2. Дайте определение ударной вязкости (kcv). Опишите методику измерения этой характеристики механических свойств металла.
Ударная вязкость — это способность материала поглощать механическую энергию в процессе деформации и разрушения под действием ударной нагрузки. Ударная вязкость характеризует надежность материала, его способность сопротивляться хрупкому разрушению.
Испытания на ударную вязкость относятся к динамическим видам испытаний. Для определения ударной вязкости используют стандартные образцы с надрезом U- или V-образной формы, который служит концентратором напряжений. В зависимости от формы надреза ударная вязкость обозначается KCU или KCV.
Образец квадратного или прямоугольного сечения с концентраторами вида U, V и Т (рисунок 1) устанавливают на опорах маятникового копра надрезом в сторону, противоположную удару ножа маятника, который поднимают на определенную высоту. Удар наносят посередине образца со стороны, противоположной надрезу. За окончательный результат испытания принимают работу удара или ударную вязкость для образцов с концентраторами видов U и V и ударную вязкость для образцов с концентратором вида Т (усталостная трещина, получаемая в вершине начального надреза при циклическом изгибе образца в одной плоскости). Работу (KU, KV или КТ) разрушения образца определяют обычно по специальной шкале маятникового копра. После определения работы разрушения образца вычисляют ударную вязкость KCU (KCV, КСТ):
где S0 — площадь поперечного сечения образца в месте надреза, см 2 .
Рисунок 1 — Образцы для испытаний на ударную вязкость:
а-в-соответственно с концентраторами вида U, V и T (усталостная трещина).
Работу удара обозначают двумя буквами (KU, KV или КТ) и цифрами. Первая буква (К) — символ работы удара, вторая буква (U, V или Т) — вид концентратора. Последующие цифры обозначают максимальную энергию удара маятника, глубину концентратора и ширину образца. Цифры не указывают при определении работы удара на копре с максимальной энергией удара маятника 30 кгс•м, при глубине концентратора 2 мм для концентраторов видов U и V и 3 мм для концентратора типа Т и ширине образца 10 мм.
Ударную вязкость также обозначают сочетанием букв и цифр. Первые две буквы КС обозначают символ ударной вязкости, третья буква — вид концентратора; первая цифра — максимальную энергию удара маятника, вторая — глубину концентратора и третья — ширину образца. Цифры не указывают в тех же случаях, что и для работы удара. Применяют 10 типов образцов с надрезом вида U, А — с надрезом вида V и 6 — с надрезом вида Т.
Для определения ударной вязкости хрупких материалов (чугунов, сталей с твердостью HRC 55 и выше) допускается применение призматических образцов с размерами 10х10х55 мм без надреза. Ударную вязкость, полученную при испытании таких образцов, обозначают символом КС без индекса.
Для более точной оценки вязкости материалов иногда ударную вязкость как интегральную характеристику делят на две составляющие — удельную работу зарождения а3 и удельную работу развития ар трещины: aH = a3 + aр. При хрупком разрушении работа распространения трещины близка к нулю, а при полухрупком она снижается пропорционально проценту вязкой составляющей в изломе, поэтому целесообразно определять ар только при полностью вязком изломе.
Существует несколько методов определения а3 и ар. Наиболее распространены метод Б.А. Дроздовского (предварительное нанесение на образец усталостной трещины) и метод А.П. Гуляева (испытание образцов с разными надрезами и построение зависимости ударной вязкости от радиуса надреза); экстраполяция прямой до нулевого значения радиуса надреза дает возможность получить величину ар.
Таким образом, ударная вязкость показывает, какой стойкостью обладает материал к ударному излому.
3. Вычертите диаграмму состояния железо-карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения для сплава, содержащего 3,6% С. Какова структура этого сплава при комнатной температуре, и как такой сплав называется?
Первичная кристаллизация сплавов системы железо-углерод начинается по достижении температур, соответствующих линии ABCD (линии ликвидус), и заканчивается при температурах, образующих линию AHJECF (линию солидус). При кристаллизации сплавов по линии АВ из жидкого раствора выделяются кристаллы твердого раствора углерода в б-железе (д-раствор). Процесс кристаллизации сплавов с содержанием углерода до 0,1% заканчивается по линии АН с образованием б (д) — твердого раствора. На линии HJB протекает перитектическое превращение, в результате которого образуется твердый раствор углерода в г-железе, т.е. аустенит. Процесс первичной кристаллизации сталей заканчивается по линии AHJE. При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит. В сплавах, содержащих от 4,3% до 6,67% углерода, при температурах, соответствующих линии CD, начинают выделяться кристаллы цементита первичного. Цементит, кристаллизующийся из жидкой фазы, называется первичным цементитом. B точке С при температуре 1147°С и концентрации углерода в жидком растворе 4,3% образуется эвтектика, которая называется ледебуритом. Эвтектическое превращение с образованием ледебурита можно записать формулой ЖР4,3 Л [А2,14+Ц6,67]. Процесс первичной кристаллизации чугунов заканчивается по линии ECF образованием ледебурита. Таким образом, структура чугунов ниже 1147°С будет: доэвтектических — аустенит + ледебурит, эвтектических — ледебурит и заэвтектических — цементит (первичный) + ледебурит. Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией. Они связаны с переходом при охлаждении г-железа в б-железо и распадом аустенита. Линия GS соответствует температурам начала превращения аустенита в феррит. Ниже линии GS сплавы состоят из феррита и аустенита. Линия ЕS показывает температуры начала выделения цементита из аустенита вследствие уменьшения растворимости углерода в аустените с понижением температуры. Цементит, выделяющийся из аустенита, называется вторичным цементитом. В точке S при температуре 727°С и концентрации углерода в аустените 0,8% образуется эвтектоидная смесь состоящая из феррита и цементита, которая называется перлитом. Перлит получается в результате одновременного выпадения из аустенита частиц феррита и цементита. Процесс превращения аустенита в перлит можно записать формулой А0,8→П [Ф0,03+Ц6,67]. Линия PQ показывает на уменьшение растворимости углерода в феррите при охлаждении и выделении цементита, который называется третичным цементитом.
Следовательно, сплавы, содержащие менее 0,008% углерода (точкаQ), являются однофазными и имеют структуру чистого феррита, а сплавы, содержащие углерод от 0,008 до 0,03% — структуру феррит + цементит третичный и называются техническим железом.
Доэвтектоидные стали при температуре ниже 727єС имеют структуру феррит+перлит и заэвтектоидные — перлит+цементит вторичный в виде сетки по границам зерен. В доэвтектических чугунах в интервале температур 1147-727єС при охлаждении из аустенита выделяется цементит вторичный, вследствие уменьшения растворимости углерода (линия ES). По достижении температуры 727єС (линия PSK) аустенит, обедненный углеродом до 0,8% (точка S), превращаясь в перлит. Таким образом, после окончательного охлаждения структура доэвтектических чугунов состоит из перлита, цементита вторичного и ледебурита превращенного (перлит+цементит).
Структура эвтектических чугунов при температурах ниже 727єС состоит из ледебурита превращенного. Заэвтектический чугун при температурах ниже 727єС состоит из ледебурита превращенного и цементита первичного.
Правило фаз устанавливает зависимость между числом степеней свободы, числом компонентов и числом фаз и выражается уравнением:
где С — число степеней свободы системы; К — число компонентов, образующих систему; 1 — число внешних факторов (внешним фактором считаем только температуру, так как давление за исключением очень высокого мало влияет на фазовое равновесие сплавов в твердом и жидком состояниях); Ф — число фаз, находящихся в равновесии.
Сплав железа с углеродом, содержащий 3,6% С, называется доэвтектическим чугуном. Его структура при комнатной температуре — перлит + цементит + ледебурит.
Ударная вязкость kcu и kcv отличие
Тема сообщения: KCU, KCV
Пожалуйста, помогите перевести.KCU, KCV (это связано с испытанием на ударную вязкость)
KCV = ударная вязкость по Шарпи |
так и пишите, ударная вязкость (по Шарпи) KCU, KCV (разница в типе концентратора (надреза) — в виде U или в виде V). Если хотите поглубже въехать — скачайте любой ГОСТ по испытанию металлов на ударную вязкость/ударный изгиб, к примеру 9454-78. |
Войдите на сайт, чтобы участвовать в форуме |
Ударная вязкость стали и других металлов
Компания ООО «Анатомика» осуществляет производственную деятельность в области металлообработки и инжиниринга. Специалисты нашей компании реализуют проекты от разработки модели детали до её полного изготовления. В частности, к видам деятельности относятся разработка 3D моделей, технологических карт, управляющих программ, оснастки и инструмента, токарные и фрезерная обработка, слесарные работы и покраска, гальваническая обработка, шлифование, сверление.
Многие знают, что одни металлы легко деформируются вручную, тогда как другие не деформируются даже при падении с высоты. Для объяснения этого явления используются понятия ударной вязкости и хрупкости, которые противоположны друг другу. Попробуем объяснить, в чем их отличие, почему металлы по-разному реагируют на внешние воздействия и что такое ударная вязкость стали. В практическом смылся это имеет значение: вязкость учитывает токарная обработка металла.
Что называют ударной вязкостью металлов
Для начала разберемся с теоретическим определением понятия. Ударная вязкость металла — это способность материала поглощать кинетическую энергию в процессе деформации и разрушения под действием ударной нагрузки. Как правило, такая энергия способна привести к пластичным и непластичным деформациям.
Лучше понять физическое определение поможет ответ на вопрос, по какой формуле определяется ударная вязкость:
KC=A/F , где A — работа, затраченная на разрушение образца, а F — площадь поперечного сечения материала. Единицы измерения ударной вязкости — Дж/м 2 .
Для вычисления опытным путем ударной вязкости используют метод маятникового копра. В лаборатории заготовки одинаковых размеров, находящихся в одних и тех же условиях, подвергают нагрузкам с постепенным их увеличением. При этом отмечают поведение образцов стали и степень их подверженности к нагрузкам.
Критическая хрупкость металлов
Снова начнем с определения. Критическая температура хрупкости — это температурный предел, при котором характер разрушения материала меняется от хрупкого к вязкому. Многим известно о том, что при нагревании металлы и сплавы переходят в мягкое, а позже — в вязкое состояние, через определенный промежуток времени, индивидуальный для каждого материала. Таким образом, при повышении температуры ударная вязкость увеличивается. А такой показатель, как хрупкость, повышается при снижении температуры.
При проверках эксплуатационных свойств металлических заготовок из стали проводят ряд экспериментов, при котором изменяется температура от очень высоких до очень низких. Критическая хрупкость металла — его разрушение при определенном температурном пороге, который ограничен максимум и минимумом.
Почему хрупкость металлов бывает различной
При постоянных условиях (низкая температура и нормальная влажность) на хрупкость металлов влияет:
- Микроструктура. Играет роль степень зернистости, наличие примесей и посторонних включений.
- Наличие и количество концентраторов критических воздействий. К ним относятся различные искусственные или естественные нарушения структуры материала (трещины, изломы, разрывы, полости).
- Эффект недавних этапов производств (остаточное напряжение и другие).
Для металлов характерна нестабильность свойств. Поэтому при изготовлении деталей необходимо корректно проводить тесты. От этого зависит точность определения подходящих условий эксплуатации для заготовок.
Методы испытаний
Используют несколько вариантов лабораторных испытаний, зависящих от следующих факторов:
- Тип нагрузки. Могут использоваться разные твердые инструменты (маятник, гиря, молот и другие).
- Вид фиксации. Применяют специальные опоры, холодильные контейнеры и иные решения.
- Наличие или отсутствие надреза определенной формы на одной из граней в области нанесения удара, что регулирует концентрацию предполагаемого напряжения.
Для последнего пункта предусматривают особенности прокатных изделий. Надрез делается только для листов с равномерной толщиной по всему периметру.
Все методы основаны на попытке разрушения испытуемого образца ударом падающего твердого предмета. К ним также относятся испытания по Шарпи, по Изоду и по Гарднеру, названные, как видно, в честь испытателей.
Маятниковый копер
Разновидности копра зависят от:
- характера деформации (сжатие, кручение, срез, изгиб или растяжение);
- величины нагрузки (обычные, скоростные и сверхскоростные);
- числа ударов (один или интервально несколько);
- условий проведения эксперимента (влажность, температура).
Копер популярен для проведения испытаний благодаря своей несложной конструкции и точности измерения ударной вязкости.
Понятие того, что такое ударная вязкость прописано в ГОСТ 9454. В соответствии с требованиями этого документа подбираются образцы:
- Наиболее распространенный — заготовка по Менаже. Образец используется для отбраковки деталей, предназначенных для высокоточных приборов. Заготовка квадратного сечения 10×10 мм с двух миллиметровым V-образным концентратором напряжения, пропиленным на глубину 2 мм.
- По Шарпи — образец применяется в случаях, которые не требуют сверхточности. Отличается от первого формой канавки. Здесь она напоминает букву U.
- Т-образные с определенными габаритами (a×b×h=55×10×11 мм). Применяют для самых серьезных исследований.
Важной характеристикой ударной вязкости является концентратор напряжений, он определяет информативность эксперимента и точность полученных данных. Обозначается критерий по-разному:
- KCV — по Менаже;
- KCT или KCU,от которого ударная вязкость зависит в большей степени.
KCU=KCЗ+KCР, где KCЗ — работа зарождения трещины, KCР — работа распространения трещины. В международной системе единиц ударная вязкость выражается в Дж/м 2 .
Определение ударной вязкости — важный этап при производстве металлических и стальных деталей. От него зависит качество и эксплуатационные характеристики готового продукта. Как например, высокоточная металлообработка.
Рассчитайте свой заказ
Отправьте нам чертеж или описание на [email protected] или заполните форму и мы рассчитаем стоимость и сроки выполнения заказа
Анатомика
Оставьте свой номер телефона и наш специалист свяжется с вами в ближайшее время
Меню
Контакты
- Россия, Казань, ул. Монтажная д.15
- +7 (903) 305-54-03
- [email protected]
- С 8 до 17.00
Ударная вязкость
способность материала поглощать механическую энергию в процессе деформации и разрушения под действием ударной нагрузки / Материал из Википедии — свободной encyclopedia
Уважаемый Wikiwand AI, давайте упростим задачу, просто ответив на эти ключевые вопросы:
Перечислите основные факты и статистические данные о Ударная вязкость?
Кратко изложите эту статью для 10-летнего ребёнка
ПОКАЗАТЬ ВСЕ ВОПРОСЫ
Ударная вязкость — способность материала поглощать механическую энергию в процессе деформации и разрушения под действием ударной нагрузки.
Основным отличием ударных нагрузок от испытаний на растяжение-сжатие или изгиб является гораздо более высокая скорость выделения энергии. Таким образом, ударная вязкость характеризует способность материала к быстрому поглощению энергии.
Обычно оценивается работа до разрушения или разрыва испытываемого образца при ударной нагрузке, отнесённой к площади его сечения в месте приложения нагрузки. Выражается в Дж/см 2 или в кДж/м 2 . Ударную вязкость обозначают KCV, KCU, KCT. KC – символ ударной вязкости, третий символ показывает вид надреза: острый (V), с радиусом закругления (U), трещина (Т)