Электромагнитная индукция
Если поместить в магнитное поле проводник и перемещать его так, чтобы он при своем движении пересекал силовые линии поля, то в проводнике возникнет электродвижущая сила , называемая ЭДС индукции .
ЭДС индукции возникнет в проводнике и в том случае, если сам проводник останется неподвижным, а перемещаться будет магнитное поле, пересекая проводник своими силовыми линиями.
Если проводник, в котором наводится ЭДС индукции, замкнуть на какую-либо внешнюю цепь, то под действием этой ЭДС по цепи потечет электричсекий ток, называемый индукционным током.
Явление индуктирования ЭДС в проводнике при пересечении его силовыми линиями магнитного поля называется электромагнитной индукцией .
Электромагнитная индукция — это обратный процесс, т. е. превращение механической энергии в электрическую.
Явление электромагнитной индукции нашло широчайшее применение в электротехнике. На использовании его основано устройство различных электрических машин.
Величина и направление ЭДС индукции
Рассмотрим теперь, каковы будут величина и направление индуктированной в проводнике ЭДС.
Величина ЭДС индукции зависит от количества силовых линий поля, пересекающих проводник в единицу времени, т. е. от скорости движения проводника в поле.
Величина индуктированной ЭДС находится в прямой зависимости от скорости движения проводника в магнитном поле.
Величина индуктированной ЭДС зависит также и от длины той части проводника, которая пересекается силовыми линиями поля.
Чем большая часть проводника пересекается силовыми линиями поля, тем большая ЭДС индуктируется в проводнике. И, наконец, чем сильнее магнитное поле, т. е. чем больше его индукция, тем большая ЭДС возникает в проводнике, пересекающем это поле.
Итак, величина ЭДС индукции, возникающей в проводнике при его движении в магнитном поле, прямо пропорциональна индукции магнитного поля, длине проводника и скорости его перемещения.
Зависимость эта выражается формулой Е = Blv,
где Е — ЭДС индукции; В — магнитная индукция; I — длина проводника; v — скорость движения проводника.
Следует твердо помнить, что в проводнике, перемещающемся в магнитном поле, ЭДС индукции возникает только в том случае, если этот проводник пересекается магнитными силовыми линиями поля.
Если же проводник перемещается вдоль силовых линий поля, т. е. не пересекает, а как бы скользит по ним, то никакой ЭДС в нем не индуктируется. Поэтому приведенная выше формула справедлива только в том случае, когда проводник перемещается перпендикулярно магнитным силовым линиям поля.
Направление индуктированной ЭДС (а также и тока в проводнике) зависит от того, в какую сторону движется проводник. Для определения направления индуктированной ЭДС существует правило правой руки.
Если держать ладонь правой руки так, чтобы в нее входили магнитные силовые линии поля, а отогнутый большой палец указывал бы направление движения проводника, то вытянутые четыре пальца укажут направление действия индуктированной ЭДС и направление тока в проводнике.
Правило правой руки
ЭДС индукции в катушке
Мы уже говорили, что для создания в проводнике ЭДС индукции необходимо перемещать в магнитном поле или сам проводник, или магнитное поле. В том и другом случае проводник должен пересекаться магнитными силовыми линиями поля, иначе ЭДС индуктироваться не будет. Индуктированную ЭДС, а следовательно, и индукционный ток можно получить не только в прямолинейном проводнике, но и в проводнике, свитом в катушку.
При движении внутри катушки постоянного магнита в ней индуктируется ЭДС за счет того, что магнитный поток магнита пересекает витки катушки, т. е. точно так же, как это было при движении прямолинейного проводника в поле магнита.
Если магнит опускать в катушку медленно, то возникающая в ней ЭДС будет настолько мала, что стрелка прибора может даже не отклониться. Если же, наоборот, магнит быстро ввести в катушку, то отклонение стрелки будет большим.
Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от скорости движения магнита, т. е. от того, насколько быстро силовые линии поля пересекают витки катушки.
Если теперь поочередно вводить в катушку с одинаковой скоростью сначала сильный магнит, а затем слабый, то можно заметить, что при сильном магните стрелка прибора будет отклоняться на больший угол.
Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от величины магнитного потока магнита.
И, наконец, если вводить с одинаковой скоростью один и тот же магнит сначала в катушку с большим числом витков, а затем со значительно меньшим, то в первом случае стрелка прибора отклонится на больший угол, чем во втором.
Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от числа ее витков. Те же результаты можно получить, если вместо постоянного магнита применять электромагнит.
Направление ЭДС индукции в катушке зависит от направления перемещения магнита. О том, как определять направление ЭДС индукции, говорит закон, установленный Э. X. Ленцем.
Закон Ленца для электромагнитной индукции
Всякое изменение магнитного потока внутри катушки сопровождается возникновением в ней ЭДС индукции, причем чем быстрее изменяется магнитный поток, пронизывающий катушку, тем большая ЭДС в ней индуктируется.
Если катушка, в которой создана ЭДС индукции, замкнута на внешнюю цепь, то по виткам ее идет индукционный ток, создающий вокруг проводника магнитное поле, в силу чего катушка превращается в соленоид.
Получается таким образом, что изменяющееся внешнее магнитное поле вызывает в катушке индукционный ток, которой, в свою очередь, создает вокруг катушки свое магнитное поле — поле тока.
Изучая это явление, Э. X. Ленц установил закон, определяющий направление индукционного тока в катушке, а следовательно, и направление ЭДС индукции. ЭДС индукции, возникающая в катушке при изменении в ней магнитного потока, создает в катушке ток такого направления, при котором магнитный поток катушки, созданный этим током, препятствует изменению постороннего магнитного потока.
Закон Ленца справедлив для всех случаев индуктирования тока в проводниках, независимо от формы проводников и от того, каким способом достигается изменение внешнего магнитного поля.
При движении постоянного магнита относительно проволочной катушки, присоединенной к клеммам гальванометра, или при движении катушки относительно магнита возникает индукционный ток.
Индукционные токи в массивных проводниках
Изменяющийся магнитный поток способен индуктировать ЭДС не только в витках катушки, но и в массивных металлических проводниках.
Пронизывая толщу массивного проводника, магнитный поток индуктирует в нем ЭДС, создающую индукционные токи. Эти так называемые вихревые токи распространяются по массивному проводнику и накоротко замыкаются в нем.
Сердечники трансформаторов, магнитопроводы различных электрических машин и аппаратов представляют собой как раз те массивные проводники, которые нагреваются возникающими в них индукционными токами.
Явление это нежелательно, поэтому для уменьшения величины индукционных токов части электрических машин и сердечники трансформаторов делают не массивными, а состоящими из тонких листов, изолированных один от другого бумагой или слоем изоляционного лака. Благодаря этому преграждается путь распространения вихревых токов по массе проводника.
Но иногда на практике вихревые токи используются и как токи полезные. На использовании этих токов основана, например, работа индукционных нагревательных печей, счетчиков электрической энергии и так называемых магнитных успокоителей подвижных частей электроизмерительных приборов.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
ЭДС индукции в движущихся проводниках
ЭДС индукции возникает в контуре при изменении магнитного потока через него. Более редким случаем магнитной индукции является движение уединенного проводника в магнитном поле. Кратко рассмотрим ЭДС индукции в движущихся проводниках.
Механизм индукции в движущемся проводнике
Из курса физики в 11 классе известно, что электрический ток — это движение носителей заряда. Если магнитный поток через контур изменяется, то в контуре возникает вихревое электрическое поле, благодаря которому и движутся носители и возникает электрический ток. Однако это не единственный способ создать в проводнике движение зарядов.
Вторым способом создания в проводнике движущихся зарядов является использование силы Лоренца. Если эта сила начнет действовать на носители заряда в проводнике, то в нем возникнет ЭДС и электрический ток.
Сила Лоренца действует только на движущиеся заряды. Следовательно, если проводник, в котором есть носители заряда, начнет двигаться в магнитном поле, то на заряды начнет действовать сила, и они придут в движение — в проводнике возникнет ЭДС.
Заметим, что ЭДС, возникающая в этом случае в проводнике, имеет иную причину, по сравнению с изменением магнитного потока через контур. Если при изменении потока причиной возникновения ЭДС является вихревое электрическое поле, то в движущемся проводнике причиной ЭДС является сила Лоренца.
ЭДС индукции в движущемся проводнике
Вычислим ЭДС индукции в проводнике длиной $l$, который движется с постоянной скоростью $v$ так, что вектор магнитной индукции $\overrightarrow B$ однородного поля перпендикулярен проводнику и направлен под углом $\alpha$ к скорости движения проводника.
По формуле силы Лоренца ее величина равна:
Компонента этой силы, направленная вдоль проводника, совершает положительную работу, которая на пути $l$ равна:
Заметим, что вторая компонента силы Лоренца совершает равную по модулю отрицательную работу. Поэтому суммарная работа силы Лоренца равна нулю.
ЭДС по определению равна отношению работы, совершенной полем по переносу зарядом, к величине этого заряда. Следовательно:
Движение контура в магнитном поле
Формулу ЭДС индукции в движущихся проводниках можно применить к прямоугольному контуру, разбив его на четыре элементарных проводника (по числу сторон). В этом случае ЭДС, возникающие в противоположных сторонах контура, будут направлены в противоположные стороны. В результате суммарная ЭДС в контуре будет равна нулю. Следовательно, при движении контура в однородном магнитном поле ток в нем возникнуть не может.
Этот же вывод можно сделать и из закона электромагнитной индукции. Если контур движется в однородном магнитном поле, то магнитный поток, пронизывающий его, не изменяется, следовательно, ЭДС индукции, возникающая в нём, равна нулю.
Единственная возможность создать ЭДС в контуре, движущемся в однородном магнитном поле, это совершить его поворот таким образом, чтобы ЭДС возникала за счет изменения компоненты $sin\alpha$. Действительно, такой поворот будет изменять магнитный поток через контур, а значит, в нём будет возникать ЭДС индукции.
Что мы узнали?
В уединенном проводнике, движущемся в однородном магнитном поле, возникает ЭДС индукции. Эта ЭДС обусловлена возникновением силы Лоренца, действующей на заряды внутри проводника. В рамке, движущейся без вращения в однородном магнитном поле, ЭДС на противоположных сторонах имеет разные направления, поэтому ток по рамке в этих условиях не течет.
ЭДС при движении проводника в поле
Эта формула используется в любом проводнике, движущемся в магнитном поле, если ↑↑ .
Если между векторами и есть угол, то используется формула
Другой способ вывода формулы эдс в движущемся проводнике.
Т.к. – электроны начинают под действием силы Лоренца перемещаться к одному из концов проводника, то возникает электрическое поле. Оно будет возрастать до тех пор, пока электрическая сила не уравновесит силу Лоренца. .
Учитывая, что , получим: .
Явление существенно при движении проводников значительной длины или с большой скоростью, например, при полете самолета (в магнитном поле Земли).
Знак можно определить по правилу правой руки Правило правой руки для индукционного тока. Если правую руку расположить так, чтобы линии магнитной индукции (В) входили в ладонь, а отогнутый большой палец показывал направление движения проводника, то четыре вытянутых пальца укажут направление индукционного тока в проводнике.
Вихревое электрическое поле
Электроны в проводниках вторичной обмотки приводятся в движение электрическим полем (ЭП), которое порождается переменным магнитным полем (МП).
Фундаментальное свойство поля.
Изменяясь во времени, магнитное поле порождает электрическое (Дж. Максвелл — английский физик).
ЭП, порождаемое переменным МП, не связано с зарядом; силовые линии нигде не начинаются и не кончаются, т. е. линии замкнутые. Такое поле — вихревое электрическое.
Токи Фуко
Индукционный ток в массивных проводниках называют токами Фуко.
Используют: плавка металлов в вакууме. Вредное действие: бесполезная потеря энергии в сердечниках трансформаторов и в генераторах.
Движение проводников
Если к концам проводника, движущегося в магнитном поле, подключить вольтметр, то прибор покажет наличие разности потенциалов на концах проводника. Таким образом, когда проводник перемещается в области с магнитным полем, в нем возникает электромагнитная движущая сила (ЭДС).
Согласно закону Лоренца, в проводнике, движущемся в магнитном поле, создается ЭДС
\(\varepsilon_ = \text\ \sin\alpha\) ;
\(\varepsilon_\) ― ЭДС электромагнитной индукции [B],
B ― индукция магнитного поля [Тл],
v ― скорость движения проводника [м/с],
α ― угол между направлением вектора скорости \(\overrightarrow\) и длиной проводника \(\overrightarrow\) , если вектор индукции магнитного поля \(\overrightarrow\) перпендикулярен проводнику и вектору скорости его движения: \(\overrightarrow\bot\overrightarrow\) , \(\ \overrightarrow\bot\overrightarrow\)
Используя силу Лоренца, можно получить это определение ЭДС. Сила Лоренца ― это проявленное действие магнитного поля на заряженную частицу.
В проводнике присутствует большое количество свободных зарядов (именно это отличает проводники от диэлектриков), и на каждый из зарядов действует сила Лоренца, перемещая их по проводнику так, что в одной его части скапливается отрицательный заряд, а в другой, соответственно, положительный. Это распределение зарядов и является физической основой для возникновения электродвижущей силы.
На рисунке показано как сила Лоренца, действующая на каждый из зарядов проводника, создает ЭДС в проводнике. Если одиночный отрицательный заряд попадает в магнитное поле, направленное от нас, то, согласно правилу левой руки, направление его движения изменяется так, как показано на рисунке. Если в область с таким же магнитным полем входит проводник, суммарный заряд которого равен нулю, но внутри которого находятся электроны, способные свободно перемещаться в проводнике, то электроны стекаются в один конец проводника. Так как электроны переместились в один конец проводника, то этот конец приобретает отрицательный заряд, а противоположный ему ― положительный. Таким образом, в проводнике возникает разность потенциалов и электродвижущая сила.