Зависит ли направление индукционного тока от природы источника магнитного поля
Перейти к содержимому

Зависит ли направление индукционного тока от природы источника магнитного поля

  • автор:

Направление индукционного тока

Направление индукционного тока, возникающего в процессе явления электромагнитной индукции, неслучайно. Рассмотрим закономерности, по которым определяется это направление.

Электромагнитная индукция

Явление электромагнитной индукции заключается в том, что в проводящем контуре при изменении магнитного потока, пронизывающего его, возникает электродвижущая сила (ЭДС), приводящая к возникновению индукционного тока.

Возникновение индукционного тока впервые обнаружил М. Фарадей в своих опытах. Если подключить катушку к гальванометру, и внутри нее двигать постоянный магнит, гальванометр будет отмечать появление индукционного тока:

Опыт Фарадея, катушка, постоянный магнит

Взаимодействие магнита и катушки

Если в опыте Фарадея двигающийся постоянный магнит будет связан с динамометром, то при движении динамометр будет фиксировать возникновение дополнительной силы. Происходит это потому, что возникающий в катушке индукционный ток, как и любой другой ток, приводит к появлению собственного магнитного поля, которое начинает взаимодействовать с магнитным полем постоянного магнита. Силу такого взаимодействия и будет фиксировать динамометр.

При движении магнита внутрь катушки сила будет направлена на выталкивание магнита. Однако, если мы начнем вынимать магнит из катушки, эта сила наоборот, начнет притягивать магнит, не давая его вынимать из катушки. То есть, возникающее магнитное поле в катушке в этих двух случаях имеет разное направление, а значит, и порождающий его ток также течет в разных направлениях.

Правило Ленца

Взаимодействие контура тока и магнитного поля изучалось русским физиком Э.Ленцем.

Он установил правило, которое было впоследствии названо его именем:

Индукционный ток, возникающий в контуре, всегда направлен так, чтобы препятствовать причине, его породившей.

И действительно, в соответствии с этим правилом, когда магнит вводится в катушку, возникающий в катушке ток создает такое магнитное поле, которое сопротивляется введению магнита. И наоборот – при выведении магнита из катушки, в ней возникает индукционный ток такого направления, чтобы препятствовать выведению магнита.

Обоснование правила Ленца

Для объяснения правила Ленца достаточно вспомнить закон сохранения энергии.

Возникающий в контуре ток, проходя по сопротивлению контура, совершает работу, которая тратится на нагревание провода катушки. Энергия для этого как раз и возникает при движении магнита. И, поскольку магнит должен при этом совершать положительную механическую работу – магнитное поле катушки должно быть направлено против поля самого магнита, в какую бы сторону он не двигался.

Только в этом случае магнит будет совершать положительную работу, энергия которой будет двигать заряды внутри контура, порождая индукционный ток, а индукционный ток, в свою очередь, будет совершать работу по нагреванию провода катушки (и отклонения стрелки гальванометра).

Направление индукционного тока

Что мы узнали?

Для определения направления индукционного тока используется правило, открытое Э. Ленцем. Индукционный ток всегда имеет такое направление, чтобы сопротивляться причине, его порождающей. Это правило является следствием законов сохранения.

Электромагнитная индукция

Электромагни́тная инду́кция — физическое явление, заключающееся в возникновении электрического поля при изменении магнитного во времени или движении материального тела относительно воздействующего на него магнитного поля. Эффект открыт Майклом Фарадеем в 1831 году и на сегодняшний день является одним из основных принципов построения электротехники.

Описание

Электромагнитной индукцей называют возникновение электрического поля, электрического тока или электрической поляризации при изменении во времени магнитного поля или при движении материальных сред в магнитном поле. При этом направление индукционного тока, если тот возникает, таково, что вызываемое этим током магнитное поле противодействует изменению того магнитного поля, которым этот ток был вызван. Это правило называется правилом Ленца, по имени своего первооткрывателя. Эффектов электромагнитной индукции различают два типа [1] [2] [3] [4] [5] .

Первый эффект состоит в наведении вихревого электрического поля при воздействии на тело переменного магнитного поля. Второй связан с перемещением материальных тел в постоянном магнитном поле, которое приводит к появлению в этом теле электронно-движущих сил и, если тело является проводником — электрического тока [1] [5] . В обоих случаях явления индукции протекают в проводниках одинаково, различается только их физическая причина. Электронно-движущие силы (ЭДС), возникающие в результате воздействия электромагнитной индукции называют ЭДС индукции. Она равна и противоположна по знаку скорости изменения магнитного потока, проходящего через поверхность, ограниченную рассматриваемым электрическим контуром. Это соотношение называется, по имени своего первооткрывателя, законом Фарадея и выражается формулой E = − d Φ B d t , >=-<> \over dt>,> , где E >> — ЭДС индукции, а d Φ B >> — изменение магнитного потока [4] [6] .

Важным следствием электромагнитной индукции является так называемая самоиндукция — эффект, возникающий в электрической цепи при изменении силы тока. Выражается он в том, что изменение силы тока приводит к изменению магнитного поля, индуцируемого проводником, которое, как следствие вызывает в проводнике эффект электромагнитной индукции, противодействующий изменению силы тока [7] .

История изучения

В 1820 году датский физик Ханс Эрстед провёл эксперимент, в ходе которого узнал, что электрический ток в цепи отклоняет близко расположенную магнитную стрелку компаса. Это показало, что электрический ток порождает магнитное поле, а, следовательно, возникновение электричества должно быть связано с магнетизмом [5] .

Открытием Эрстеда заинтересовался Майкл Фарадей. Многие годы он проводил различные опыты с электричеством и магнетизмом, пытаясь понять связь между ними, пока августе 1831 года не открыл явление электромагнитной индукции [3] [5] [8] . Для этого Фарадей провёл три опыта: в первом имелись две катушки проводника, намотанные на единый сердечник, не проводящий ток. К одной из катушек был подключён источник питания, ко второй — гальванометр. При включении тока на первой катушке гальванометр показывал импульс тока на второй, при отключении — ещё один импульс, но направленный в противоположную сторону. Во втором опыте катушка, подключённая к гальванометру, перемещалась относительно катушки, подключённой к источнику тока; гальванометр показывал электрический ток во второй катушке при её движении. В третьем опыте использовалась катушка, подключённая к гальванометру и постоянный магнит. При движении магнита относительно катушки гальванометр показывал электрический ток в катушке [4] [7] [9] .

Первый опыт Фарадея

Второй опыт Фарадея, рисунок 1891 года

Второй опыт Фарадея, рисунок 1891 года

В 1832 году, независимо от Фарадея, Джозеф Генри повторил открытие явления. В 1833 году Эмилий Ленц сформулировал универсальное правило для установления знака электронно-движущей силы при электромагнитной индукции. В 1845 году закон Фарадея получил математическую формулировку в трудах немецкого физика Франца Неймана. В 1864 году Джеймсом Максвеллом была доказана универсальность закона Фарадея, а также предсказан дополнительный эффект, заключающийся в наведении переменным электрическим полем магнитного. Это в конечном счёте привело к формированию представления о едином электромагнитном поле, состоящем и из магнитного и из электрического полей [6] [8] .

Применение

Поезд на электромагнитной подвеске

Электромагнитная индукция широко реализуется в природе и нашла множество применений в технике. На её эффекте основано устройство электрических генераторов, преобразующих энергию из механической в электрическую, что применяется на большей части электростанций различных типов и генерирует практически всю электроэнергию, производимую человечеством. По тому же принципу работают электрические трансформаторы, преобразующие переменный ток одного напряжения в ток другого. Также действие электромагнитной индукции лежит в основе электродвигателей, которые широко используются в различных областях техники, производства и быта от холодильников, до электрического транспорта. Ещё один тип транспорта на эффекте индукции — транспорт на электромагнитной подвеске. Вдобавок, на электромагнитной индукции основано действие индукционных нагревателей, используемых как в быту, так и в промышленности [8] .

Нашёл этот эффект применение и в науке: он используется в ускорителях частиц, а также как источник и способ удержания плазмы в термоядерных реакторах. Вдобавок на электромагнитной индукции действуют некоторые измерительные приборы [8] .

Открытие электромагнитной индукции, а точнее последовавшее за ним формулирование теории электромагнитного поля привело в конечном счёте к созданию радио, лежащего в основе большинства систем беспроводной связи в мире [7] .

Примечания

  1. ↑ 1,01,1Физическая энциклопедия, 1999, с. 537.
  2. ↑Electromagnetic induction(англ.). Britannica (13 сентября 2022). Дата обращения: 16 февраля 2023.
  3. ↑ 3,03,1БРЭ, 2017, с. 314.
  4. ↑ 4,04,14,2Электромагнитная индукция(неопр.) . Fizi4ka.ru — Физика для чайников. Дата обращения: 16 февраля 2023.
  5. ↑ 5,05,15,25,3Кто и когда открыл явление или закон электромагнитной индукции – история(рус.) . Исторический документ (31 мая 2022). Дата обращения: 16 февраля 2023.
  6. ↑ 6,06,1Явление электромагнитной индукции(рус.) . Фоксфорд. Дата обращения: 16 февраля 2023.
  7. ↑ 7,07,17,2Злыгостев А. С.Открытие электромагнитной индукции(рус.) . Библиотека по физике. Дата обращения: 16 февраля 2023.
  8. ↑ 8,08,18,28,3Физическая энциклопедия, 1999, с. 538.
  9. ↑К истории открытия явления электромагнитной индукции(рус.) . Объединение учителей Санкт-Петербурга (6 июля 2011). Дата обращения: 16 февраля 2023.

Литература

  • Миллер М. А., Пермитин Г. В. Электромагнитная индукция. Физическая энциклопедия.
  • Электромагнитная индукция / В. С. Булыгин // Шервуд — Яя. — М. : Большая российская энциклопедия, 2017. — С. 314. — (Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов ; 2004—2017, т. 35). — ISBN 978-5-85270-373-6.

Данная статья имеет статус «готовой». Это не говорит о качестве статьи, однако в ней уже в достаточной степени раскрыта основная тема. Если вы хотите улучшить статью — правьте смело!

  • Знание.Вики:Готовые статьи по науке
  • Все статьи
  • Электромагнитные явления
  • Страницы, использующие волшебные ссылки ISBN

От чего зависит величина и направление индукционного тока

Правило Ленца, правило для определения направления индукционного тока: Индукционный ток, возникающий при относительном движении проводящего контура и источника магнитного поля, всегда имеет такое направление, что его собственный магнитный поток компенсирует изменения внешнего магнитного потока, вызвавшего этот ток. Сформулировано в 1833 г. Э. Х. Ленцем.

Если ток увеличивается, то и магнитный поток увеличивается.

Если индукционный ток направлен против основного тока.

Если индукционный ток направлен в том же направлении, что и основной ток.

Индукционный ток всегда направлен так, чтобы уменьшить действие причины его вызывающей.

Правило Ленца

В современном мире электронная техника развивается семимильными шагами. Каждый день появляется что-то новое, и это не только небольшие улучшения уже существующих моделей, но и результаты применения инновационных технологий, позволяющих в разы улучшить характеристики.

Не отстает от электронной техники и приборостроительная отрасль – ведь чтобы разработать и выпустить на рынок новые устройства, их необходимо тщательно протестировать, как на этапе проектирования и разработки, так и на этапе производства. Появляются новая измерительная техника и новые методы измерения, а, следовательно – новые термины и понятия.

Для тех, кто часто сталкивается с непонятными сокращениями, аббревиатурами и терминами и хотел бы глубже понимать их значения, и предназначена эта рубрика.

Правило Ленца определяет направление индукционного тока и гласит:

Индукционный ток всегда имеет такое направление, что он ослабляет действие причины, возбуждающей этот ток.

Правило сформулировано в 1833 году Э. Х. Ленцем. Позднее оно было обобщено на все физические явления в работах Ле Шателье (1884 год) и Брауна (1887 год), это обобщение известно как принцип Ле Шателье — Брауна.

Эффектной демонстрацией правила Ленца является опыт Элиу Томсона.

Физическая суть правила

\Phi

Согласно закону электромагнитной индукции Фарадея при изменении магнитного потока , пронизывающего электрический контур, в нём возбуждается ток, называемый индукционным. Величина электродвижущей силы, ответственной за этот ток, определяется уравнением:

\mathcal E^<ind></p>
<p> = — \frac<d\Phi>» /></p>
<p>где знак «минус» означает, что ЭДС индукции действует так, что индукционный ток препятствует изменению потока. Этот факт и отражён в правиле Ленца.</p>
<p>Правило Ленца носит обобщённый характер и справедливо в различных физических ситуациях, которые могут отличаться конкретным физическим механизмом возбуждения индукционного тока. Так, если изменение магнитного потока вызвано изменением площади контура (например, за счёт движения одной из сторон прямоугольного контура), то индукционный ток возбуждается силой Лоренца, действующей на электроны перемещаемого проводника в постоянном магнитном поле. Если же изменение магнитного потока связано с изменение величины внешнего магнитного поля, то индукционный ток возбуждается вихревым электрическим полем, появляющимся при изменении магнитного поля. Однако в обоих случаях индукционный ток направлен так, чтобы скомпенсировать изменение потока магнитного поля через контур.</p>
<p>Если внешнее магнитное поле, пронизывающее неподвижный электрический контур, создаётся током, текущим в другом контуре, то индукционный ток может оказаться направлен как в том же направлении, что и внешний, так и в противоположном: это зависит от того, уменьшается или увеличивается внешний ток. Если внешний ток увеличивается, то растёт создаваемое им магнитное поле и его поток, что приводит к появлению индукционного тока, уменьшающего это увеличение. В этом случае индукционный ток направлен в сторону, противоположную основному. В обратном случае, когда внешний ток уменьшается со временем, уменьшение магнитного потока приводит к возбуждению индукционного тока, стремящегося увеличить поток, и этот ток направлен в ту же сторону, что и внешний ток.</p>
<h4>Материалы по теме:</h4>
<ul>
<li>9-й Международный симпозиум ЭМС-2011</li>
<li>Устройства органической электроники будут компактными, гибкими и прозрачными</li>
<li>Приглашение на Международную научно-практическую конференцию «Преобразование электроэнергии и управление двигателями»</li>
</ul>
<div class='yarpp yarpp-related yarpp-related-website yarpp-template-list'>
<!-- YARPP List -->
<div>Похожие публикации:</div><ol>
<li><a href=Где используется явление полного отражения

  • Почему в автокаде на листе не отображается тип линий
  • Почему именно электроны участвуют в создании электрического тока в проводниках
  • Правило левой руки физика 9 класс
  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *