Векторная диаграмма цепи переменного тока
Перейти к содержимому

Векторная диаграмма цепи переменного тока

  • автор:

Построение векторных диаграмм

Follow us on Facebook Follow us on Instagram Follow us on LinkedIn Follow us on rss

Достаточно сложным и чаще всего не изучаемым аспектом темы переменный ток является метод построения векторных диаграмм. Анализируя вынужденные электромагнитные колебания, мы уже обсудили сдвиг тока и напряжения на реактивных сопротивлениях (катушка индуктивности и конденсатор) по сравнению с активным сопротивлением (резистор). Тогда одним из задаваемых вопросов задачи является вопрос о направлении суммарного тока или напряжения в данный конкретный момент времени. Для ответа на этот вопрос и используется метод построения векторных диаграмм.

Векторная диаграмма — это изображение гармонически изменяющихся величин (текущего тока и напряжения) в виде векторов на плоскости.

Векторная диаграмма

Рис. 1. Векторная диаграмма

Построение векторных диаграмм происходит в прямоугольной декартовой системе координат. Построение начинается с проведения вектора, численно равного амплитудному значению тока в цепи. Данный вектор сонаправим в осью ОХ (рис. 1.1).

Т.к. напряжение на активном сопротивлении находится в одной фазе с током, то вектор амплитуды напряжения сонаправлен с вектором тока (рис. 1.2. красный).

На катушке напряжение опережает ток, поэтому отложим вектор амплитуды напряжения на катушке () вверх под углом относительно вектора тока (рис. 1.2. синий).

На конденсаторе напряжение отстаёт от тока, поэтому отложим вектор амплитуды напряжения на конденсаторе () вниз под углом относительно вектора тока (рис. 1.2. зелёный).

Угол , используемый в логике построений, используется в случае идеальности контура и катушки.

Для построения общего вектора напряжения достаточно векторно сложить напряжения:

Проще всего сначала найти вектор-сумму (т.к. они расположены вдоль одной прямой). В нашем случае, эти вектора разнонаправлены, найдём (рис. 1.3. жёлтый).

И последнее, осталось сложить получившийся вектор с вектором для получения значения полного напряжения в цепи (рис. 1.4. оранжевый). Для получения модуля вектора воспользуемся теоремой Пифагора, т.к. вектора находятся под прямым углом. Тогда:

  • где
    • — общее напряжение в цепи,
    • — напряжение на конденсаторе,
    • — напряжение на катушке индуктивности,
    • — напряжение на активном сопротивлении.

    Угол — угол между вектором силы тока и полного напряжения называется сдвигом фаз между колебаниями силы тока и напряжения. Данный параметр можно найти и исходя из параметров системы:

    • где
      • — активное сопротивление,
      • — полное сопротивление цепи.

      Вывод: задачи на данную тематику касаются поиска сдвига фаз между колебаниями силы тока и напряжения через график (рис. 1.4) или через соотношение (3), а также поиска полного напряжения в цепи также через график (рис. 1.4) или через соотношение (2).

      Построение векторных диаграмм

      Наверняка при решении задач по электротехнике многие сталкивались с некоторыми сложностями в построении векторных диаграмм. Начнем с определения векторной диаграммы.

      Векторная диаграмма — это изображение синусоидально изменяющихся величин в виде векторов на плоскости.

      Векторные диаграммы применяют потому, что сложение и вычитание синусоидальных величин, неизбежные при расчете цепей переменного тока, наиболее просто выполняются в векторной форме. Кроме того векторные диаграммы отличаются простотой и наглядностью.

      Построение векторной диаграммы выполняется в прямоугольной плоскости. Чтобы построить диаграмму нужно провести вектор длиною равный амплитудному значению искомой величины, под углом сдвига относительно другой величины. Возможно, вы не сразу поймете смысл сказанного, для этого нужно изучить пример.

      В качестве примера рассмотрим построение векторной диаграммы для цепи, состоящей из последовательно подключенных конденсатора, резистора и катушки. Напряжение на катушке UL=15 В, напряжение на конденсаторе UC=20 В, напряжение на резисторе UR=10 В, ток в цепи I=3 А. Требуется найти общее напряжение.

      Катушка носит индуктивный характер, а значит, в ней напряжение опережает ток по фазе на 90°.

      Конденсатор носит емкостной характер, значит, ток в нем опережает по фазе напряжение на 90°.

      Резистор обладает только активным сопротивлением, и напряжение в нем совпадает по фазе с током.

      Итак, для начала отложим вектор тока в масштабе. Масштаб для тока у нас будет 1 А/см.

      Теперь отложим вектор напряжения на катушке, масштаб для напряжения возьмем 5 В/см, получается, что нужно отложить шесть клеток вверх, так как напряжение в катушке опережает ток. Для наглядности обозначим синим цветом.

      Далее мы будем откладывать вектор активного сопротивления, так как напряжение в одной фазе с током, то мы его откладываем из конца вектора UL параллельно вектору тока I. Обозначим его красным цветом.

      Следующим шагом отложим вектор напряжения на конденсаторе, так как оно запаздывает на 90°, мы его отложим вертикально вниз, из конца вектора U R . Обозначим желтым цветом.

      И последним этапом мы отложим вектор общего напряжения, из начала координат в конец вектора UC и обозначим его зеленым цветом.

      Общее напряжение получилось равным 2,23 В, причем характер цепи емкостной, так как напряжение отстает от тока.

      Аналогичным образом выполняется построение векторной диаграммы токов.

      Векторная диаграмма токов и напряжений

      Процессы, протекающие в электроцепи переменного тока с активным сопротивлением и реактивной индуктивностью, можно наглядно выразить в графическом виде.

      Векторная диаграмма

      Статья даст описание, что такое векторные диаграммы, где и для чего они используются. Также будет описана временная диаграмма и ее назначение. В конце будет дан пример построения простой диаграммы для электроцепи с последовательным соединением элементов.

      Определение

      Векторная диаграмма токов и напряжений — это геометрическое изображение всех процессов, величин и амплитуд синусоидального тока. Все имеющиеся величины располагаются на плоскости в виде векторов.

      Построение векторной диаграммы использует физика и электротехника. Благодаря созданию такой диаграммы можно значительно упростить выполняемые расчеты, а так же в наглядном и доступном виде отобразить происходящие процессы.

      Метод векторных диаграмм позволяет также увидеть в цепи переменного тока возникающие короткие и межфазовые замыкания, а также вычислить возможные потери мощности.

      векторная и временная диаграмма

      Обычно такая диаграмма строится вместе с временной. Временная диаграмма — это графическое изображение входа и выхода в электрической цепи. Временные диаграммы помогают определить временной промежуток между началом, протеканием и окончанием сигнала. Например, при нажатии на кнопку возникает сигнал, который поступает к приемнику и запускает процесс его работы.

      Временные диаграммы также применимы к синусоидальной электрической цепи, так как этот ток имеет начальную точку отсчета (включение питания) и время движения от источника тока к потребителю. Такие диаграммы представляют собой график, на котором изображается начальная точка отсчета, вектор времени и углы смещения фаз.

      Разновидности

      Разобравшись, что такое и для чего применяется векторная диаграмма, нужно узнать какие разновидности построения существуют. Они отличаются по характеру построения и типу. По характеру бывают:

      1. Точными. Векторная точная диаграмма — это отображение выполненного численного расчета в соответствующем масштабе. С помощью нее определяют параметры фаз и амплитудные значения строго геометрическим способом.
      2. Качественные. Такие гистограммы строят для наблюдения взаимосвязи между электровеличинами без использования числовых характеристик. Такой способ позволяет экспериментировать с различными параметрами и моделировать процессы в электроцепях.

      Векторную диаграмму токов можно построить 2 разными способами:

      Круговая диаграмма

      1. Круговым. В ее принципе лежит вектор, который описывает изменение характеристик путем образования круга или полукруга на плоскости. При таком варианте учитывается направление движения с учетом направления положения вектора.
      2. Линейным. Такой векторной диаграмме при изменении характеристик направление изменяется строго прямолинейно.

      Линейная диаграмма

      Оба построения могут использоваться для расчета характеристик переменного тока в цепи с сопротивлением и индуктивностью.

