Формула эдс самоиндукции в катушке
Перейти к содержимому

Формула эдс самоиндукции в катушке

  • автор:

№20 Самоиндукция. Индуктивность. Синусоидальный ток в индуктивности.

Если в катушке, изображенной на рис. 20.1, магнитное поле создается собственным током i, то магнитный поток называется потоком самоиндукции и обозначается ФL, а индуцируемая в катушке ЭДС еL – ЭДС самоиндукции. В соответствии с формулой (20.1) она равна:

где ψ – потокосцепление самоиндукции, величина, пропорциональная протекающему по катушке току: ψ = Li.

Коэффициент пропорциональности L между потокосцеплением и током называется собственной индуктивностью или просто индуктивностью катушки (контура). Она зависит от формы и размеров катушки, а также от магнитной проницаемости сердечника. Ее размерность В x с/А=Ом x с. Эта единица измерения называется генри (Гн).

Подставляя последнее выражение в (2.15) и полагая L = const, получаем следующую формулу, определяющую ЭДС самоиндукции:

На рис. 2.18 показано изображение индуктивности на электрической схеме; uL – напряжение на зажимах катушки, обусловленное электродвижущей силой самоиндукции, или другими словами, напряжение, наведенное в катушке собственным переменным магнитным полем.

Рис. 2.18 — Обозначение индуктивности

Все три стрелки на схеме (i, eL, uL) принято направлять в одну сторону. Раньше мы видели, что при одинаковых направлениях стрелок напряжения и ЭДС они имеют разные знаки. Поэтому:

Знак минус в правой части формулы (2.16) обусловлен принципом Ленца, определяющим направление индуцированной ЭДС. В рассматриваемом случае он может быть сформулирован следующим образом:

ЭДС самоиндукции направлена так, что своим действием препятствует причине, вызвавшей ее появление.

Причина появления ЭДС самоиндукции – изменение тока. Поэтому при возрастании тока она направлена ему навстречу, при уменьшении тока – в одну с ним сторону.

Препятствуя изменению тока, ЭДС самоиндукции оказывает ему сопротивление, которое называется индуктивным и обозначается хL. В соответствии с формулой (2.16) его величина определяется индуктивностью и скоростью изменения тока, т.е. частотой. Формула, определяющая индуктивное сопротивление, имеет вид:

В цепях постоянного тока такого понятия мы не встречали, так как при постоянных магнитных полях ЭДС самоиндукции не возникает. Пусть ток, протекающий по индуктивности, определяется выражением (2.13). Тогда напряжение на ее зажимах, в соответствии с формулой (2.17), равно:

Это – мгновенное значение напряжения. Его амплитуда равна:

Аналогичное выражение получается (после деления на √2) и для действующих значений:

где Bl — индуктивная проводимость.

Запишем соответствующие формулы в символической форме:

Аналогично для действующих значений

Уравнения, связывающие напряжение и ток в индуктивности, как в вещественных, так и в комплексных числах, представляют собой закон Ома для индуктивности.

Начальная фаза напряжения больше начальной фазы тока на 90° . В индуктивности ток отстает от напряжения на четверть периода. Выражение закона Ома, записанное в символическое форме, указывает на этот сдвиг фаз. Вспомним, что умножение вектора на j приводит к его повороту на угол 90° против часовой стрелки.

Рис. 2.19 — Векторная диаграмма напряжения и тока в индуктивности

Согласно уравнениям (2.18) UL получается путем умножения произведения IxL на j, в результате чего вектор UL оказывается повернутым относительно вектора I.

Пример 2.5. Мгновенное значение напряжения на индуктивности определяется выражением uL = 200 sin(ωt+60°)В. Записать выражение мгновенного значения тока, если L = 63,67 мГн, а частота питающего напряжения f = 50 Гц. Построить векторные диаграммы напряжения и тока.

Решение. При частоте f = 50 Гц циклическая частота ω = 314 с-1, и индуктивное сопротивление xL = ωL = 20 Ом. Амплитуда тока равна:

Так как в индуктивности ток отстает от напряжения на четверть периода, его начальная фаза меньше начальной фазы напряжения на 90° : ψi = ψu – 90° = 60–90–30°.

Итак, i = 10sin (ωt–30°). Векторная диаграмма показана на рис. 2.20.

Рис. 20.1 — Векторная диаграмма

Самоиндукция. Энергия магнитного поля

В свое время Максвелл продемонстрировал, что указанная формула (в нашем случае выведенная для длинного соленоида) верна для любых магнитных полей.

Всё ещё сложно?
Наши эксперты помогут разобраться

Курсовая работа по физике

от 5 дней / от 2160 р.

Реферат по физике

от 1 дня / от 840 р.

Решение задач по физике

от 1 дня / от 150 р.

Навигация по статьям

Проводники и диэлектрики в электрическом поле

Работа и мощность тока

  • Вихревой характер магнитного поля
  • Закон Био-Савара. Теорема о циркуляции
  • Закон электромагнитной индукции Фарадея
  • Классификация магнетиков
  • Классическое описание диамагнетизма
  • Все темы по физике

Поможем найти термин по любому предмету!

  • Объёмная плотность магнитной энергии
  • Самоиндукция
  • Волновая оптика
  • Дифракция света
  • Скорость распространения волны в вакууме с
  • Электромагнитное поле

Поможем выполнить любую работу!

  • Дипломные работы
  • Курсовые работы
  • Рефераты
  • Контрольные работы
  • Отчет по практике
  • Все предметы

Узнай бесплатно стоимость работы
Выполненные работы по физике

  • Вид работы: Школьный проект
  • Выполнена: 14 ноября 2023 г.
  • Стоимость: 1 300 руб
  • Вид работы: Презентация (PPT, PPS)
  • Выполнена: 15 мая 2022 г.
  • Стоимость: 1 100 руб
  • Вид работы: Контрольная работа
  • Выполнена: 11 октября 2021 г.
  • Стоимость: 1 000 руб
  • Вид работы: Контрольная работа
  • Выполнена: 17 ноября 2020 г.
  • Стоимость: 800 руб
  • Вид работы: Реферат
  • Выполнена: 16 ноября 2019 г.
  • Стоимость: 400 руб
  • Вид работы: Эссе
  • Выполнена: 2 сентября 2019 г.
  • Стоимость: 1 000 руб

Студенческий сервис №1 в России

  • 8-800-333-85-44
  • info@zaochnik.com
  • 24/7

Перерыв: чт. с 23:00 до пт. 7:00

Написать в клиентскую поддержку:
Мы в социальных сетях:

  • Консультации по дипломным работам
  • Консультации по курсовым работам
  • Консультации по рефератам
  • Консультации по контрольным работам
  • Консультации по отчетам по практике
  • Все услуги
  • Все предметы
  • О нас
  • Способы оплаты
  • Гарантии
  • Отзывы о Zaochnik
  • Новости
  • Акции и розыгрыши
  • Вакансии
  • Партнерам
  • Авторам
  • Контакты
  • Политика приватности
  • Пользовательское соглашение
  • Согласие на обработку персональных данных
  • Соглашение на оказание услуг
  • Справочник
  • Онлайн-тесты
  • Онлайн-калькуляторы
  • Вопросы и ответы
  • Подарочные сертификаты
  • Мобильное приложение
  • Нейросеть для учебы

Формула эдс самоиндукции в катушке

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно правилу Ленца препятствует изменению тока в контуре.

Собственный магнитный поток Φ, пронизывающий контур или катушку с током, пропорционален силе тока :

Коэффициент пропорциональности в этой формуле называется коэффициентом самоиндукции или индуктивностью катушки. Единица индуктивности в СИ называется генри (Гн). Индуктивность контура или катушки равна , если при силе постоянного тока собственный поток равен :

В качестве примера рассчитаем индуктивность длинного соленоида, имеющего витков, площадь сечения и длину . Магнитное поле соленоида определяется формулой (см. § 1.17)

где – ток в соленоиде, – число витков на единицу длины соленоида.

Магнитный поток, пронизывающий все витков соленоида, равен

Следовательно, индуктивность соленоида равна

= μ0 2 = μ0 2 ,

где = – объем соленоида, в котором сосредоточено магнитное поле. Полученный результат не учитывает краевых эффектов, поэтому он приближенно справедлив только для достаточно длинных катушек. Если соленоид заполнен веществом с магнитной проницаемостью μ, то при заданном токе индукция магнитного поля возрастает по модулю в μ раз (см. § 1.17); поэтому индуктивность катушки с сердечником также увеличивается в μ раз:

μ = μ = μ0 μ 2 .

ЭДС самоиндукции , возникающая в катушке с постоянным значением индуктивности, согласно закона Фарадея равна

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии. Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы (рис. 1.21.1). Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Рисунок 1.21.1.

Магнитная энергия катушки. При размыкании ключа лампа ярко вспыхивает

Из закона сохранения энергии следует, что вся энергия, запасенная в катушке, выделится в виде джоулева тепла. Если обозначить через полное сопротивление цепи, то за время Δ выделится количество теплоты .

Ток в цепи равен

Выражение для Δ можно записать в виде

Δ = –Δ = –Φ () Δ.

В этом выражении Δ < 0; ток в цепи постепенно убывает от первоначального значения 0 до нуля. Полное количество теплоты, выделившейся в цепи, можно получить, выполнив операцию интегрирования в пределах от 0 до 0. Это дает

Эту формулу можно получить графическим методом, изобразив на графике зависимость магнитного потока Φ () от тока (рис. 1.21.2). Полное количество выделившейся теплоты, равное первоначальному запасу энергии магнитного поля, определяется площадью изображенного на рис. 1.21.2 треугольника.

Рисунок 1.21.2.

Вычисление энергии магнитного поля

Таким образом, энергия м магнитного поля катушки с индуктивностью , создаваемого током , равна

Применим полученное выражение для энергии катушки к длинному соленоиду с магнитным сердечником. Используя приведенные выше формулы для коэффициента самоиндукции μ соленоида и для магнитного поля , создаваемого током , можно получить:

где – объем соленоида. Это выражение показывает, что магнитная энергия локализована не в витках катушки, по которым протекает ток, а рассредоточена по всему объему, в котором создано магнитное поле. Физическая величина

равная энергии магнитного поля в единице объема, называется объемной плотностью магнитной энергии . Дж. Максвелл показал, что выражение для объемной плотности магнитной энергии, выведенное здесь для случая длинного соленоида, справедливо для любых магнитных полей.

Эдс самоиндукции расчет. Формула ЭДС индукции определена как

Э. д. с. самоиндукции. Э. д. с. e L , индуцирования в проводнике или катушке в результате изменения магнитного потока, созданного током, проходящим по этому же проводнику или катушке, носит название э. д. с. самоиндукции (рис. 60). Эта э. д. с. возникает при всяком изменении тока, например при замыкании и размыкании электрических цепей, при изменении нагрузки электродвигателей и пр. Чем быстрее изменяется ток в проводнике или катушке, тем больше скорость изменения пронизывающего их магнитного потока и тем большая э. д. с. самоиндукции в них индуцируется. Например, э. д. с. самоиндукции e L возникает в проводнике АБ (см. рис. 54) при изменении протекающего по нему тока i 1 . Следовательно, изменяющееся магнитное поле индуцирует э. д. с. в том же самом проводнике, в котором изменяется ток, создающий это поле.

Направление э. д. с. самоиндукции определяется по правилу Ленца. Э. д. с. самоиндукции имеет всегда такое направление, при котором она препятствует изменению вызвавшего ее тока. Следовательно, при возрастании тока в проводнике (катушке) индуцированная в них э. д. с. самоиндукции будет направлена против тока, т. е. будет препятствовать его возрастанию (рис. 61, а), и наоборот, при уменьшении тока в проводнике (катушке) возникает э. д. с. самоиндукции, совпадающая по направлению с током, т. е. препятствующая его убыванию (рис. 61, б). Если же ток в катушке не изменяется, то э. д. с. самоиндукции не возникает.

Из рассмотренного выше правила для определения направления э. д. с. самоиндукции вытекает, что эта э. д. с. оказывает тормозящее действие на изменение тока в электрических цепях. В этом отношении ее действие аналогично действию силы инерции, которая препятствует изменению положения тела. В электрической цепи (рис. 62, а), состоящей из резистора с сопротивлением R и катушки К, ток i создается совместным действием напряжения U источника и э. д. с. самоиндукции e L индуцируемой в катушке. При подключении рассматриваемой цепи к источнику э. д. с. самоиндукции e L (см. сплошную стрелку) сдерживает нарастание силы тока. Поэтому ток i достигает установившегося значения I=U/R (согласно закону Ома) не мгновенно, а в течение определенного промежутка времени (рис. 62, б). За это время в электрической цепи происходит переходный процесс, при котором изменяются e L и i. Точно

так же при выключении электрической цепи ток i не уменьшается мгновенно до нуля, а из-за действия э. д. с. e L (см. штриховую стрелку) постепенно уменьшается.

Индуктивность. Способность различных проводников (катушек) индуцировать э. д. с. самоиндукции оценивается индуктивностью L. Она показывает, какая э. д. с. самоиндукции возникает в данном проводнике (катушке) при изменении тока на 1 А в течение 1 с. Индуктивность измеряется в генри (Гн), 1 Гн = 1 Ом*с. На практике индуктивность часто измеряют в тысячных долях генри — миллигенри (мГн) и в миллионных долях генри — микрогенри (мкГн).

Индуктивность катушки зависит от числа витков катушки? и магнитного сопротивления R м ее магнитопровода, т. е. от его магнитной проницаемости? а и геометрических размеров l и s. Если в катушку вставить стальной сердечник, ее индуктивность резко возрастает из-за усиления магнитного поля катушки. В этом случае ток 1 А создает значительно больший магнитный поток, чем в катушке без сердечника.

Используя понятие индуктивности L, можно получить для э. д. с. самоиндукции следующую формулу:

e L = – L ?i / ?t (53)

Где?i – изменение тока в проводнике (катушке) за промежуток времени?t.

Следовательно, э. д. с. самоиндукции пропорциональна скорости изменения тока.

Включение и отключение цепей постоянного тока с катушкой индуктивности. При подключении к источнику постоянного тока с напряжением U электрической цепи, содержащей R и L, выключателем B1 (рис. 63, а) ток i возрастает до установившегося значения I уст =U/R не мгновенно, так как э. д. с. самоиндукции e L , возникающая в индуктивности, действует против приложенного напряжения V и препятствует нарастанию тока. Для рассматриваемого процесса характерным является постепенное изменение тока i (рис. 63, б) и напряжений u а и u L по кривым — экспонентам. Изменение i, u а и u L по указанным кривым называется апериодическим.

Скорость нарастания силы тока в цепи и изменения напряжений u а и u L характеризуется постоянной времени цепи

Она измеряется в секундах, зависит только от параметров R и L данной цепи и позволяет без построения графиков оценить длительность процесса изменения тока. Эта длительность теоретически бесконечно велика. Практически же обычно считают, что она составляет (3-4) Т. За это время ток в цепи достигает 95-98 % установившегося значения. Следовательно, чем больше сопротивление и чем меньше индуктивность L, тем быстрее протекает процесс изменения тока в электрических цепях с индуктивностью. Постоянную времени Т при апериодическом процессе можно определить как отрезок АВ, отсекаемый касательной, проведенной из начала координат к рассматриваемой кривой (например, тока i) на линии, соответствующей установившемуся значению данной величины.
Свойством индуктивности замедлять процесс изменения тока пользуются для создания выдержек времени при срабатывании различных аппаратов (например, при управлении работой песочниц для периодической подачи порций песка под колеса локомотива). На использовании этого явления основана также работа электромагнитного реле времени (см. § 94).

Коммутационные перенапряжения. Особенно сильно проявляет себя э. д. с. самоиндукции при размыкании цепей, содержащих катушки с большим числом витков и со стальными сердечниками (например, обмотки генераторов, электродвигателей, трансформаторов и пр.), т. е. цепей, обладающих большой индуктивностью. В этом случае возникающая э. д. с. самоиндукции e L может во много раз превысить напряжение U источника и, суммируясь с ним, послужить причиной возникновения перенапряжений в электрических цепях (рис. 64, а), называемых коммутационными (возникающими при коммутации — переключениях электрических цепей). Они являются опасными для обмоток электродвигателей, генераторов и трансформаторов, так как могут вызвать пробой их изоляции.

Большая э. д. с. самоиндукции способствует также возникновению электрической искры или дуги в электрических аппаратах, осуществляющих коммутацию электрических цепей. Например, в момент размыкания контактов рубильника (рис. 64, б) образующаяся э. д. с. самоиндукции сильно увеличивает разность потенциалов между разомкнутыми контактами рубильника и пробивает воздушный промежуток. Возникающая при этом электрическая дуга поддерживается в, течение некоторого времени э. д. с. самоиндукции, которая, таким образом, затягивает процесс отключения тока в цепи. Это явление весьма нежелательно, так как дуга оплавляет контакты отключающих аппаратов, что приводит к быстрому выходу их из строя. Поэтому во всех аппаратах, служащих для размыкания электрических цепей, предусматриваются специальные дугогасительные устройства, обеспечивающие ускорение гашения дуги.

Кроме того, в силовых цепях, обладающих значительной индуктивностью (например, обмотки возбуждения генераторов), параллельно цепи R-L (т. е. соответствующей обмотке) включают разрядный резистор R р (рис. 65, а). В этом случае после отключения выключателя В1 цепь R-L не прерывается, а оказывается замкнутой на резистор R р. Ток в цепи i при этом уменьшается не мгновенно, а постепенно — по экспоненте (рис. 65,6), так как э. д. с. самоиндукции e L , возникающая в индуктивности L, препятствует уменьшению тока. Напряжение u p на разрядном резисторе в течение процесса изменения тока также изменяется по экспоненте. Оно равно напряжению, приложенному к цепи R-L, т. е. к зажимам соответ-

ствующей обмотки. В начальный момент U p нач = UR p /R, т. е. зависит от сопротивления разрядного резистора; при больших значениях Rp это напряжение может оказаться чрезмерно большим и опасным для изоляции электрической установки. Практически для ограничения возникающих перенапряжений сопротивление R p разрядного резистора берут не более чем в 4-8 раз больше сопротивления R соответствующей обмотки.

Условия возникновения переходных процессов. Рассмотренные выше процессы при включении и выключении цепи R-L называют переходными процессами . Они возникают при включении и выключении источника или отдельных участков цепи, а также при изменении режима работы , например при скачкообразном изменении нагрузки, обрывах и коротких замыканиях. Такие же переходные процессы имеют место при указанных условиях и в цепях, содержащих конденсаторы, обладающие емкостью С. В ряде случаев переходные процессы являются опасными для источников и приемников, так как возникающие токи и напряжения могут во много раз превышать номинальные значения, на которые рассчитаны эти устройства. Однако в некоторых элементах электрооборудования, в частности в устройствах промышленной электроники, переходные процессы являются рабочими режимами.

Физически возникновение переходных процессов объясняется тем, что катушки индуктивности и конденсаторы являются накопителями энергии, а процесс накопления и отдачи энергии в этих элементах не может происходить мгновенно, следовательно, не может мгновенно измениться ток в катушке индуктивности и напряжение на конденсаторе. Время переходного процесса, в течение которого при включениях, выключениях и изменениях режима работы цепи происходит постепенное изменение тока и напряжения, определяется значениями R, L и С цепи и может составить доли и единицы секунд. После окончания переходного процесса ток и напряжение приобретают новые значения, которые называют установившимися .

Магнитное поле контура, в котором сила тока изменяется, индуцирует ток не только в других контурах, но и в себе самом. Это явление получило название самоиндукции.

Опытным путём установлено, что магнитный поток вектора магнитной индукции поля, создаваемого текущим в контуре током, пропорционален силе этого тока:

где L– индуктивность контура. Постоянная характеристика контура, которая зависит от его формы и размеров, а так же от магнитной проницаемости среды, в которой находится контур. [L] = Гн (Генри,

Если за время dtток в контуре изменится наdI, то магнитный поток, связанный с этим током, изменится наdФ =LdIв результате чего в этом контуре появится ЭДС самоиндукции:

Знак минус показывает, что ЭДС самоиндукции (а, следовательно, и ток самоиндукции) всегда препятствует изменению силы тока, который вызвал самоиндукцию.

Наглядным примером явления самоиндукции служат экстратоки замыкания и размыкания, возникающие при включении и выключении электрических цепей, обладающей значительной индуктивностью.

Энергия магнитного поля

Магнитное поле обладает потенциальной энергией, которая в момент его образования (или изменения) пополняется за счёт энергии тока в цепи, совершающего при этом работу против ЭДС самоиндукции, возникающей вследствие изменения поля.

Работа dAза бесконечно малый промежуток времениdt, в течении которого ЭДС самоиндукциии токIможно считать постоянными, равняется:

. (5)

Знак минус указывает, что элементарная работа совершается током против ЭДС самоиндукции. Чтобы определить работу при изменении тока от 0 до I, проинтегрируем правую часть, получим:

. (6)

Эта работа численно равна приросту потенциальной энергии ΔW п магнитного поля, связанного с этой цепью, т.е.A= -ΔW п.

Выразим энергию магнитного поля через его характеристики на примере соленоида. Будем считать, что магнитное поле соленоида однородно и в основном расположено внутри его. Подставим в (5) значение индуктивности соленоида, выраженное через его параметры и значение силы тока I, выраженное из формулы индукции магнитного поля соленоида:

, (7)

где N – общее число витков соленоида; ℓ – его длина; S – площадь сечения внутреннего канала соленоида.

, (8)

После подстановки имеем:

Разделив обе части на V, получим объёмную плотность энергии поля:

(10)

или, с учётом, что
получим,
. (11)

Переменный ток

2.1 Переменный ток и его основные характеристики

Переменным называется ток, изменяющийся с течением времени и по величине и по направлению. Примером переменного тока может служить потребляемый промышленный ток. Этот ток является синусоидальным, т.е. мгновенное значение его параметров меняются со временем по закону синуса (или косинуса):

i = I 0 sinωt, u = U 0 sin(ωt + φ 0). (12)

Переменный синусоидальный ток можно получить, если вращать рамку (контур) с постоянной скоростью

в однородном магнитном поле с индукцией B (рис.5). При этом магнитный поток, пронизывающий контур, изменяется по закону

где S– площадь контура, α = ωt– угол поворота рамки за время t. Изменение потока приводит к возникновению ЭДС индукции

, (17)

направление которой определяется по правилу Ленца.

Если контур замкнут (рис.5), то по нему идёт ток:

. (18)

График изменения электродвижущей силыи индукционного токаi представлен на рис.6.

Переменный ток характеризуется периодом Т, частотой ν = 1/Т, циклической частотой
и фазой φ = (ωt + φ 0) Графически значения напряжения и силы переменного тока на участке цепи будут представляться двумя синусоидами, в общем случае сдвинутыми по фазе на φ.

Для характеристики переменного тока вводятся понятия действующего (эффективного) значения тока и напряжения. Эффективным значением силы переменного тока называется сила такого постоянного тока, который выделяет в данном проводнике столько же тепла за время одного периода, сколько выделяет тепла и данный переменный ток.

,
. (13)

Приборы, включенные в цепь переменного тока (амперметр, вольтметр), показывают эффективные значения тока и напряжения.

Электромагнитная индукция – генерирование электротоков магнитными полями, изменяющимися во времени. Открытие Фарадеем и Генри этого феномена ввело определенную симметрию в мир электромагнетизма. Максвеллу в одной теории удалось собрать знания об электричестве и магнетизме. Его исследования предсказывали существование электромагнитных волн перед экспериментальными наблюдениями. Герц доказал их существование и открыл человечеству эпоху телекоммуникаций.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/1-14-210×140..jpg 614w» sizes=»(max-width: 600px) 100vw, 600px»>

Законы Фарадея и Ленца

Электрические токи создают магнитные эффекты. А возможно ли, чтобы магнитное поле порождало электрическое? Фарадей обнаружил, что искомые эффекты возникают вследствие изменения МП во времени.

Когда проводник пересекается переменным магнитным потоком, в нем индуцируется электродвижущая сила, вызывающая электроток. Системой, которая генерирует ток, может быть постоянный магнит или электромагнит.

Явление электромагнитной индукции регулируется двумя законами: Фарадея и Ленца.

Закон Ленца позволяет охарактеризовать электродвижущую силу относительно ее направленности.

Важно! Направление индуцированной ЭДС такое, что вызванный ею ток стремится противостоять создающей его причине.

Фарадей заметил, что интенсивность индуцированного тока растет, когда быстрее изменяется число силовых линий, пересекающих контур. Другими словами, ЭДС электромагнитной индукции находится в прямой зависимости от скорости движущегося магнитного потока.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/2-10-768×454..jpg 960w» sizes=»(max-width: 600px) 100vw, 600px»>

Формула ЭДС индукции определена как:

Знак «-» показывает, как полярность индуцированной ЭДС связана со знаком потока и меняющейся скоростью.

Получена общая формулировка закона электромагнитной индукции, из которой можно вывести выражения для частных случаев.

Движение провода в магнитном поле

Когда провод длиной l движется в МП, имеющем индукцию В, внутри него будет наводиться ЭДС, пропорциональная его линейной скорости v. Для расчета ЭДС применяется формула:

  • в случае движения проводника перпендикулярно направлению магнитного поля:
  • в случае движения под другим углом α:

Е = — В x l x v х sin α.

Индуцированная ЭДС и ток будут направлены в сторону, которую находим, пользуясь правилом правой руки: расположив руку перпендикулярно силовым линиям магнитного поля и указывая большим пальцем в сторону перемещения проводника, можно узнать направление ЭДС по оставшимся четырем распрямленным пальцам.

Jpg?x15027″ alt=»Перемещение провода в МП» width=»600″ height=»429″>

Перемещение провода в МП

Вращающаяся катушка

Работа генератора электроэнергии основана на вращении контура в МП, имеющего N витков.

ЭДС индуцируется в электроцепи всегда, когда магнитный поток ее пересекает, в соответствии с определением магнитного потока Ф = B x S х cos α (магнитная индукция, умноженная на поверхностную площадь, через которую проходит МП, и косинус угла, образованного вектором В и перпендикулярной линией к плоскости S).

Из формулы следует, что Ф подвержен изменениям в следующих случаях:

  • меняется интенсивность МП – вектор В;
  • варьируется площадь, ограниченная контуром;
  • изменяется ориентация между ними, заданная углом.

В первых опытах Фарадея индуцированные токи были получены путем изменения магнитного поля В. Однако можно индуцировать ЭДС, не двигая магнит или не меняя ток, а просто вращая катушку вокруг своей оси в МП. В данном случае магнитный поток меняется из-за изменения угла α. Катушка при вращении пересекает линии МП, возникает ЭДС.

Если катушка вращается равномерно, это периодическое изменение приводит к периодическому изменению магнитного потока. Или количество силовых линий МП, пересекаемых каждую секунду, принимает равные значения с равными интервалами времени.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/4-10-768×536..jpg 900w» sizes=»(max-width: 600px) 100vw, 600px»>

Вращение контура в МП

Важно! Наведенная ЭДС меняется вместе с ориентацией с течением времени от положительной до отрицательной и наоборот. Графическое представление ЭДС представляет собой синусоидальную линию.

Для формулы ЭДС электромагнитной индукции применяется выражение:

Е = В х ω х S x N x sin ωt, где:

  • S – площадь, ограниченная одним витком или рамкой;
  • N – количество витков;
  • ω – угловая скорость, с которой вращается катушка;
  • В – индукция МП;
  • угол α = ωt.

На практике в генераторах переменного тока часто катушка остается неподвижной (статор), а электромагнит вращается вокруг нее (ротор).

ЭДС самоиндукции

Когда через катушку проходит переменный ток, он генерирует переменное МП, обладающее изменяющимся магнитным потоком, индуцирующим ЭДС. Этот эффект называется самоиндукцией.

Поскольку МП пропорционально интенсивности тока, то:

где L – индуктивность (Гн), определяемая геометрическими величинами: количеством витков на единицу длины и размерами их поперечного сечения.

Для ЭДС индукции формула принимает вид:

Взаимоиндукция

Если две катушки расположены рядом, то в них наводится ЭДС взаимоиндукции, зависящая от геометрии обеих схем и их ориентации относительно друг друга. Когда разделение цепей возрастает, взаимоиндуктивность снижается, так как уменьшается соединяющий их магнитный поток.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/5-5.jpg 680w» sizes=»(max-width: 600px) 100vw, 600px»>

Пусть имеется две катушки. По проводу одной катушки, обладающей N1 витками, протекает ток I1, создающий МП, проходящее через катушку с N2 витками. Тогда:

  1. Взаимоиндуктивность второй катушки относительно первой:

М21 = (N2 x F21)/I1;

Ф21 = (М21/N2) x I1;

  1. Найдем индуцированную ЭДС:

Е2 = — N2 x dФ21/dt = — M21x dI1/dt;

  1. Идентично в первой катушке индуцируется ЭДС:

Е1 = — M12 x dI2/dt;

Важно! Электродвижущая сила, вызванная взаимоиндукцией в одной катушке, всегда пропорциональна изменению электротока в другой.

Взаимную индуктивность можно признать равной:

Соответственно, E1 = — M x dI2/dt и E2 = M x dI1/dt.

где К – коэффициент связи между двумя индуктивностями.

Явление взаимоиндукции используется в трансформаторах – электроаппаратах, позволяющих изменить значение напряжения переменного электротока. Аппарат представляет собой две катушки, намотанные вокруг одного сердечника. Ток, присутствующий в первой, создает меняющееся МП в магнитопроводе и электроток в другой катушке. Если количество витковых оборотов первой обмотки меньше, чем другой, напряжение увеличивается, и наоборот.

Каждый проводник, по которому протекает эл. ток, находится в собственном магнитном поле.

При изменении силы тока в проводнике меняется м.поле, т.е. изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока ведет в возникновению вихревого эл. поля и в цепи появляется ЭДС индукции.

Это явление называется самоиндукцией.
Самоиндукция — явление возникновения ЭДС индукции в эл. цепи в результате изменения силы тока.
Возникающая при этом ЭДС называется ЭДС самоиндукции

При замыкании в эл. цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл. поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны).
В результатеЛ1 загорается позже, чем Л2.

При размыкании эл.цепи ток убывает, возникает уменьшение м.потока в катушке, возникает вихревое эл.поле, направленное как ток (стремящееся сохранить прежнюю силу тока) , т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи.
В результате Л при выключенииярко вспыхивает.

в электротехнике явление самоиндукции проявляется при замыкании цепи (эл.ток нарастает постепенно) и при размыкании цепи (эл.ток пропадает не сразу).

От чего зависит ЭДС самоиндукции?

Эл. ток создает собственное магнитное поле. Магнитный поток через контур пропорционален индукции магнитного поля (Ф ~ B), индукция пропорциональна силе тока в проводнике
(B ~ I), следовательно магнитный поток пропорционален силе тока (Ф ~ I).
ЭДС самоиндукции зависит от скорости изменения силы тока в эл. цепи, от свойств проводника
(размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник.
Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью.

Индуктивность — физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду.
Также индуктивность можно рассчитать по формуле:

где Ф — магнитный поток через контур, I — сила тока в контуре.

Единицы измерения индуктивности в системе СИ:

Индуктивность катушки зависит от:
числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды
(возможен сердечник).

ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.

Вокруг проводника с током существует магнитное поле, которое обладает энергией.
Откуда она берется? Источник тока, включенный в эл. цепь, обладает запасом энергии.
В момент замыкания эл. цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля.

Энергия магнитного поля равна собственной энергии тока.
Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока.
Куда пропадает энергия магнитного поля после прекращения тока? — выделяется (при размыкании цепи с достаточно большой силой тока возможно возникновение искры или дуги)

ВОПРОСЫ К ПРОВЕРОЧНОЙ РАБОТЕ
по теме «Электромагнитная индукция»

1. Перечислить 6 способов получения индукционного тока.
2. Явление электромагнитной индукции (определение).
3. Правило Ленца.
4. Магнитный поток (определение, чертеж, формула, входящие величины, их ед. измерения).
5. Закон электромагнитной индукции (определение, формула).
6. Свойства вихревого электрического поля.
7. ЭДС индукции проводника, движущегося в однородном магнитном поле (причина появления, чертеж, формула, входящие величины, их ед. измерения).
7. Самоиндукция (кратко проявление в электротехнике, определение).
8. ЭДС самоиндукции (ее действие и формула).
9. Индуктивность (определение, формулы, ед. измерения).
10. Энергия магнитного поля тока (формула, откуда появляется энергия м. поля тока, куда пропадает при прекращении тока).

При изменении тока в контуре меняется поток магнитной индукции через поверхность , ограниченную этим контуром, изменение потока магнитной индукции приводит к возбуждению ЭДС самоиндукции. Направление ЭДС оказывается таким, что при увеличении тока в цепи эдс препятствует возрастанию тока, а при уменьшении тока — убыванию.

Величина ЭДС пропорциональна скорости изменения силы тока I и индуктивности контура L :

За счёт явления самоиндукции в электрической цепи с источником ЭДС при замыкании цепи ток устанавливается не мгновенно, а через какое-то время. Аналогичные процессы происходят и при размыкании цепи , при этом величина ЭДС самоиндукции может значительно превышать ЭДС источника. Чаще всего в обычной жизни это используется в катушках зажигания автомобилей. Типичное напряжение самоиндукции при напряжении питающей батареи 12В составляет 7-25кВ.

Wikimedia Foundation . 2010 .

Смотреть что такое «ЭДС самоиндукции» в других словарях:

эдс самоиндукции — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN self induced emfFaraday voltageinductance voltageself induction… …

Это явление возникновения ЭДС индукции в проводящем контуре при изменении протекающего через контур тока. При изменении тока в контуре пропорционально меняется и магнитный поток через поверхность, ограниченную этим контуром. Изменение… … Википедия

— (от лат. inductio наведение, побуждение), величина, характеризующая магн. св ва электрич. цепи. Ток, текущий в проводящем контуре, создаёт в окружающем пр ве магн. поле, причём магнитный поток Ф, пронизывающий контур (сцепленный с ним), прямо… … Физическая энциклопедия

реактивная мощность — Величина, равная при синусоидальных электрическом токе и электрическом напряжении произведению действующего значения напряжения на действующее значение тока и на синус сдвига фаз между напряжением и током двухполюсника. [ГОСТ Р 52002 2003]… … Справочник технического переводчика

Раздел физики, охватывающий знания о статическом электричестве, электрических токах и магнитных явлениях. ЭЛЕКТРОСТАТИКА В электростатике рассматриваются явления, связанные с покоящимися электрическими зарядами. Наличие сил, действующих между… … Энциклопедия Кольера

Электрический машина, не имеющая подвижных частей и преобразующая переменный ток одного напряжения в переменный ток другого напряжения. В простейшем случае состоит из магнитопровода (сердечника) и расположенных на нём двух обмоток первичной и… … Энциклопедический словарь

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *