к генератору меньшей мощности с использованием представленной технологии.

                                                  Технологии симметрирования фаз позволяет подключать ту же группу электроприемников к генератору электроэнергии меньшей мощности, при этом источник электроэнергии будет воспринимать нагрузку как равномерно распределенную по фазам.

                                                  Представленная технология запатентована, не имеет аналогов в России и за рубежом. Оборудование, производимое на основе данной технологии, сертифицировано и соответствует ТУ.

                                                  Результат повышения энергоэффективности при массовом внедрении

                                                  Массовое внедрение симметрирующих трансформаторов позволит более рационально использовать электроэнергию, снизить ее потери; обеспечивать тех же потребителей (группы электроприемников) меньшим количеством электроэнергии; снизить затраты на электроэнергию, затраты на топливо, масло, охлаждающую жидкость при питании от генератора; продлить срок службы электроприемников, уменьшить их износ, обеспечить безотказную работу электроприемников; снизить расходы на источники электроэнергии, так как для той же группы электроприемников возможно использование генератора меньшей мощности.

                                                  Перекос фаз. Какие нормы на перекос фаз.

                                                  Главная / Услуги электролаборатории / Перекос фаз. Какие нормы на перекос фаз.

                                                  Перекос фаз — явление в электротехнике встречающееся довольно часто. Практики хорошо знакомы с ним и знают его последствия. А вот причина негативных его проявлений далеко не всем понятна.

                                                  Сначала давайте определимся в терминах. Речь идет о разнице напряжений, между фазами в трехфазной сети или фазными и нулевым проводником в той же трехфазной цепи. Под перекосом мы будем понимать различие этих напряжений.

                                                  Напомним, что любая трехфазная цепь может быть выполнена с «глухо заземлённой нейтралью» либо с «изолированной нейтралью».

                                                  Первая имеет три фазных проводника и, так называемый, нулевой провод. Вторая только три фазных проводника. Соответственно, потребители в первой цепи могут быть соединены как в треугольник, так и на звезду. Во второй только в треугольник.

                                                  В сети 380/220 В с глухо заземлённой нейтралью потребители, в подавляющем большинстве случаев, подключены по схеме «звезда». Это относится как к асинхронным двигателям, так и к «осветительным нагрузкам».

                                                  О таких случаях мы будем вести речь в дальнейшем. Сделаем одно замечание. Сопротивление питающих линий является конечным, носит омический характер и должно учитываться при расчете трехфазной цепи.

                                                  Так называемый перекос фаз, является отклонением от нормальной разницы между мгновенными значениями линейных напряжений, либо результатом изменения фазового угла между линейными напряжениями. Последний случай можно исключить из рассмотрения, так как он встречается крайне редко.

                                                  Кабельная линия, проверка на перекос фаз

                                                  Когда мы определились с терминами, можно перейти к рассмотрению вопроса по существу. И тут становиться всё просто. Предположим, что все нагрузки у нас осветительные. Под этим термином понимают активные нагрузки, например в виде ламп накаливания.

                                                  Ещё, предположим, что к одной из фаз подключено лампочек значительно больше чем к остальным. Токи, протекающие через них, по законам Кирхгофа будут протекать не только через нулевой проводник но, и через других потребителей. В результате падение напряжения на потребителях других фаз неизбежно вырастет. Это и вызывает перекос фаз.

                                                  Все это можно объяснить и через напряжения. Большой ток одной из фаз создает небольшое, но вполне реальное падение напряжения в нулевом проводе. Это напряжение сдвинуто на угол 120 о относительно других фаз. Поэтому напряжение, приложенное к их нагрузкам, является суммой фазного напряжения и напряжения на нулевом проводе.

                                                  Крайним случаем перекоса фаз является однофазное замыкание на «землю». В этом случае токи короткого замыкания будут протекать и через потребителей, питающихся от двух других фаз что, неизбежно, вызовет перенапряжение в них.

                                                  Ещё одним из случаев того же порядка является обрыв нулевого провода. При этом также нарушается баланс токов в нагрузках. Напряжения в сети могут изменяться крайне непредсказуемо, в зависимости от величины нагрузки на каждую из фаз. Практики знают, что напряжения в бытовых розетках, в этих условиях могут достигать даже линейных значений. Ещё перекос фаз возникает при обрыве одного из фазных проводников. Такой режим называется неполнофазным.

                                                  В любом случае перекос фаз ведёт к экономическим потерям, связанным с протеканием токов в нулевом проводнике. В теоретических основах электротехники (ТОЭ) для таких расчётов вводят понятия токов прямой, обратной и нулевой последовательностей.

                                                  Ещё раз. Существенное увеличение тока одной из фаз трехфазной сети, потребители которой соединены в звезду, незамедлительно ведёт за собой увеличение напряжения на нагрузках других фазных проводов. При этом напряжение перегруженной фазы относительно нулевого провода понижается. Чем это чревато? У ламп накаливания значительно сокращается срок службы либо светоотдача, у асинхронных двигателей, подключенных к такой сети, ухудшается КПД. В конце концов, повышенное напряжение может вывести из строя электронные приборы.

                                                  Ещё одно негативное явление это появление гармоник высших порядков при питании различных электрических машин от несбалансированной сети. Речь идет о двигателях, трансформаторах и генераторах. Это связанно с процессами, протекающими в их магнитопроводах. Гармоники высших порядков часто вызывают сбои в работе электронного оборудования. Поэтому при проектировании электрических сетей необходимо равномерно распределять нагрузки по фазам. Своды правил по проектированию считают предельным разброс нагрузок в 30% в распределительных щитках, а для вводных распредустройств 15%.

                                                  Какие требования предъявляются к перекосу фаз нормативными документами? Основным документом, определяющим качество электроэнергии, является ГОСТ 13109-97. Его требования выражаются в терминах нулевых и обратных последовательностей. Не уверены, что стоит грузить читателя столь сложными материями.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *