30. Конструктивные схемы каменных зданий и особенности их расчета
В зависимости от конструктивной схемы здания каменные стены делятся на: несущие, воспринимающие кроме нагрузок от собственного веса нагрузки от покрытий, перекрытий, кранов и т. п.; самонесущие, воспринимающие нагрузку только от собственного веса стен всех этажей здания и ветровую нагрузку; ненесущие (в том числе навесные), воспринимающие только нагрузку от собственного веса и ветра в пределах одного этажа или одной панели каркасных зданий при высоте этажа не более 6 м; при большей высоте этажа стены этого типа относятся к самонесущим.
По степени пространственной жесткости различают здания с жесткой конструктивной схемой и здания с упругой конструктивной схемой.
Конструктивная схема определяется расстоянием lст между поперечными вертикальными устойчивыми конструкциями и жесткостью (неподвижностью) горизонтальных опор.
К зданиям с жесткой конструктивной схемой относятся в большинстве случаев гражданские здания, в которых при расчете на горизонтальные нагрузки, внецентренное и центральное сжатие несущие каменные стены и столбы рассчитывают как вертикальные балки, опирающиеся в горизонтальном направлении на жесткие опоры (покрытия и междуэтажные перекрытия) при расстоянии между поперечными устойчивыми конструкциями.
Жесткими (неподвижными) горизонтальными опорами могут служить пояса, фермы, связи и железобетонные обвязки, рассчитанные по прочности и по деформациям на восприятие горизонтальной (ветровой) нагрузки, передающейся от стен.
Жесткими вертикальными опорами являются поперечные устойчивые конструкции (каменные и бетонные стены толщиной не менее 12 см, железобетонные — толщиной не менее 6 см, контрфорсы, поперечные рамы с жесткими узлами и другие конструкции, рассчитанные на восприятие горизонтальной нагрузки от примыкающих к ним стен).
Расчет на внецентренное сжатие и изгиб из плоскости. В зданиях с жесткой конструктивной схемой стены и столбы рассчитывают на вертикальные и горизонтальные ветровые нагрузки с учетом их возможного сочетания как вертикальные неразрезные многопролетные балки, опертые на неподвижные опоры — перекрытия (рис. 72, а). Нагрузки в пределах рассматриваемого этажа считаются приложенными с фактическими эксцентриситетами относительно центра тяжести сечения стены или столба с учетом изменения сечения стены в пределах этажа и ослабления горизонтальными и наклонными бороздами.
Изгибающие моменты учитываются от вертикальных и горизонтальных (ветровых) нагрузок, приложенных в пределах рассматриваемого этажа, а также от вертикальных нагрузок вышерасположенных этажей, если сечение стены изменяется в уровне перекрытий над данным этажом или в пределах рассчитываемого этажа.
Основные расчетные формулы для определения в сечении стен (столбов) нормальных сил и изгибающих моментов при принятой (рис. 72, б) расчетной схеме от вертикальных нагрузок приведены в табл.20.
Изгибающие моменты в сечении наружной стены от горизонтальной ветровой нагрузки (рис. 72, в) определяются в пределах каждого этажа (за исключением верхнего) как для балки с заделанными концами по формуле
где q — ветровая равномерно распределенная в пределах рассматриваемого этажа нагрузка, приходящаяся на 1 м высоты стены; Hэт — высота этажа (пролет балки). Для верхнего этажа верхнюю опору балки считают шарнирной.
Расчет стен или столбов обычно начинают с верхнего этажа. При определении усилий, действующих на стену в пределах рассматриваемого этажа, учитывают: расчетное опорное давление перекрытия над рассматриваемым этажом Р1, приложенное в уровне низа этого перекрытия с эксцентриситетом е1 относительно центра тяжести сечения стены; сумму всех расчетных нагрузок N на стену, расположенных выше рассматриваемого этажа, с включением продольного усилия от действия ветровой нагрузки (если она учитывается в расчете), приложенную в уровне низа перекрытия над рассматриваемым этажом с эксцентриситетом е2 относительно центра тяжести сечения стены; расчетный собственный вес участка стены между рассматриваемым сечением и первым расположенным выше этажом Рс.в, приложенный в центре тяжести этого участка стены (см. рис. 73 и табл. 20).
Изгибающие моменты М в рассчитываемых сечениях стены изменяются от максимального значения на уровне низа верхнего перекрытия до нуля на уровне низа нижнего перекрытия и определяются по принятой статической схеме (рис. 72, б).
Несущая способность стены в пределах этажа должна определяться для сечения под балкой (прогоном) верхнего перекрытия, где изгибающий момент обычно наибольший, а влияние продольного изгиба не сказывается — в этом сечении, как опорном, коэффициент продольного изгиба равен 1.
При статическом расчете каменных стен и столбов зданий с упругой конструктивной схемой выделяют один ряд поперечных конструкций между средними осями пролетов зданий и рассматривают рамную систему. Стойками рамы являются стены и столбы, которые принимаются заделанными в грунт в уровне пола здания (при наличии бетонного подстилающего слоя под полы и отмостки), а конструкция покрытия (ферма, прогон) —ригелем, шарнирно связанным со стойками (рис. 77).
Стены и столбы зданий с упругой конструктивной схемой рассчитывают с учетом разных условий их работы, соответствующих двум стадиям готовности здания.
В первой стадии, когда стены и столбы возведены, а перекрытия или покрытия еще не установлены, расчет выполняется с целью определения необходимости установки временных креплений, чтобы не увеличивать сечений стен и столбов сверх требуемых для законченного здания. При этом изгибающие моменты М и продольные силы N в опасных сечениях определяют, как для консольных стоек, заделанных в грунт, на которые действуют собственный вес, ветровые нагрузки, вес некоторых видов -оборудования (рис. 78,a).
Опасными сечениями обычно являются верхние и нижние сечения каждой ступени стойки сечения (/—/, //—//, ///—/// стен, конструкция которых показана на рис. 78, а). При действии собственного веса и равномерно распределенной ветровой нагрузки изгибающие моменты и продольные силы в опасных сечениях определяются по формулам:
в сечениях I—I и //—//
где QH и QП — соответственно вес надкрановой (выше сечения II—II) и подкрановой (между сечениями Ш—/// и //—//) части стены; h3 и Н — соответственно высота надкрановой части стены и всей стены; е — расстояние между центрами тяжести верхнего и нижнего сечений стойки; q — ветровая нагрузка (напор или отсос) на 1 погонный метр стоек поперечной рамы, собранная с ширины стены, равной шагу поперечных конструкций.
Ветровую нагрузку q принимают равномерно распределенной для стоек высотой до 10 м.
Подсчитав для каждого сечения продольную силу и изгибающий момент от всех нагрузок, определяют суммарные усилия М и N, опасные для прочности рассматриваемого сечения, т. е. составляют основные или особые сочетания следующих усилий:
1) наибольший положительный момент Ммакс и соответствующее ему продольное усилие NCOOТ;
2) наибольший отрицательный момент ММин и соответствующее ему значение NCooт,
3)наибольшая нормальная сила Nмакс и соответствующее ей значение МСООт.
Получив в сечении момент и соответствующую этому моменту нормальную силу в зависимости от эксцентриситета е0, проверяют его несущую способность, учитывая длительное действие нагрузки.
Заметки инженера-строителя
Блог проектировщика
По виду конструктивной схемы (гибкая/жесткая) здания и сооружения условно подразделяются на:
— абсолютно жесткие сооружения
Абсолютно жесткие сооружения обладают такой вертикальной жесткостью, при которой они не изгибаются при приложении нагрузок, а дают осадку как единый массив, и плоская подошва такого сооружения после деформации основания остается плоской, возможны лишь вертикальные оседания и наклон сооружений.
Осадка таких сооружений может быть равномерной, оцениваемой размерами абсолютной осадки или неравномерной, оцениваемой средней осадкой и креном сооружения в одном или в двух направлениях.
Равномерной осадка абсолютно жесткого сооружения будет при симметричной нагрузке и однородном основании или слоистом основании с согласным залеганием пластов (согласованном напластовании). При этом фундамент встретит значительное сопротивление от грунта в краевых зонах, т.е. возникнет более интенсивное давление на этих участках.
В слоистом основании с выклинивающимися слоями различной сжимаемости внецентренно приложенная нагрузка может увеличить или уменьшить крен.
При не симметричном залегании грунтов и/или нагружении соседних площадей, вследствие перераспределения контактных напряжений (давлений) по подошве фундамента и возникновения дополнительных усилий, возможны крены жестких сооружений. В конструкциях таких сооружений возможны и деформации — косые трещины в углах (В углах возникают относительно большие напряжения).
При прочих равных условиях, чем жёстче сооружение, тем больше отличия в его деформации от деформаций основания (меньше следуют вслед за ними) и тем большие усилия в нём возникают при осадке.
Примеры зданий и сооружений с жесткой конструктивной схемой:
Сооружения типа башен (водонапорные башни со сплошными стволами), силосных корпусов (силосы), дымовых труб, домен (доменные печи), элеваторы, массивные мостовые опоры, здания панельные, блочные и кирпичные, в которых междуэтажные перекрытия опираются по всему контуру на поперечные и продольные стены или только на поперечные несущие стены при малом их шаге, сооружения, конструкции которых специально приспособлены к восприятию усилий от деформации основания и др.
— сооружения конечной жесткости
Сооружения конечной жесткости в процессе развития неравномерных деформаций получают искривления.
При расчете сооружений конечной жесткости учитывается не только жесткость фундамента, но и всего сооружения в целом. Для сооружений конечной жесткости приходится регламентировать не только величины осадок, но и их неравномерность, так как при неравномерных осадках в несущих конструкциях данного класса сооружений возникают дополнительные усилия, которые могут нарушить их прочность.
Относительно жесткие сооружения, деформируясь вместе с основаниями, оказывают влияние на величину осадок и частично их выравнивают. В конструкциях происходит перераспределение напряжений и изменение усилий, действующих на основание.
Подавляющее число сооружений современного строительства обладает конечной жесткостью. Совместную работу основания и сооружения, обладающего конечной жесткостью, возможно учесть, используя схему с упругооседающими опорами.
К относительно жестким сооружениям могут относиться здания и сооружения с несущими стенами и железобетонными перекрытиями, кирпичные, крупноблочные и крупнопанельные здания.
— гибкие сооружения (абсолютно гибкие)
Абсолютно гибкие сооружения, передавая нагрузку на основания, во всех точках контакта с поверхностью, следуют за перемещением (осадкой, деформацией) грунтов основания, которое может быть различным в разных точках основания.
При этом (при таком деформировании) в случае возникновения неравномерных осадок в конструкциях гибких сооружений практически не возникает никаких (значительных) дополнительных усилий (напряжений). Как правило, конструкции таких зданий имеют статически определимую схему.
В «абсолютно» гибких сооружениях нагрузки, передающиеся основанию, считаются неизменными при деформировании основания, и совместная работа основания и сооружения оценивается лишь предельными значениями средних осадок и их неравномерности (относительной разности).
Предельные деформации гибких сооружений назначают исходя из требований нормальной эксплуатации.
Одноэтажные промышленные здания с разрезными балками по колоннам относятся к практически гибким.
Земляные насыпи, дамбы, гибкие днища резервуаров, сооружения со статически определимой схемой несущих конструкций (эстакады с разрезными пролетными строениями), покрытия дорог и аэродромов.
Определение и какие сооружения относятся к гибкой конструктивной схеме здания?
Добрый день, дорогие форумчане.
Подскажите, где в нормах можно найти определение и какие сооружения относятся к гибкой конструктивной схеме здания?
P.S. Есть мачта осветительная, высотой 20, 25 и 30м, при расчете в Фундаменте задаю гибкая конструктивная схема. Но надо для уточнения понимать, где я могу это взять и быть спокойной.
Заранее спасибо, за помощь.
Просмотров: 10096
ТехЛиб СПБ УВТ
В зависимости от вида несущего остова различают две основны конструктивные схемы зданий и сооружений — каркасную и бескаркасную.
Каркасные здания и сооружения делят на полнокаркасные и неполнокаркасные.
В полнокаркасных зданиях все нагрузки передаются на каркас, т. е. на систему связанных между собой вертикальных колонн и горизонтальных балок (ригелей). В этих зданиях колонны каркаса располагают как по периметру наружных стен, так и внутри здания.
Полнокаркасные здания и сооружения проектируют главным образом в случаях, когда имеют место значительные нагрузки (тяжелое технологическое оборудование, мостовые краны). Промышленные здания, как одноэтажные, так и многоэтажные, проектируют преимущественно с полным каркасом.
Рис. 1. Конструктивные схемы каркасных зданий: а — с продольным расположением ригелей; б — то же, с поперечным; в — то же, с перекрестным; г — безригельное решение
В индустриальном строительстве в основном используются железобетонные каркасы, поскольку металлические каркасы имеют ограничения по огнестойкости и теплопроводности. Рассмотрим узлы каркасов, в которых восприятие горизонтальных усилий и общая устойчивость конструктивной системы обеспечиваются рамами двух направлений (рис. 1, в). Указанное обстоятельство требует решения узлов соединения колонны и ригеля (распорной плиты) как жестких, способных воспринимать возникающие в несущей системе опорные моменты ригелей.
Элементы и узлы рамной системы трудно поддаются унификации, что связано со значительным изменением внутренних усилий по высоте каркаса. Вместе с тем рамная система обеспечивает равномерную передачу нагрузок на фундамент и хорошо согласуется с архитектурно-планировочными требованиями.
Элементы рамных каркасов те же, что и связевых (кроме диафрагм жесткости, которые в рамных каркасах не применяются), но у них иное конструктивное решение, связанное с восприятием ригелями значительных опорных моментов и участием колонн в восприятии горизонтальных нагрузок и моментов защемления ригелей. Рамные каркасы применяются для формирования несущей системы зданий различного назначения (торговых, производственных, учебных, лечебных и т. д.), в которых по каким-либо причинам затруднено устройство вертикальных диафрагм жесткости (требуются большие свободные пространства), а также для зданий, строящихся в сейсмических районах (при необходимости иметь относительно гибкую несущую систему, способную воспринимать динамические нагрузки).
Рис. 2. Каркасы с нарезкой на нелинейные элементы: а – типы нелинейных элементов; б – формирование несущего остова сооружения из Н-образных элементов; в – формирование несущей системы из крестообразных элементов
Но видам разрезки на конструктивные элементы рамные каркасы подразделяют на каркасы с нелинейной и линейной разрезкой (разрезка аналогична принятой в связевых каркасах); по типу применяемых сборных железобетонных элементов и способов формирования несущей системы — на предварительно напряженные (в процессе строительства) и ненапряженные; по условиям замоноличивания конструкций — на сборные и сборно-монолитные.
![]() |
![]() |
Рис. 3. Узлы соединения ригелей продольного и поперечного направлений с колонной: а- с плоскими ригелями; б – с ригелями таврового профиля | Рис. 4. Стык крестообразных элементов двух направлений: 1 – крестообразные элементы; 2 – ригеля с перпендикулярным направлением; 3 – настил; 4 – стык крестообразных элементов; 5 – стык крестообразных элементов перпендикулярного направления |
В каркасах с нелинейными элементами последние выполняют высотой в этаж при длине элемента до 12 м. Стыки элементов каркаса решаются с применением сварки арматурных выпусков с последующим замоноличиванием. Каркасы с нелинейной разрезкой собирают из различных по форме элементов, которые образуют поперечные рамы. В продольном направлении рамы соединяют ригелями таврового (высотой 45… 60 см) или прямоугольного поперечного сечения (высотой 25…45 см).
К каркасам с нелинейной разрезкой относятся каркасы из крестообразных элементов, образующих трехпролетные рамы (с пролетами 4,2+4,2+4,2 м) с шагом 6,4 м в продольном направлении, и соединяемые продольными ригелями. Стык стоек крестообразных элементов располагается посередине высоты этажа, а ригелей — в середине пролетов поперечных рам.
Рис.5. Стык колонны с ригелями и панелями вставками для малоэтажного строительства: 1 – колонна; 2 – балка основная; 3 – межколонная панель-вставка
Для зданий малой этажности (до 4 этажей) применяют полносборный рамный каркас линейной разрезки, включающий колонны на всю высоту здания и однопролетные балки. Жесткость каркаса в основном направлении обеспечивается жесткостью узла соединения колонны с, ригелями; в перпендикулярном направлении — конструкцией стыка колонны с межколонной панелью-вставкой или жесткостью стыка колонны с ригелем второго направления.
К каркасам с линейной разрезкой относится также каркас с увеличенным (против аналогичного связевого каркаса) сечением колонн и ригелей, имеющий узел сопряжения основных конструктивных элементов.
Для использования бортоснастки для производства элементов конструктивной системы связевого каркаса для создания рамного (с линейными элементами) применяют жесткий стык ригеля с колонной. В этом узле усилие растяжения воспринимается арматурой из стали класса А-Ш, состоящей из трех пар стержней (диаметром 36 мм), соединяемых при монтаже ванной сваркой.
Рис. 7. Стык ригеля с колонной со сваркой выпусков араматуры и ригеля колонны: 1 – накладная пластина соединения в нижней зоне стыка; 2 – сварной шов; 3 – сварка спаренные арматурных выпусков: 4 – колонна; 5- ригель
Рис. 8. Преднапряженный узел поперечной рамы каркаса: 1 – колонна; 2 – ригель; 3 – напрягаемая арматура; 4 – зона замоноличивания
Для передачи сжимающего усилия от опорного момента к стальным закладным деталям консоли колонны и ригеля приваривают стальные накладки, упирающиеся в торец консоли.
При этом сечение накладок подбирается исходя из предположения, что усилие сжатия передается по центру сечения накладок. В предварительно напряженных каркасах из линейных элементов соединение ригеля с колонной выполняется с помощью «скользящих» стыков (без закладных деталей и выпусков арматуры) путем натяжения (на бетон) арматуры, располагаемой в открытых каналах с последующим их замоноличиванием.
Аналогично осуществляется поперечное соединение панелей перекрытия с помощью арматуры, расположенной поверху конструкции с анкеровкой в середине пролетов.
В зданиях и сооружениях с неполным каркасом (внутренним) все возникающие в них нагрузки передаются на внутренний каркас и наружные стены. Неполный каркас чаще проектируют для жилых и общественных гражданских зданий. В зданиях с полным и неполным каркасом ригели могут иметь продольное, поперечное или перекрестное расположение.
Рис. 9. Конструктивные схемы зданий с неполным каркасом: а — с продольным расположением ригелей; б — то же, с поперечным; в — безригельное решение
В бескаркасных зданиях и сооружениях (рис. 9) все нагрузки от перекрытий и крыши воспринимаются стенами. Несущими могут быть стены: наружные и внутренние, продольные и поперечные, а также одновременно продольные и поперечные. Наиболее эффективной конструктивной схемой бескаркасных зданий является схема зданий с внутренними поперечными несущими стенами. Эта схема наиболее распространена в крупнопанельном домостроении.
По долговечности ограждающих конструкций здания подразделяют на три степени: I; II и III. К I степени относятся здания со сроком службы не менее 100 лет, ко II — со сроком службы не менее 50 лет, к III — со сроком службы не менее 20 лет. По капитальности здания делят на четыре класса: I, II, III и IV. К I классу относятся здания, к которым предъявляются повышенные требования, а к IV — здания, удовлетворяющие минимальным требованиям. Капитальность зданий определяется исходя из совокупности требований к огнестойкости, долговечности основных конструктивных элементов, а также эксплуатационных качеств здания (внутренняя отделка, техническое оборудование, планировка).
В зависимости от качественных показателей здания различных конструктивных схем подразделяют на степени или классы. К важнейшим качественным показателям относятся: огнестойкость, долговечность, капитальность. По огнестойкости здания делятся на пять степеней: I, II, III, IV, V. К I, II и III степеням относятся каменные оштукатуренные.