      Построение

      Построение простых векторных диаграмм будет рассмотрено в данном разделе. Для примера можно взять простую цепь с несколькими элементами и их значениями. Такая схема подразумевает последовательное соединение элементов между собой. Цепь состоит из катушки индуктивности, конденсатора и активного сопротивления. Параметры каждого элемента цепи приведены ниже.

      1. Катушка индуктивности UL с напряжением 15 вольт. Ток в индуктивном сопротивлении имеет сдвиг фазы 90°.
      2. Конденсатор UC с напряжением 20 вольт и опережением на 90 градусов.
      3. Напряжение резистора UR 10 вольт, его направление совпадает с током I.
      4. Сила тока в цепи I равняется 3 ампера.

      Далее можно сделать простую диаграмму, которая поможет определить напряжение для всей схемы.

      1. Отложить на плоскости I в виде горизонтальной линии с масштабом 1 A/см (масштаб может быть любым, главное — выполнять все элементы диаграммы одного типа в одном масштабе). Сам ток равен 3 ампера, поэтому его длина будет равна 3 см.Откладываем вектор тока I
      2. Теперь необходимо отложить вертикальный вектор UL в масштабе 5 В/см. Он отображает напряжение катушки индуктивности и равен 15 вольт. Его длина на плоскости составит в данном масштабе так же 3 см.Откладываем вектор катушки UL
      3. Далее нужно графически обозначить вектор напряжения активного сопротивления. Его точка отсчета располагается на окончании вертикального вектора UL. Для принятого масштаба 5 В/см ему соответствует вектор длиной 2 см. Линия должна быть строго параллельна горизонтальному вектору I.Откладываем вектор резистора UR
      4. Теперь нужно отобразить на данной диаграмме напряжение конденсатора UC. Его началом будет конечная точка вектора UR, а конец данного вектора будет расположен ниже горизонтального вектора I. В масштабе 5 В/см ему соответствует вектор длиной 4 см.Откладываем вектор конденсатора UC
      5. Чтобы определить соответствующее такой схеме общение напряжение U надо будет сделать следующее. Начало вектора расположено в принятой точке отсчета, а конец его будет расположен в конечной точке вектора UC.

      Получаем общее напряжение U

      Поэтому если есть схема с последовательным соединением элементов, то всегда можно довольно просто построить векторную диаграмму и рассчитать общее напряжение для такой схемы.

      Способ 2

      Построение векторных диаграмм с учетом всех известных значений для цепи переменного тока с последовательным соединением конденсатора, резистора и катушки индуктивности. При таком построении нам так же известно напряжение самой цепи. Цепь состоит из:

      • Резистора UR;
      • Конденсатора UC;
      • Катушки UL.
      1. На плоскости Im откладывается вектор UR (резистор). Его направление точно совпадает с током, поэтому это будет горизонтальная линия.Вектор UR
      2. От точки отсчета откладывается вниз вектор UC (конденсатор). Вектор откладывается под углом 90 градусов вниз, так как он имеет указанное ранее опережение 90°.Вектор UС
      3. От этой же точки отсчета откладывается вектор UL (катушка индуктивности). Ее значение откладывается ровно на 90 градусов вертикально, так как есть сдвиг фазы на 90 градусов.

      Общая диаграмма

      Данная диаграмма может использоваться для контроля и расчета влияния всех известных параметров цепи и элементов, а также их взаимосвязи между собой.

      1. Показать результат сложения вектора UL и UC.Сложение двух значений
      2. При увеличении величины сопротивления определить разницу между напряжением и сопротивлением можно, используя новый вектор Um.Увеличение сопротивления
      3. Кроме того можно определить угол сдвига фазы φ в цепи.

      Сдвиг фазы

      Основное преимущество векторной диаграммы заключается в следующем — простое и быстрое сложение, вычитание двух параметров во время расчета электрических цепей.

      Понятие о векторах и векторных диаграммах также подразумевает расчет цепи питания трехфазной сети, подключенной по методу звезды. Она строится с учетом сразу 3 отложенных векторов от 0 оси ординат. Такое построение определяет вектор от источника тока к приемнику. Строится вектор со следующими значениями:

      1. На оси ОХ откладываются настоящие значения величин, а на оси OY мнимые значения.
      2. Угловая величина обозначается как W.
      3. Также присутствует сам вектор Im и угол сдвига фаз φ.

      Далее нужно сделать:

      1. На плоскости выбрать точку отсчета.
      2. От нее отложить вектор Im, учитывая угол сдвига фаз равный 90°.
      3. Длина вектора Im равна значению его напряжения и откладывается в выбранном масштабе.

      Вектор трехфазной цепи

      Таким же образом на плоскость накладываются еще две прямые линии. Общая диаграмма покажет симметричность фаз или их сдвиг при появлении короткого замыкания. Такая диаграмма может стать примером для расчета напряжения, тока или нагрузки на каждую фазу с моделированием различных параметров.

      Заключение

      Векторные диаграммы сложны в понимании при расчете сложных цепей, с большим количеством сопротивлений и индуктивностью. Также, при расчете стоит учитывать тип соединения всех элементов, симметрию цепи и основные ее значения.

      Векторные диаграммы электрических цепей

      При исследовании электрических цепей и моделировании часто пользуются векторными диаграммами токов и напряжений. Под векторной диаграммой понимается совокупность векторов, изображающих синусоидальные функции времени [1].

      Воспользуйтесь программой онлайн-расчёта электрических цепей. Программа позволяет рассчитывать электрические цепи по закону Ома, по законам Кирхгофа, по методам контурных токов, узловых потенциалов и эквивалентного генератора, а также рассчитывать эквивалентное сопротивление цепи относительно источника питания.

      • Представление синусоидальных функций в виде комплексных чисел
      • Закон Ома в комплексной форме
      • Векторная диаграмма при последовательном соединении элементов
      • Векторная диаграмма при параллельном соединении элементов

      Представление синусоидальных функций в виде комплексных чисел

      Векторная диаграмма – это удобный инструмент представления синусоидальных функций времени, коими являются, к примеру, напряжения и токи электрической цепи переменного тока.

      Рассмотрим, например, произвольный ток, представленный в виде синусоидальной функции

      $$ i(t) = 10 \sin(\omega t + 30 \degree). $$

      Данный синусоидальный сигнал можно представить в виде комплексной величины

      $$ \underline = 10 \angle 30 \degree. $$

      Для формирования комплексного числа используются модуль и фаза синусоидального сигнала.

      Закон Ома в комплексной форме

      Известно [1], что напряжение $ \underline $ на сопротивлении $ \underline $ связано с током $ \underline $, протекающим через это сопротивление, согласно закону Ома:

      $$ \underline = \underline \cdot \underline. $$

      Кроме того, известны соотношения, определяющие активное сопротивление резистора, индуктивное сопротивление катушки и ёмкостное сопротивление конденсатора:

      где $ X_ = \omega L $, $ X_ = \frac <\omega C>$, $ R $ – сопротивление резистора, $ L $ – индуктивность катушки, $ C $ – ёмкость конденсатора, $ \omega = 2 \pi f $ – циклическая частота, $ f $ – частота сети, $ j $ – мнимая единица.

      Векторная диаграмма при последовательном соединении элементов

      Для построения векторных диаграмм сперва составляют уравнения по законам Кирхгофа для рассматриваемой электрической цепи.

      Рассмотрим электрическую цепь, представленную на рис. 1, и нарисуем для неё векторную диаграмму напряжений. Обозначим падение напряжение на элементах.

      Последовательное соединение элементов электрической цепи для построения векторной диаграммы напряжений

      Рис. 1. Последовательное соединение элементов цепи

      Составим уравнение для данной цепи по второму закону Кирхгофа:

      $$ \underline_ + \underline_ + \underline_ = \underline. $$

      По закону Ома падение напряжений на элементах определяется по следующим выражениям:

      $$ \underline_ = \underline \cdot R, $$

      $$ \underline_ = \underline \cdot jX_, $$

      $$ \underline_ = -\underline \cdot jX_. $$

      Для построения векторной диаграммы необходимо отобразить приведённые в уравнении слагаемые на комплексной плоскости. Обычно вектора токов и напряжений отображаются в своих масштабах: отдельно для напряжений и отдельно для токов.

      Из курса математики известно, что $ j = 1 \angle 90 \degree $, $ -j = 1 \angle -90 \degree $. Отсюда при построении векторной диаграммы умножение какого-либо вектора на мнимую единицу $ j $ приводит к повороту этого вектора на 90° против часовой стрелки, а умножение на $ -j $ приводит к повороту этого вектора на 90° по часовой стрелке.

      При построении векторной диаграммы напряжений на комплексной плоскости сперва отобразим вектор тока $ \underline $, после чего относительного него будем отображать вектора падений напряжений (рис. 2) с учётом приведённых выше соотношений для мнимой единицы.

      Падение напряжения на резисторе $ \underline_ $ совпадает по направлению с током $ \underline $ (т.к. $ \underline_ = \underline \cdot R $, а $ R $ – чисто действительная величина или, простыми словами, нет умножения на мнимую единицу). Падение напряжения на индуктивном сопротивлении опережает вектор тока на 90° (т.к. $ \underline_ = \underline \cdot jX_ $, а умножение на $ j $ приводит повороту этого вектора на 90° против часовой стрелки). Падение напряжения на ёмкостном сопротивлении отстаёт от вектора тока на 90° (т.к. $ \underline_ = -\underline \cdot jX_ $, а умножение на $ -j $ приводит повороту этого вектора на 90° по часовой стрелке).

      Векторная диаграмма напряжений при последовательном соединение элементов цепи

      Рис. 2. Векторная диаграмма напряжений при последовательном соединении элементов цепи

      Следует обратить внимание, что на одной векторной диаграмме изображают только векторы тех величин, у которых частота совпадает!

      Векторная диаграмма при параллельном соединении элементов

      Рассмотрим электрическую цепь, представленную на рис. 3, и нарисуем для неё векторную диаграмму токов. Обозначим направление токов в ветвях.

      Параллельное соединение элементов электрической цепи для построения векторной диаграммы напряжений

      Рис. 3. Параллельное соединение элементов цепи

      Составим уравнение для данной цепи по первому закону Кирхгофа:

      $$ \underline- \underline_- \underline_- \underline_ = 0, $$

      $$ \underline = \underline_ + \underline_ + \underline_ = 0. $$

      Определим по закону Ома токи в ветвях по следующим выражениям, учитывая, что $ \frac = -j $:

      Для построения векторной диаграммы необходимо отобразить приведённые в уравнении слагаемые на комплексной плоскости.

      При построении векторной диаграммы токов на комплексной плоскости сперва отобразим вектор ЭДС $ \underline $, после чего относительного него будем отображать вектора токов токов (рис. 4) с учётом приведённых выше соотношений для мнимой единицы.

      Ток в резисторе IR совпадает по направлению с ЭДС $ \underline $ (т.к. $ \underline_ = \frac<\underline> $, а $ R $ – чисто действительная величина или, простыми словами, нет умножения на мнимую единицу). Ток в индуктивном сопротивлении отстаёт от вектора ЭДС на 90° (т.к. $ \underline_ = -j \frac<\underline> $, а умножение на $ -j $ приводит повороту этого вектора на 90° по часовой стрелке). Ток в ёмкостном сопротивлении опережает вектор ЭДС на 90° (т.к. $ \underline_ = j \frac<\underline> $, а умножение на $ j $ приводит повороту этого вектора на 90° против часовой стрелки). Результирующий вектор тока определяется после геометрического сложения всех векторов по правилу параллелограмма.

      Векторная диаграмма токов при параллельном соединении элементов цепи

      Рис. 4. Векторная диаграмма токов при параллельном соединении элементов цепи

      Для произвольной цепи алгоритм построения векторных диаграмм аналогичен вышеизложенному с учётом протекаемых в ветвях токов и прикладываемых напряжений.

      Обращаем ваше внимание, что на сайте представлен инструмент для построения векторных диаграмм онлайн для трёхфазных цепей.

      Список использованной литературы

      1. Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей. Учебник для вузов. Изд. 4-е, переработанное. М., «Энергия», 1975.

      Рекомендуемые записи

      Законы Кирхгофа для расчёта электрических цепей При расчёте электрических цепей, в том числе для целей моделирования, широко применяются законы Кирхгофа, позволяющие…

      Метод контурных токов для расчёта электрических цепей При расчёте электрических цепей, помимо законов Кирхгофа, часто применяют метод контурных токов. Метод контурных токов…

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *