Гамма-излучение
Гамма-излучение – это электромагнитное излучение с очень короткой длиной волны, менее 0,1 нм (1 А), испускаемое возбужденными атомными ядрами при радиоактивных превращениях и ядерных реакциях (взрывах), а также возникающее при торможении заряженных частиц в веществе, их распаде, при аннигиляции пар «частица-античастица», при прохождении быстрых заряженных частиц через вещество, в лазерных пучках света, в межзвездном пространстве.
Основными источниками Г.и. служат естественные и искусственные радиоактивные изотопы радия, кобальта, цезия и др. химических элементов. Гамма-лучи (γ-лучи) принято рассматривать как поток частиц — γ-квантов, а не электромагнитных волн, т.к. волновые свойства заметно проявляются лишь у самых длинноволновых гамма-лучей, корпускулярные же их свойства выражены достаточно отчетливо. Г.и. не отклоняется в магнитном поле и, следовательно, не имеет электрического заряда. Оно идентифицировано как жесткое (т.е. имеющее очень высокую энергию) электромагнитное излучение. Г.и. испускается при переходах ядра из более возбужденного энергетического состояния в менее возбужденное или основное.
Энергия γ-кванта равна разнице энергий состояний, между которыми происходит переход. Испускание ядром γ-кванта не влечет за собой изменения атомного номера или массового числа, в отличие от др. радиоактивных излучений (α-, β-распадов). Г.и. обладает большей проникающей способностью, чем альфа и бета-излучение, т.е. может проходить через большие толщины вещества без заметного ослабления. Основные процессы, происходящие при взаимодействии Г.и. с веществом — фотоэлектрическое поглощение (фотоэффект), комптоновское рассеяние (Комптон-эффект) и образование пар «электрон-позитрон». Действие Г.и. на организм аналогично действию др. ионизирующих излучений, вызывает в зависимости от дозы лучевое поражение вплоть до гибели. Характер воздействия Г.и. зависит от энергии γ-квантов и пространственных особенностей излучения (внутреннее, внешнее). Повреждения организма радиоактивными излучениями могут носить наследственный характер. Воздействие Г.и. на растения, животных и микроорганизмы может вызывать образование мутаций. Относительная биологическая эффективность Г.и. составляет 0,7—0,9 от эффективности жесткого рентгеновского излучения, принятого равной 1. Предупреждение опасного воздействия Г.и. достигается снижением риска аварий на радиационноопасном объекте с выбросом радиоактивных веществ, построением защитных систем от ионизирующих излучений естественного и искусственного происхождения, регламентацией интенсивности и доз облучения, проведением реабилитационно-восстановительных процедур. Ликвидация последствий аварий и катастроф с источниками ионизирующих излучений (в т.ч. Г.и.) — одна из самых сложных задач специальных и общих служб ликвидации чрезвычайных ситуаций.
Источник: Гражданская защита: Энциклопедия в 4 томах. Том I (А–И); под общей редакцией С.К. Шойгу; МЧС России. – М.: Московская типография № 2, 2006.
Гамма излучение доклад по физике 9 класс кратко
Гамма-излучение (γ-излучение) – электромагнитное излучение, принадлежащее наиболее высокочастотной (коротковолновой) части спектра электромагнитных волн. Приведем классификацию электромагнитных волн:
Название | Длина волны, м | Частота, Гц |
---|---|---|
радиоволны | 3·10 5 — 3 | 10 3 — 10 8 |
микроволны | 3 — 3·10 -3 | 10 8 — 10 11 |
инфракрасное излучение | 3·10 -3 — 8·10 -7 | 10 11 — 4 . 10 14 |
видимый свет | 8·10 -7 — 4·10 -7 | 4·10 14 — 8·10 14 |
ультрафиолетовое излучение | 4·10 -7 — 3·10 -9 | 8·10 14 — 10 17 |
рентгеновское излучение | 3·10 -9 — 10 -10 | 10 17 — 3·10 18 |
гамма-излучение | < 10 -10 | > 3·10 18 |
На шкале электромагнитных волн гамма-излучение соседствует с рентгеновскими лучами, но имеет более короткую длину волны. Первоначально термин “гамма-излучение” относился к тому типу излучения радиоактивных ядер, который не отклонялся при прохождении через магнитное поле, в отличие от α- и β-излучений.
Условно верхней границей длин волн гамма-излучения, отделяющей его от рентгеновского излучения, можно считать величину 10 -10 м. При столь малых длинах волн первостепенное значение имеют корпускулярные свойства излучения. Гамма-излучение представляет собой поток частиц — гамма-квантов или фотонов, с энергиями Е = hν (h – постоянная Планка, равная 4.14·10 -15 эВ . сек, ν – частота электромагнитных колебаний). Фотоны с энергиями Е > 10 кэВ относят к гамма-квантам. Между длиной волны λ гамма-излучения и его частотой ν существует то же соотношение, что и для других типов электромагнитных волн:
ν·λ = с (с – скорость света).
Частота гамма-излучения (> 3·10 18 Гц) отвечает скоростям электромагнитных процессов, протекающих внутри атомных ядер и с участием элементарных частиц. Поэтому источниками гамма-излучения могут быть атомные ядра и частицы, а также ядерные реакции и реакции между частицами, в частности аннигиляция пар частица-античастица. И наоборот, гамма-излучение может поглощаться атомными ядрами и способно вызывать превращения частиц. Изучение спектров ядерного гамма-излучения и гамма-излучения, возникающего в процессах взаимодействия частиц, дает важную информацию о структуре этих микрообъектов.
Гамма-излучение может также возникать при торможении быстрых заряженных частиц в среде (тормозное гамма-излучение) или при их движении в сильных магнитных полях (синхротронное излучение).
Источниками гамма-излучения являются также процессы в космическом пространстве. Космические гамма-лучи приходят от пульсаров, радиогалактик, квазаров, сверхновых звёзд.
Гамма-излучение ядер испускается при переходах ядра из состояния с большей энергией в состояние с меньшей энергией, и энергия испускаемого гамма-кванта с точностью до незначительной энергии отдачи ядра равна разности энергий этих состояний (уровней) ядра. Энергия ядерного гамма-излучения обычно лежит в интервале от нескольких кэВ до нескольких МэВ и спектр этого излучения линейчатый, т. е. состоит из ряда дискретных линий. Изучение спектров ядерного гамма-излучения позволяет определить энергии состояний (уровней) ядра.
При распадах частиц и реакциях с их участием обычно испускаются гамма-кванты с бoльшими энергиями — десятки-сотни МэВ.
Гамма-излучение, образующееся при прохождении быстрых заряженных частиц через вещество, вызывается их торможением в кулоновском поле ядер вещества. Тормозное гамма-излучение имеет сплошной, спадающий с ростом энергии спектр, верхняя граница которого совпадает с кинетической энергией заряженной частицы. На ускорителях заряженных частиц получают тормозное гамма-излучение с энергиями до нескольких десятков ГэВ и более.
Гамма-излучение можно получить при соударении электронов большой энергии от ускорителей с интенсивными пучками видимого света, создаваемых лазерами. При этом электрон передает свою энергию световому фотону, который превращается в гамма-квант. Аналогичное явление может иметь место и в космическом пространстве в результате соударений фотонов с большой длиной волны с быстрыми электронами, ускоренными электромагнитными полями космических объектов.
Гамма-излучение обладает большой проникающей способностью, т. е. может проходить сквозь большие толщи вещества. Интенсивность узкого пучка моноэнергетических гамма-квантов падает экспоненциально с ростом проходимого им в веществе расстояния. Основные процессы взаимодействия гамма-излучения с веществом — фотоэлектрическое поглощение (фотоэффект), комптоновское рассеяние (комптон-эффект) и образование пар электрон-позитрон. При фотоэффекте гамма-квант выбивает из атома один из его электронов, а сам исчезает. При комптон-эффекте гамма-квант рассеивается на одном из слабо связанных с атомом или свободных электронов вещества. Если энергия гамма-кванта превышает 1.02 МэВ, то возможно его превращение в электрическом поле ядер в пару электрон-позитрон (процесс обратный аннигиляции).
Рис. Зависимость полного коэффициента поглощения гамма-излучения в свинце и алюминии от энергии (сплошные линии). Поглощение за счёт фотоэффекта в алюминии пренебрежимо мало при рассматриваемых энергиях. Пунктирные линии − отдельные вклады, вносимые в полный коэффициент поглощения фотоэффектом, комптоновским рассеянием, рождением пар для свинца.
Гамма-излучение используется в технике (напр., дефектоскопия), радиационной химии (для инициирования химических превращений, напр., при полимеризации), сельском хозяйстве и пищевой промышленности (мутации для генерации хозяйственно-полезных форм, стерилизация продуктов), в медицине (стерилизация помещений, предметов, лучевая терапия) и др.
Гамма-излучение, виды, свойства и применение
«Гамма-излучение — это разновидность электромагнитного излучения, которое характеризуется очень высокой энергией и длиной волны. Оно возникает в результате ядерных реакций и распада радиоактивных элементов. «
Содержание:
2. Виды гамма-излучения
Открытие гамма-излучения
Это одно из самых важных открытий в истории физики. В 1865 году немецкий физик Вильгельм Конрад Рентген обнаружил, что некоторые вещества испускают невидимые лучи, которые могут проникать через непрозрачные материалы. Эти лучи были названы рентгеновскими лучами, в честь немецкого физика Рентгена.
Открытие рентгеновских лучей стало настоящим прорывом в науке, поскольку они позволили ученым изучать структуру атомов и молекул. Оно нашло применение в медицине, где они используются для диагностики различных заболеваний.
В 1900 году, когда немецкий физик Макс фон Лауэ обнаружил, что при прохождении рентгеновских лучей через кристаллы, они вызывают рассеяние, которое можно наблюдать с помощью дифракции.
Это открытие привело к пониманию того, что рентгеновские лучи являются электромагнитными волнами и что существует еще один тип электромагнитного излучения, который не виден глазу, но может быть обнаружен с помощью специальных приборов.
В 1914 году, американский физик Пьер Кюри и его ассистент Гамильтон использовали специальный прибор, называемый гамма-спектрометром, для обнаружения гамма-лучей от радиоактивных источников.
Ученые обнаружили, что гамма-лучи имеют высокую энергию и обладают высокой проникающей способностью, и что они могут быть использованы для изучения свойств радиоактивных элементов.
Однако, открытие рентгеновских лучей было не единственным достижением в области физики. В 1932 году английский физик Джеймс Чедвик открыл нейтрон, который является частицей, не имеющей электрического заряда. Нейтроны также играют важную роль в ядерной физике и используются для изучения строения атомных ядер.
Таким образом, открытие гамма-излучения и рентгеновских лучей является одним из ключевых моментов в развитии физики и других наук. Эти открытия позволили ученым лучше понимать структуру материи и использовать их для решения различных задач в науке и технике.
Виды гамма-излучения
Гамма-излучения имеют длину волны в диапазоне от 10^ до 10^ метров и могут быть обнаружены с помощью специальных детекторов. В зависимости от источника гамма-излучение может иметь различные свойства и применяться в различных областях науки и техники.
- Гамма-лучи низкой энергии (0,1-1 МэВ) используются для изучения структуры атомов и молекул с помощью гамма-резонансной спектроскопии.
- Средней энергии (1-10 МэВ) применяются в медицине для диагностики и лечения онкологических заболеваний, а также для радиотерапии.
- Высокой энергии (более 10 МэВ) могут использоваться в научных исследованиях для изучения свойств материалов и создания источников энергии.
- Очень высокой энергии (десятки и сотни МэВ) могут создавать космические лучи, которые проникают в атмосферу Земли и могут вызывать ядерные реакции в верхних слоях атмосферы.
- Гамма-радиация может быть использована для обнаружения ядерных материалов и радиоактивных веществ в окружающей среде.
- Гамма-излучением высокой интенсивности можно создавать лазеры на основе атомов, что может привести к созданию новых технологий в области оптики и квантовых вычислений.
- Гамма-кванты могут быть использованы для создания гамма-лазеров, которые могут работать на длине волны порядка нанометра и иметь высокую мощность.
Свойства гамма-излучения
Высокая энергия
Фотон гамма-излучения имеет энергию, которая гораздо больше, чем энергия фотонов других видов излучения. Эта энергия измеряется в единицах, называемых электрон-вольтами (эВ). Один эВ равен энергии, которую получает электрон, когда он ускоряется до скорости один метр в секунду. Гамма-излучение способно проникать через большинство материалов, включая кости, мышцы и ткани организма.
Ионизация
Гамма-кванты обладают высокой энергией, что означает, что они могут ионизировать атомы в веществе, которое они проходят. Это может привести к образованию свободных радикалов, которые могут повредить клетки и ткани.
Невидимость
Излучение невидимо для человеческого глаза, поэтому не может быть обнаружено визуально. Однако, может зафиксировано с помощью специальных детекторов.
Длина волны
Короткая длина волны — 10^-14 м, что позволяет проникать глубоко в ткани и органы. Это делает гамма-излучение полезным для диагностики заболеваний, связанных с изменениями в тканях и органах.
Воздействие на клетки
Гамма-излучение может повреждать клетки, что может привести к различным заболеваниям, таким как рак. Однако, при правильном использовании, гамма-лучи могут быть использованы для лечения рака и других заболеваний.
Источники гамма-излучения
Вот несколько основных источников гамма-излучения:
- Солнечные вспышки: могут вызвать образование гамма-лучей в результате взаимодействия магнитных полей Солнца с частицами в атмосфере Земли.
- Радиационное излучение: ядерные реакторы или ускорители частиц, могут производить гамма-излучение в процессе своей работы.
- Радиоактивные материалы: напрмер, уран, торий и плутоний, могут излучать гамма-лучи при распаде своих ядер.
- Космические лучи: такие как протоны, нейтроны и другие заряженные частицы, могут попасть на Землю и вызвать образование гамма-лучей при взаимодействии с атмосферой.
- Атомные бомбы: при ядерных взрывах образуются гамма-лучи в результате ядерного деления или синтеза.
- Рентгеновские аппараты: могут производить небольшое количество гамма-излучения при работе.
- Другие источники: например, космические объекты, такие как черные дыры, и солнечные вспышки.
Доза гамма-излучения
Доза гамма-излучения (Гр) — это единица измерения, используемая для выражения количества энергии, поглощенной телом в результате воздействия гамма-излучения. Единица измерения Гр является международной и используется во многих странах мира.
Гр измеряется в джоулях на килограмм (Дж/кг). Для расчета дозы необходимо знать мощность дозы (Вт/кг), продолжительность воздействия излучения (с) и массу тела (кг). Формула для расчета дозы выглядит следующим образом:
D = P * t * m
- P — мощность дозы в Вт/кг
- t — продолжительность воздействия в секундах
- m — масса тела в килограммах
Например, если человек массой 70 кг находится в зоне с мощностью дозы 1 Вт/кг в течение 1 часа, то его доза будет равна:
D = 1 Вт/кг * 1 ч * 70 кг = 70 Дж/кг = 0,07 Гр
Таким образом, доза гамма-излучения зависит от мощности дозы, продолжительности воздействия и массы тела. При работе с источниками радиоактивного излучения необходимо учитывать дозу и принимать меры для ее снижения.
Применение гамма-излучения
Широкий спектр применения в различных областях, включая медицину, науку, промышленность и безопасность. Ниже представлены некоторые из наиболее распространенных способов использования гамма-излучения:
- Медицина: часто используется для диагностики и лечения различных заболеваний. Например, оно может применяться для обнаружения рака, исследования внутренних органов, лечения опухолей и даже для улучшения иммунной системы
- Наука: используется для изучения свойств ядер и атомных реакций, а также для исследования радиоактивных изотопов. Кроме того, гамма-излучение можно применять для создания рентгеновских снимков и других исследований в области медицины и физики.
- Производство: применятся в производстве для обработки различных материалов, таких как металлы, керамика и пластмассы. Оно может применяться для улучшения свойств материала, например, увеличения прочности или улучшения качества поверхности.
- Безопасность: гамма-излучение важно для обеспечения безопасности на атомных электростанциях, рентгеновских лабораториях, радиологических отделениях и других местах с высоким уровнем радиации. Оно используется для обнаружения радиационных опасностей и контроля уровня радиации.
- Астрофизика: используется в астрофизике для изучения космических объектов и процессов. Например, с помощью гамма-излучения можно исследовать черные дыры, нейтронные звезды и другие космические объекты.
Это лишь некоторые из множества способов использования гамма-излучения. Оно играет важную роль во многих областях науки и технологий, и его применение продолжает расширяться.
Гамма-излучение
Открыто в 1910 г. Генри Брэггом. Электромагнитная природа доказана в 1914 г. Эрнестом Резерфордом.
Это самый широкий диапазон электромагнитного спектра, поскольку он не ограничен со стороны высоких энергий. Мягкое гамма-излучение образуется при энергетических переходах внутри атомных ядер, более жесткое — при ядерных реакциях. Гамма-кванты легко разрушают молекулы, в том числе биологические, но, к счастью, не проходят через атмосферу. Наблюдать их можно только из космоса.
Гамма-кванты сверхвысоких энергий рождаются при столкновении заряженных частиц, разогнанных мощными электромагнитными полями космических объектов или земных ускорителей элементарных частиц. В атмосфере они крушат ядра атомов, порождая каскады частиц, летящих с околосветовой скоростью. При торможении эти частицы испускают свет, который наблюдают специальными телескопами на Земле.
При энергии свыше 10 14 эВ лавины частиц прорываются до поверхности Земли. Их регистрируют сцинтилляционными датчиками. Где и как образуются гамма-лучи ультравысоких энергий, пока не вполне ясно. Земным технологиям такие энергии недоступны. Самые энергичные кванты — 10 20 –10 21 эВ, приходят из космоса крайне редко — примерно один квант в 100 лет на квадратный километр.
Источники
Остаток вспышки сверхновой звезды в гамма-лучах сверхвысоких энергий
Изображение получено в 2005 году гамма-телескопом HESS. Оно стало подтверждением того, что остатки сверхновых служат источниками космических лучей — энергичных заряженных частиц, которые, взаимодействуя с веществом, порождают гамма-излучение (см. Схема генерации гамма-излучения). Ускорение частиц, по всей видимости, обеспечивается мощным электромагнитным полем компактного объекта — нейтронной звезды, которая образуется на месте взорвавшейся сверхновой.
Схема генерации гамма-излучения
Столкновения энергичных заряженных частиц космических лучей с ядрами атомов межзвездной среды порождают каскады других частиц, а также гамма-квантов. Этот процесс аналогичен каскадам частиц в земной атмосфере, которые возникают под воздействием космических лучей (см. Схема телескопа для гамма-излучения сверхвысоких энергий). Происхождение космических лучей с самыми высокими энергиями еще изучается, но уже есть данные, что они могут генерироваться в остатках сверхновых звезд.
Аккреционный диск вокруг сверхмассивной черной дыры (рис. художника)
В ходе эволюции крупных галактик в их центрах образуются сверхмассивные черные дыры, массой от нескольких миллионов до миллиардов масс Солнца. Они растут за счет аккреции (падения) межзвездного вещества и даже целых звезд на черную дыру.
При интенсивной аккреции вокруг черной дыры образуется быстро вращающийся диск (из-за сохранения момента вращения падающего на дыру вещества). Из-за вязкого трения слоев, вращающихся с разной скоростью, он всё время разогревается и начинает излучать в рентгеновском диапазоне.
Часть вещества при аккреции может выбрасываться в виде струй (джетов) вдоль оси вращающегося диска. Этот механизм обеспечивает активность ядер галактик и квазаров. В ядре нашей Галактики (Млечного Пути) также располагается черная дыра. В настоящее время ее активность минимальна, однако по некоторым признакам около 300 лет назад она была значительно выше.
Приемники
Гамма-телескоп сверхвысоких энергий HESS
Расположен в Намибии, состоит из 4 параболических тарелок диаметром 12 метров, размещенных на площадке размером 250 метров. На каждой из них закреплено 382 круглых зеркала диаметром 60 см, которые концентрируют тормозное излучение, возникающее при движении энергичных частиц в атмосфере (см. схему телескопа).
Телескоп начал работать в 2002 году. Он в равной мере может использоваться для регистрации энергичных гамма-квантов и заряженных частиц — космических лучей. Одним из главных его результатов стало прямое подтверждение давнего предположения о том, что остатки вспышек сверхновых звезд являются источниками космических лучей.
Схема телескопа для гамма-излучения сверхвысоких энергий
Когда энергичный гамма-квант входит в атмосферу, он сталкивается с ядром одного из атомов и разрушает его. При этом порождается несколько обломков атомного ядра и гамма-квантов меньшей энергии, которые по закону сохранения импульса движутся почти в том же направлении, что и исходный гамма-квант. Эти обломки и кванты вскоре сталкиваются с другими ядрами, образуя в атмосфере лавину частиц.
Большинство этих частиц имеет скорость, превышающую скорость света в воздухе. Вследствие этого частицы испускают тормозное излучение, которое достигает поверхности Земли и может регистрироваться оптическими и ультрафиолетовыми телескопами. Фактически сама земная атмосфера служит элементом гамма-телескопа. Для гамма-квантов сверхвысоких энергий расходимость пучка, достигающего поверхности Земли, составляет около 1 градуса. Этим определяется разрешающая способность телескопа.
При еще более высокой энергии гамма-квантов до поверхности доходит сама лавина частиц — широкий атмосферный ливень (ШАЛ). Их регистрируют сцинтилляционными датчиками. В Аргентине сейчас строится обсерватория имени Пьера Оже (в честь первооткрывателя ШАЛ) для наблюдения гамма-излучения и космических лучей ультравысоких энергий. Он будет включать несколько тысяч цистерн с дистиллированной водой. Установленные в них ФЭУ будут следить за вспышками, происходящими в воде под воздействием энергичных частиц ШАЛ.
Гамма-обсерватория INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory)
Орбитальная обсерватория, работающая в диапазоне от жесткого рентгена до мягкого гамма-излучения (от 15 кэВ до 10 МэВ), была выведена на орбиту с космодрома Байконур в 2002 году. Обсерватория построена Европейским космическим агентством (ESA) при участии России и США. В конструкции станции использована такая же платформа, как и в ранее запущенной (1999) европейской рентгеновской обсерватории XMM-Newton.
Фотоэлектронный умножитель (ФЭУ)
Электронное устройство для измерения слабых потоков видимого и ультрафиолетового излучения. ФЭУ представляет собой электронную лампу с фотокатодом и набором электродов, к которым приложено последовательно возрастающее напряжение с суммарным перепадом до нескольких киловольт.
Кванты излучения падают на фотокатод и выбивают из него электроны, которые движутся к первому электроду, образуя слабый фотоэлектрический ток. Однако по пути электроны ускоряются приложенным напряжением и выбивают из электрода значительно большее число электронов. Так повторяется несколько раз — по числу электродов. В итоге поток электронов, пришедший от последнего электрода к аноду, увеличивается на несколько порядков по сравнению с первоначальным фотоэлектрическим током. Это позволяет регистрировать очень слабые световые потоки, вплоть до отдельных квантов.
Важная особенность ФЭУ — быстрота срабатывания. Это позволяет использовать их для регистрации скоротечных явлений, таких как вспышки, возникающие в сцинтилляторе при поглощении энергичной заряженной частицы или кванта.
Матрица ФЭУ
Отдельный ФЭУ имеет очень небольшую площадь фотокатода и регистрирует только те кванты, которые движутся в его направлении. Чтобы повысить эффективность регистрации, вокруг объема сцинтиллятора размещают большое число ФЭУ, связанных в единую систему. Матрицы ФЭУ также применяют для регистрации частиц широких атмосферных ливней и в нейтринных телескопах.
Обзоры неба
Небо в гамма-лучах с энергией 100 МэВ (CGRO)
Обзор в диапазоне жесткого гамма-излучения выполнен космической гамма-обсерваторией «Комптон» (Compton Gamma Ray Observatory, CGRO), которая была запущена по программе NASA «Великие обсерватории» и с 1991 по 2000 год вела наблюдения в диапазоне от 20 кэВ до 30 ГэВ, то есть от жесткого рентгена до жесткого гамма-излучения.
На карте отчетливо видна плоскость Галактики, где излучение формируется в основном остатками сверхновых. Яркие источники вдали от плоскости Галактики имеют в основном внегалактическое происхождение.
Небо в гамма-лучах с энергией 1,8 МэВ (CGRO-COMPTEL)
Этот обзор в диапазоне мягкого гамма-излучения также выполнен обсерваторией «Комптон» (см. Небо в гамма-лучах с энергией 100 МэВ), а точнее установленным на ней телескопом COMPTEL.
Источники также концентрируются к плоскости Галактики. В основном это компактные объекты.