Как найти напряжение в цепи переменного тока
Перейти к содержимому

Как найти напряжение в цепи переменного тока

  • автор:

Закон Ома и связь R, I и U

Для начала рассмотрим определения основных электрических величин, далее рассмотрим законы, связывающие эти величины между собой на основе формул и графических зависимостей.

Первым делом следует отметить, что существуют цепи постоянного и переменного тока. Разница между ними в характере протекания электрических величин – в цепях переменного тока ток и напряжение с течением времени изменяются по определенному закону (например, синусоиде). В цепях же тока постоянного с течением времени значение остается константным.

И в первых и во вторых цепях основными величинами будут ток, напряжение и сопротивление.

Электрический ток – упорядоченное движение заряженных частиц (электронов) через проводник (проводящую среду) от точки с большим потенциалом к точке с меньшим потенциалом. Принято говорить, что ток течет от плюса к минусу в цепях постоянного тока. Измеряется в амперах, обозначается “i”.

Электрическое сопротивление характеризует способность ограничивать значение электрического тока. Измеряется в омах и обозначается r. Величина обратная сопротивлению – проводимость. В зависимости от величины сопротивления материалы классифицируются на проводники, диэлектрики и изоляторы.

Электрическое напряжение равняется разности потенциалов между двумя точками. U=f1-f2. Логично, что напряжение может быть и положительной и отрицательной величиной. Единица измерения вольт (В).

Связь между этими величинами описывается законом Ома:
Значение тока в электрической цепи прямо пропорционально величине напряжения и обратно пропорционально сопротивлению. I=U/R — данная формула применима для цепи постоянного тока. Зная две величины, всегда найдем третью.

Для переменного тока формула приобретет вид I=U/Z, где Z — полное сопротивление цепи, которое состоит из активной, емкостной и индуктивной составляющих:

  • R – активное сопротивление (омическое);
  • XL – индуктивное сопротивление (присуще катушкам, обмоткам, статору ТГ) – препятствует протеканию тока;
  • XC – емкостное сопротивление (конденсаторное, встречается у кабеля) — препятствует протеканию напряжения;
  • Z – реактивное сопротивление (импеданс, полное сопротивление) состоит из двух составляющих: активной (R) и реактивной (X). А реактивное (X) уже состоит из индуктивного (XL) и емкостного (XC).

Графически соотношение между сопротивлениями можно отобразить в форме прямоугольного треугольника (векторное представление).

В цепях переменного тока значения тока и напряжения изменяются с течением времени, согласно определенному закону. Например, по синусоиде:

I=Im*sin(wt+f)

В данной формуле I – это мгновенное значение тока, Im — амплитудное значение.

Амплитудное – максимальное значение, амплитудное, которое принимает величина за период. В формулах выше это значения с индексом “m” — типа максимальное.

Мгновенное – значение величины в данный момент времени. Максимальное из мгновенных значений является амплитудным.

Действующее – такое значение переменного тока, при котором за период в резисторе выделилось бы столько тепла, сколько и в цепи постоянного тока. Именно эти значения показывают наши вольтметры, амперметры. Для синусоиды действующее равно 0,707 от амплитудного. 1/корень(2)=0,707.

В зависимости от преобладания определенного характера сопротивления, векторы тока и напряжения будут смещены относительно друг друга:

Чисто активное сопротивление – ток и напряжение совпадают по фазе.

Преобладает индуктивное – значит, как писалось выше, току пройти тяжелее, и он отстает от напряжения.

Преобладает емкостная составляющая – ток уходит в отрыв, напряжение тормозится емкостью.

Также цепи переменного тока могут быть однофазными и трехфазными. В трехфазных цепях приняты обозначения фаз: фаза А (желтая, U), фаза B (зеленая, V) и фаза С (красная, W).

Между собой фазы могут соединяться в различные схемы: звезда, треугольник, зигзаг и прочие более редкие.

Закон Ома для переменного тока

Мы с вами знаем формулировку закона Ома для цепей постоянного тока, которая гласит, что ток в такой цепи прямо пропорционален напряжению на элементе цепи и обратно пропорционален сопротивлению этого элемента постоянному току, протекающему через него.

Однако при изучении цепей переменного тока стало известно, что оказывается кроме элементов цепей с активным сопротивлением, есть элементы цепи с так называемым реактивным сопротивлением, то есть индуктивности и емкости (катушки и конденсаторы).

В цепи, содержащей только активное сопротивление, фаза тока всегда совпадает с фазой напряжения (рис 1.), т. е. сдвиг фаз тока и напряжения в цепи с чисто активным сопротивлением равен нулю.

Закон Ома для переменного тока при активном сопторилвении

Рисунок 1. Напряжение и ток в цепи с чисто активным сопротивлением. Сдвиг фаз между током и напряжение в цепи переменного тока с чисто активным сопротивлением всегда равен нулю

Отсюда следует, что угол между радиус-векторами тока и напряжения также равен нулю.

Тогда, падение напряжения на активном сопротивлении определяется по формуле:

zakon-oma-formula1 (1)

где, U-напряжение на элементе цепи,

I – ток через элемент цепи

R – активное сопротивление элемента

Формула (1) применима как для амплитудных, так и для эффективных значений тока и напряжения:

zakon-oma-formula-2

где, Um-амплитудное значение напряжения на элементе цепи,

Im – амплитудное значение тока через элемент цепи

R – активное сопротивление элемента

В цепи, содержащей чисто реактивное сопротивление — индуктивное или емкостное, — фазы тока и напряжения сдвинуты друг относительно друга на четверть периода, причем в чисто индуктивной цепи фаза тока отстает от фазы напряжения (рис. 2), а в чисто емкостной цепи фаза тока опережает фазу напряжения (рис. 3).

Закон ома для переменного тока в индуктивной цепи

Рисунок 2. Напряжение и ток в цепи с чисто индуктивным сопротивлением. Фаза тока отстает от фазы напряжения на 90 градусов.

Закон Ома для переменного тока в емкостной цепи

Рисунок 3. Напряжение и ток в цепи с чисто емкостным сопротивлением. Фаза тока опережает фазу напряжения на угол 90 градусов.

Отсюда следует, что в чисто реактивной цепи угол между радиус-векторами тока и напряжения всегда равен 90°, причем в чисто индуктивной цепи радиус-вектор тока при вращении движется позади радиус-вектора напряжения, а в чисто емкостной цепи он движется впереди радиус-вектора напряжения.

Падения напряжения на индуктивном и емкостном сопротивлениях определяются соответственно по формулам:

Закон Ома для индуктивной цепи

Закон Ома для емкостной цепи

где — UL-падение напряжение на чисто индуктивном сопротивлении ;

UС—падение напряжения на чисто емкостном сопротивлении;

I— значение тока в через реактивное сопротивление;

L— индуктивность реактивного элемента;

C— емкость реактивного элемента;

ω— циклическая частота.

Эти формулы применимы как для амплитудных, так и для эффективных значений тока и напряжения синусоидальной формы. Однако здесь следует отметить, что они ни в коем случае не применимы для мгновенных значений тока и напряжения, а также и для несинусоидальных токов.

Приведенные выше формулы являются частными случаями закона Ома для переменного тока.

Следовательно, полный закон Ома для переменного тока будет иметь вид:

zakon-oma-dlya-peremennogo-toka

Где Z – полное сопротивление цепи переменного тока.

Теперь остается только вычистислить полное сопротивление цепи, а оно зависит непосредсвенно от какие активные и реактивные элементы присутсвуют в цепи и как они соединены.

Закон Ома для различных типовых цепей переменного тока

Давайте выясним, как будет выглядеть закон Ома для цепи переменного тока, состоящей из активного и индуктивного сопротивлений, соединенных последовательно (рис. 4.)

Активно-индуктивная цепь

Рисунок 4. Цепь переменного тока с последовательным соединением активного и индуктивного сопротивления.

Закон Ома для переменного синусоидального тока в случае последовательного соединения активного и индуктивного сопротивлений выражается следующей формулой:

zakon-oma-aktivno-induktivnay-cep

где —эффективное значение силы тока в А;

U—эффективное значение напряжения в В;

R—активное сопротивление в Ом;

ωL—индуктивное сопротивление в ом.

Формула (6) будет также действительной, если в нее подставить амплитудные значения тока и напряжения.

В цепи, изображенной на рис. 5, соединены последовательно активное и емкостное сопротивления.

Рачет закона Ома в активно - емкостной цепи

Рисунок 5. Цепь переменного тока с последовательным соединением активного и емкосного сопротивления.

А закон Ома для такой цепи принимает вид:

zakon-oma-formula-aktivnj-emkost

В общем случае, когда цепь содержит все три вида сопротивлений (рис. 6),

aktivno-emkostnaya-induktivnay-cep

Рисунок 6. Цепь переменного тока с последовательным соединением активного, индуктивного и емкосного сопротивления.

Закон Ома при последовательном соединении активного, индуктивного и емкостного сопротивлений будет выглядеть так:

zakon-oma-formula-3

где I-сила тока в А;

U-напряжение в В;

R-активное сопротивление в Ом;

ωL-индуктивное сопротивление в Ом;

1/ωС-емкостное сопротивление в Ом.

Формула (8) верна только для эффективных и амплитудных значений синусоидального тока и напряжения.

Для того, что бы определить ток в цепях с параллельным соединением элементов (рисунок 7), то необходимо так же вычислить полное сопротивление цепи, как это делать можно прсмотреть здесь, зтем подставить значение полного сопротивления в общую формулу для закона Ома (5).

parallelnoe-soedinenie

Рисунок 7. Полное сопротивление цепи при параллельном соединении активного и реактивных элементов. а) — параллельное соединение R и L; б) — параллельное соединение R и C .

Тоже самое касается и вычисления тока в колебательном контуре изображенном на рисунке 8.

kolebatelnyj-kontur

Рисунок 8. Эквивалентная схема колебательного контура.

Таким образом закон Ома для переменного тока можно сформулировать следующим образом.

Значение тока в цепи переменного тока прямо пропорционально напряжению в цепи (или на участке цепи) и обратно пропорционально полному сопротивлению цепи (участка цепи)

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Расчет цепей переменного тока

Расчет цепей переменного тока

Любой ток изменяющийся по величине является переменным. Но на практике под переменным током понимают такой ток, закон изменения которого во времени есть синусоидальная функция.

Математическое выражение для синусоидального тока можно записать в виде:

где, i — мгновенное значение тока, показывающее величину тока в конкретный момент времени, Im — амплитудное (максимальное) значение тока, выражение в скобках есть фаза, которая определяет значение тока в момент времени t, f — частота переменного тока, это величина, обратная периоду изменения синусоидальной величины Т, ω — угловая частота, ω = 2πf = 2π / T , α — начальная фаза, показывает значение фазы в момент времени t = 0.

Аналогичное выражение можно записать и для синусоидального переменного напряжения:

Мгновенные значения тока и напряжения условились обозначать строчными латинскими буквами i, u, а максимальные (амплитудные) значения – прописными печатными латинскими буквами I, U с индексом m.

Для измерения величины переменного тока чаще всего используют действующее (эффективное) значение , которое численно равно такому постоянному току, который за период переменного выделяет в нагрузке такое же количество тепла, что и переменный ток.

Действующее значение переменного тока :

Для обозначения действующих значений тока и напряжения используют прописные печатные латинские буквы I, U без индекса.

В цепях синусоидального тока между амплитудным и действующим значениями существует взаимосвязь:

В цепях переменного тока изменение во времени питающего напряжения влечёт за собой изменение тока, а также магнитного и электрического полей, связанных с цепью. Результатом этих изменений является возникновение ЭДС самоиндукции и взаимоиндукции в цепях с катушками индуктивности, а в цепях с конденсаторами появляются зарядные и разрядные токи, которые создают сдвиг по фазе между напряжениями и токами в таких цепях.

Отмеченные физические процессы учитывают введением реактивных сопротивлений , в которых, в отличие от активных, не происходит превращение электрической энергии в другие виды энергии. Наличие тока в реактивном элементе объясняется периодическим обменом энергией между таким элементом и сетью. Все это усложняет расчёт цепей переменного тока, так как приходится определять не только величину тока, но и его угол сдвига по отношению к напряжению.

Все основные законы цепей постоянного тока справедливы и для цепей переменного тока, но только для мгновенных значений или значений в векторной (комплексной) форме. На основе этих законов можно составить уравнения, позволяющие осуществить расчёт цепи.

Как правило, целью расчёта цепи переменного тока является определение токов, напряжений, углов сдвига фаз и мощностей на отдельных участках . При составлении уравнений для расчёта таких цепей выбирают условные положительные направления ЭДС, напряжений и токов. Получаемые уравнения для мгновенных значений в установившемся режиме и синусоидальном входном напряжении будут содержать синусоидальные функции времени.

Аналитический расчёт тригонометрических уравнений неудобен, требует значительных затрат времени и поэтому не находит широкого распространения в электротехнике. Упростить анализ цепи переменного тока можно, используя тот факт, что синусоидальную функцию можно условно изобразить вектором, а вектор, в свою очередь, можно записать в виде комплексного числа .

Комплексным числом называют выражение вида:

где a – вещественная (действительная) часть комплексного числа, j – мнимая единица, b – мнимая часть, A – модуль, α – аргумент, e – основание натурального логарифма.

Первое выражение представляет собой алгебраическую форму записи комплексного числа, второе – показательную, а третье – тригонометрическую. Для отличия, в комплексной форме записи подчеркивают букву, обозначающую электрический параметр.

Метод расчёта цепи, основанный на применении комплексных чисел, называется символическим методом . В символическом методе расчета все реальные параметры электрической цепи заменяют символами в комплексной форме записи. После замены реальных параметров цепи на их комплексные символы расчет цепей переменного тока выполняют методами, которые применяли для расчета цепей постоянного тока. Отличие состоит в том, что все математические операции необходимо выполнять с комплексными числами.

В результате расчета электрической цепи искомые токи и напряжения получаются в виде комплексных чисел. Реальные действующие значения тока или напряжения равны модулю соответствующего комплекса, а аргумент комплексного числа показывает угол поворота вектора на комплексной плоскости по отношению к положительному направлению вещественной оси. При положительном аргументе вектор поворачивается против часовой стрелки, а в случае отрицательного аргумента – по часовой.

Завершают расчёт цепи переменного тока, как правило, составлением баланса активных и реактивных мощностей, который позволяет проверить правильность вычислений.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Напряжение цепи переменного тока

Напряжение в цепи переменного тока

Переменное напряжение — это напряжение, которое изменяется с течением времени. Далее будем рассматривать только гармоническое переменное напряжение (изменяется по синусоиде).

u = Umsin(2πt + Ψ ) = Umsin(ωt + Ψ )

Где u = u(t) — мгновенное значение переменного напряжения [В].

Um — максимальное значение напряжения (амплитудное значение) [В].

f — частота равная числу колебаний в 1 секунду (единица частоты f — герц (Гц) или с -1 )

ω — угловая частота (омега) (единица угловой частоты — рад/с или с -1 )

ω = 2πf = 2π/T

Аргумент синуса, т. е. (ωt + Ψ), называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени t.

Действующее значение напряжения

U — Действующее значение напряжения [В]:

Рассмотрим параметры напряжения в бытовой электросети.

Все мы знаем, что у нас дома в розетке поступает переменный ток, с напряжением 220 вольт и частотой 50 герц (в идеальных условиях) на самом деле допускается не большая погрешность как в меньшую, так и в большую сторону так, что не удивляйтесь если ваш вольтметр покажет не 220, а например 210 или даже 230 В.).

Большинство приборов измеряет не амплитудное, а действующее значение переменного напряжения, тока, мощности так, что если мы говорим что у нас напряжение сети 220, 380 В и т. д. то имеется виду именно действующие значения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *