Механические волны и их основные характеристики
Будьте внимательны! У Вас есть 10 минут на прохождение теста. Система оценивания — 5 балльная. Разбалловка теста — 3,4,5 баллов, в зависимости от сложности вопроса. Порядок заданий и вариантов ответов в тесте случайный. С допущенными ошибками и верными ответами можно будет ознакомиться после прохождения теста. Удачи!
Система оценки: 5 балльная
Список вопросов теста
Вопрос 1
В какой среде могут распространяться механические волны?
Варианты ответов
- В твёрдых телах
- В жидкостях
- В газах
- В вакууме
Вопрос 2
Какие волны нельзя отнести к механическим волнам?
Варианты ответов
- Волны на поверхности воды
- Звуковые волны
- Электромагнитные волны
- Упругие волны
Вопрос 3
Выберите верное (-ые) утверждение (-я).
А: в бегущей волне происходит перенос энергии
Б: В бегущей волне происходит перенос вещества
Варианты ответов
Вопрос 4
Поперечной называют такую волну, в которой частицы
Варианты ответов
- Колеблются в направлении распространения волны
- Колеблются в направлении, перпендикулярном направлению распространения волны
- Движутся по кругу в плоскости, параллельной направлению распространению волны
- Движутся по кругу в плоскости, перпендикулярной направлению распространению волны
Вопрос 5
В каких направлениях движутся частицы среды при распространении продольных механических волн?
Варианты ответов
- По направлению распространения волны
- В направлениях, перпендикулярных направлению распространения волны
- В направлении противоположном направлению распространения волны
- По направлению и противоположно направлению распространения волны
Вопрос 6
В каких направлениях совершаются колебания в поперечной волне?
Варианты ответов
- Во всех направлениях
- Вдоль направления распространения волны
- Перпендикулярно направлению распространения волны
- И по направлению распространения волны, и перпендикулярно распространению волны
Вопрос 7
В какой среде могут распространяться упругие поперечные волны?
Варианты ответов
- В твёрдых телах
- В жидкостях
- В газах
- В вакууме
Вопрос 8
В какой среде могут распространяться упругие продольные волны?
Волновые явления. Характеристики волны
В этом видеоуроке мы поговорим о том, как механические колебания распространяются в среде. Узнаем, что называется механической волной и познакомимся с её основным свойством. Узнаем, чем отличаются друг от друга продольные и поперечные волны. А также рассмотрим основные характеристики волнового движения.
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет.
Получите невероятные возможности
1. Откройте доступ ко всем видеоурокам комплекта.
2. Раздавайте видеоуроки в личные кабинеты ученикам.
3. Смотрите статистику просмотра видеоуроков учениками.
Получить доступ
Конспект урока «Волновые явления. Характеристики волны»
Помимо обычного колебательного движения в узкой области пространства, возможно ещё и распространение этих колебаний в среде. Вы знаете, что отдельные частицы любого тела — твёрдого, жидкого или газообразного — взаимодействуют друг с другом. Поэтому если какая-либо частица тела начинает совершать колебательные движения, то в результате взаимодействия между частицами это движение начинает с некоторой скоростью распространяться во все стороны.
Процесс распространения колебаний в пространстве с течением времени называется волновым процессом. А последовательное возникновение колебаний в точках, удалённых от источника, называется волной.
Наиболее отчётливо главные особенности волнового движения можно увидеть, если рассматривать волны на поверхности воды. Например, если мы бросим камень в воду, то в месте его падения по воде пойдут круги — это волны. Если на пути такой волны поместить поплавок, то он начнёт колебаться вверх-вниз, оставаясь при этом практически на месте. Из такого простого наблюдение вытекает одно из важнейших свойств волн: при возбуждении волны происходит процесс распространения колебаний, но не перенос вещества.
Колеблющееся тело, возбуждающее волновое движение частиц среды, называется источником волны или вибратором.
Механизм образования волны можно представить следующим образом. Источник колебаний (например, камертон) воздействует на частицы упругой среды, соприкасающиеся с ним, и заставляет их совершать вынужденные колебания. Среда вблизи источника деформируется, и в ней возникают силы упругости, препятствующие деформации. Если частицы среды сближаются, то возникающие силы их отталкивают, а если удаляются друг от друга, то, наоборот, притягивают. Постепенно силы будут действовать на все более удалённые от источника частицы среды, приводя их в колебательное движение. В результате оно будет распространяться в виде волны.
Механические волновые явления имеют огромное значение в повседневной жизни людей. К этим явлениям относится не только распространение звуковых колебаний, благодаря которым мы можем слышать на расстоянии. Мелкая рябь на поверхности озера и огромные океанские волны — это тоже механические волны, хотя и иного типа.
Мы будем рассматривать только бегущие волны. Их основное отличие от других волн заключается в том, что они, распространяясь в пространстве, переносят энергию без переноса вещества.
В зависимости от направления колебаний частиц по отношению к направлению, в котором распространяется волна, различают два вида волн: продольные и поперечные.
Поперечной называется волна, если частицы среды совершают колебания в направлении, перпендикулярном к направлению распространения волны.
Рассмотрим подробнее процесс образования поперечных волн на примере волновой машины. В качестве колеблющихся частиц здесь выступают шарики, связанные друг с другом системой пружин (они спрятаны сзади). Источником колебаний будет выступать наша рука, вращающая рукоятку. Предположим, что вызванные нами колебания будут происходить вдоль оси игрек по гармоническому закону.
Обозначим буквами А, В, С и так далее частицы, отстоящие друг от друга на расстоянии в четверть периода, то есть на расстоянии, проходимом волной за одну четвёртую часть периода колебаний, совершаемых частицами. Будем считать, что волна распространяется вдоль оси икс слева направо. Заставим первую частицу двигаться вверх. Из-за возникающих сил упругости она потянет за собой остальные частицы. Однако на возникновение деформации и сил упругости потребуется некоторое время. Поэтому спустя четверть периода частица А достигнет своего крайнего верхнего положения. В этот момент своё движение вверх начнёт частица В. Спустя ещё четверть периода первая частица будет проходить положение равновесия, двигаясь в направлении сверху вниз. Частица В достигнет своего крайнего верхнего положения. И в этот момент начнёт своё движение вверх частица, обозначенная нами буквой С. Спустя ещё четверть периода первая частица закончит полный цикл колебания и будет находиться в таком же состоянии движения, как и в начальный момент. А вся волна к этому моменту времени, достигнет частицы D. Теперь все наши частицы расположены так, что образуют волну, состоящую из впадины и горба. В дальнейшем, благодаря силам взаимодействия каждая частица в цепочке будет повторять движение первой, но с некоторым запаздыванием, которое будет тем больше, чем дальше находится частица от источника волны.
Отметим, что поперечные волны возникают только в твёрдых телах, так как сдвиг слоёв относительно друг друга в газах и жидкостях не приводит к появлению сил упругости.
Но колебания частиц среды могут происходить не только перпендикулярно, но и вдоль направления распространения волны. Такие волны называются продольными.
Пронаблюдать закономерности продольных волн мы можем также на волновой машине, заставив шарики-частицы двигаться не вверх-вниз, а вправо-влево. Как видно, при прохождении продольной волны в среде создаются чередующиеся сгущения и разрежения частиц, перемещающиеся в направлении распространения волны с некоторой конечной скоростью.
Так как растягиваться и сжиматься может любая среда, то продольные механические волны могут распространяться в любых средах — твёрдых, жидких и газообразных.
На основании рассмотренных нами опытов мы можем сделать несколько очень важных выводов:
Во-первых, смещение каждой точки от положения равновесия происходит с течением времени периодически.
Во-вторых, смещения всех точек в каждый момент времени периодически изменяются от точки к точке, то есть являются периодической функцией координат.
А в-третьих, колебания частиц среды, в которой распространяется волна, являются вынужденными колебаниями, частота которых равна частоте колебаний источника волны.
Однако скорость распространения волны зависит от среды, в которой она распространяется. В основном это связано с тем агрегатным состоянием, в котором находится вещество. Напомним, что в твёрдых телах частицы расположены близко друг к другу и связь между ними велика. Следовательно, и скорость распространения волны в твёрдых телах будет самой высокой. В жидкостях частицы расположены дальше друг от друга и слабее взаимодействуют друг с другом. Поэтому скорость волн в них будет меньше, чем в твёрдых телах, но гораздо больше, чем в газах, так как в последних взаимодействие между частицами практически отсутствует.
Все время, пока существует волна, частицы среды совершают колебания около своих положений равновесия и смещаются от него не более чем на амплитуду. При этом различные частицы колеблются со сдвигом по фазе, за исключением тех, положения равновесия которых находятся друг от друга на расстоянии υТ. Так вот, расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, называется длиной волны. Очевидно, что длина волны равна тому расстоянию, на которое распространяется волна за период:
Необходимо помнить, что в действительности колеблются не только частицы, расположенные вдоль оси, а совокупность частиц, заключённых в некотором объёме. Распространяясь от источника колебаний, волновой процесс охватывает все новые и новые части пространства. Геометрическое место точек, до которых доходят колебания к данному моменту времени, называется фронтом волны (или волновым фронтом). Он представляет собой ту поверхность, которая отделяет часть пространства, уже вовлечённую в волновой процесс, от области, в которой колебания ещё не возникли
Геометрическое место точек, колеблющихся в одинаковой фазе, образуют волновую поверхность. Её можно провести через любую точку пространства, охваченного волновым процессом. Поэтому волновых поверхностей существует бесконечное множество, в то время как волновой фронт в каждый момент времени только один. Кроме этого, волновой фронт всё время движется в то время, как волновые поверхности остаются неподвижными.
Волновые поверхности могут быть любой формы. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях называется плоской или сферической. В плоской волне волновые поверхности представляют собой систему параллельных друг другу плоскостей, перпендикулярных к направлению распространения волны. Такие волны можно получить на поверхности воды в плоской ванночке с помощью колебаний плоского стержня.
В сферической волне волновые поверхности представляют собой концентрические сферы. Такая волна распространяется с одинаковой скоростью по всем направлениям. Сферическую волну может создать пульсирующий в однородной упругой среде шар.
А теперь, для закрепления нового материала решим с вами такую задачу. На рисунке изображён участок натянутого резинового шнура, по которому распространяется поперечная волна со скоростью 8 м/с. Определите частоту колебаний её источника.
В заключение отметим, что некоторые волновые процессы, наблюдаемые в природе, нередко переносят огромную энергию и являются причиной разрушений. К ним, например, относятся морские волны и, особенно, цунами. А также сейсмические волны, распространяющиеся в земной коре при землетрясениях или мощных взрывах.
Что не относится к характеристикам волн
ГЛАВА 8
Характеристики волн и течения
При движении против волнения не высота и не длина волн по отдельности, а их крутизна уменьшает скорость яхты и представляет опасность для плавания. Длинная волна, как бы высока она ни была, не опасна для любой маленькой яхты и не должна никого беспокоить, кроме страдающих морской болезнью.
Крутизна характеризуется отношением длины волны к ее высоте. И, поскольку размеры волны зависят от ее высоты, а скорость движения воды — от длины, то эти характеристики должны рассматриваться одновременно — по их влиянию на продвижение и безопасность плывущей яхты. Например, говорят, что метровая волна длиной 20 метров имеет крутизну 1/20. Крутизна может быть выражена в процентах, тогда для предыдущего примера крутизна равна (1/20) х 100%, то есть 5%.
Крутизна редко превышает 1/10 (10%), при достижении такой величины начинается обрушение гребня и волна разрушается (Как правило, обрушение происходит при гораздо меньших крутизнах (Прим. перев)). Теоретически максимально возможная крутизна равна 1/7 (14,3%) и не зависит от высоты волны — будет ли она 10 метров или только 0,5 метра; в море волны с такой крутизной практически никогда не встречаются (Сказанное относится к волнам на глубокой воде при отсутствии течений я мелководий. Данные измерений, выполненных в последнее время показывают, что при особых условиях волнообразования, возможно, и встречаются волны с крутизной, близкой к теоретической. (Прим. перев.)).
В крутых волнах орбитальная скорость на гребнях (скорость вращения частиц на гребнях, рис. 35) гораздо больше орбитальной скорости на мелководье, вычисленной теоретически. Когда на гребнях орбитальная скорость превышает скорость самой волны, частицы воды, так сказать, пытаются ее обогнать, и в этот момент происходит обрушение.
В определение крутизны не входит максимальный градиент волнового склона (Градиент волнового склона в заданном направлении называется уклоном. (Прим перев.)). Этот градиент может существенно изменяться и в некоторых случаях бывает направлен к гребням почти вертикально, хотя с такими волнами маленьким судам приходится сталкиваться редко.
Форма волн на поверхности воды может существенно отличаться от большинства других волн в природе. Обычно гребни круче и уже, а ложбины более плоские и длинные. Передний склон волны обычно круче, чем задний (тыловой). На рис. 44 показана типичная форма ветровой волны.
Рис. 44. Типичная форма морской волны Гребни уже ложбины, передние склоны круче тыловых
Влияние мелководья
Когда волны набегают на мелководье, где глубины менее половины длины волн, волнение претерпевает значительное изменение. Мелководье не влияет на период волн, но это единственная характеристика, которая остается неизменной. Изменяется форма и уменьшаются длина и скорость волны. Гребни становятся круче и уже, а ложбины площе. В результате на поверхности воды видны изолированные волны, а не следующие друг за другом волновые системы.
Пологие волны могут проходить мелководье без обрушения, но при достижении максимальной крутизны гребни будут опрокидываться. Широко известно, что по обрушению волн можно судить о наличии мелководий, которые не обязательно возвышаются над поверхностью воды.
Причина этих изменений — уменьшение скорости волны из-за ограниченной глубины. Это хорошо видно при наблюдении за лодками, плывущими по очень мелкому месту. При движении любой лодки создаются корабельные волны, которые перемещаются со скоростью лодки. На очень мелкой воде скорость корабельной волны ограничена глубиной воды. Иногда корабельная волна становится крутой, тогда она опрокидывается, сильно препятствуя попыткам ускорить движение лодки.
Рефракция волн
Замедление волн при косом подходе к мелководью приводит к рефракции. Из-за рефракции направление фронта волн, независимо от первоначального угла подхода, разворачивается параллельно берегу. Почти всем хорошо известен вид обрушивающейся гряды волн, движущейся примерно параллельно береговой линии криволинейного залива. Возникает вопрос: «Почему волны не продолжают идти прямолинейным путем, как в открытом море?»
Рис. 45. При выходе волн на мелководье замедление одного конца фронта раньше другого вызывает рефракцию
Рефракция вызывается замедлением движения фронта волн при приближении к мелководью. Когда фронт волн подходит под некоторым углом, то вначале тормозится ближайший к берегу участок фронта, а другой его конец в это время идет с прежней скоростью. Постепенно, с уменьшением глубины, внутренняя часть фронта начинает двигаться медленнее, чем внешняя, и наконец весь фронт волн в целом разворачивает к линии берега; это чем-то напоминает поворот шеренги войск, когда внутренний ее конец шагает на месте, а внешний марширует полным шагом.
На рис. 45 показана рефракция волн, бегущих с глубокой воды на внезапно появившееся мелководье. Конечно, в природе между различными глубинами редко имеется четкая граница, но для наших целей этот пример наиболее удобен. Один конец волнового фронта замедляется раньше, чем другой, что, в свою очередь, приводит к уменьшению длины волны на этом участке, и в результате фронт волн частично поворачивает к береговой линии. Общее изменение фронта волн полностью зависит от относительных длин волн на глубокой и мелкой воде (см. также рис. 83 и 84).
На рис. 46 сделана попытка показать подход волн к заливу с постепенно изменяющимися глубинами. Гребни волн (показаны штриховыми линиями), приближаясь к пляжу, стремятся к положению, параллельному линии берега.
Рис. 46. Волны, набегающие на пляж в заливе. Пунктир — гребни волн, сплошные линии — направление их движения
Волновые течения
Сплошные линии, начерченные на рис. 46 под прямым углом к гребням, показывают генеральное направление движения волн Из рисунка видно, что эти линии немного сходятся около мысов и расходятся в середине залива В месте схождения этих линий можно ожидать более крупные волны. Там, где линии расходятся, волны будут более низкие Это явление совершенно не зависит от наличия волнозащитных сооружений и так же справедливо для залива, открытого волнению
Указанные изменения высот волн имеют большое значение для плавающих вдоль криволинейного берега, на который набегают большие волны. Волны переносят большие массы воды, и при их концентрации около препятствия (такого, как берег) скапливаются излишки воды. Эти излишки уносят течения, идущие от района с более высокими волнами к районам с более низкими волнами. На рис. 47 изображено направление этих течений в заливе, показанном на рис 46. Обычно такие течения слабые и часто замаскированы более сильными приливными потоками, но при определенных условиях эти вдольбереговые течения могут быть достаточно значительными, особенно если волны длинные.
Рис. 47. Волновые течения, образующиеся в заливе, показанном на рис. 46. Концентрация волн у мысов и расхождение в заливе вызывает неравномерное распределение воды и течения
Во многих заливах для защиты от эрозии вдольбереговыми течениями имеются волноломы или низкие молы, расположенные под прямым углом к береговой .линии. Об эффективности этих сооружений и о силе течений можно судить по количеству осадков, переносимых вдоль волноломов.
При переносе воды волнами, идущими к препятствию (берегу), средний уровень воды по сравнению с открытой частью залива повышается. Эта неестественная разница в уровне воды временами выравнивается с помощью разрывных течений, несущих воду в море. Из-за изменчивости высот волн разрывные течения обычно пульсируют, их скорость может достигать двух узлов
Разрывные течения движутся от берега узкими полосами против набегающих волн и иногда с высокого наблюдательного пункта могут быть видны как полосы пены, относимые в море от береговой прибойной зоны. На наличие разрывных течений может указывать узкая полоса более крутых волн, распространяющихся в море. Разрывные течения проявляются случайным образом, но на некоторых пляжах, обычно около волноломов и пирсов, течения вырывают каналы в песке, и тогда вода идет по этим каналам.
Рефракция не всегда разворачивает волны абсолютно параллельно береговой линии. Часто волны разбиваются под некоторым углом к берегу, тогда вдоль него может возникнуть течение. Генеральное направление течения и волн будет примерно параллельным берегу. На рис. 48 показано возможное направление течений.
Рис. 48. Вдольбереговое течение, вызываемое волнами
Маловероятно, чтобы волновые течения воздействовали на яхты, так как эти течения проявляются вблизи берега, где яхты обычно не осмеливаются плавать. Однако в слабый ветер, три подходе длинных волн зыби, вдольбереговые течения могут наблюдаться достаточно далеко от берега и их можно использовать во время соревнований. Более того, необходимо помнить, что при наличии препятствий типа пирса или волнолома течение будет усиливаться и может отклоняться в сторону моря.
Парусные лодки, видимо, более подвержены влиянию разрывных, чем вдольбереговых течений. Разрывные течения распространяются гораздо дальше в море, но их сила и даже направление гораздо менее„предсказуемы во всех случаях, кроме движения по подводным каналам.
Отражение волн
На глубокой воде волны могут отражаться от препятствий. Отраженная волна идет под тем же углом, что и набегающая, это показано на рис. 49.
Рис. 49. Отражение волн, подходящих под углом к стенке. Угол подхода i равен углу отражения r
Если препятствие, например стенка или откос, расположено под прямым углом к направлению движения волны (или параллельно ее фронту), то волны отражаются точно назад. Отраженные волны накладываются на набегающие, гася их в месте совпадения гребня с ложбиной и увеличивая при совпадении гребней. Образованные таким образом волны известны как стоячие, или толчея.
Одно из наиболее интересных свойств стоячих волн заключается в том, что если фронт набегающей волны и препятствия параллельны, то образовавшиеся стоячие волны имеют только вертикальное движение и не имеют горизонтального, то есть они движутся вверх и вниз, не перемещаясь вперед. Высота стоячих волн в два раза больше набегающих, а поскольку длина одинаковая, то крутизна также в два раза больше.
Разница между обычными и стоячими волнами очень хорошо видна при сравнении движения лодок, пришвартованных к сквозным причалам и сплошным стенкам. В первом случае на. лодки влияет движение волны, и они попеременно дергаются и поднимаются на швартовых, во втором случае лодки поднимаются вверх и вниз почти вертикально, прыгая больше, чем на обычных неотраженных волнах.
При идеальных условиях (когда набегающие волны имеют одинаковые длины) отраженная волновая картина правильная, но обычно такие условия не наблюдаются, и отраженные волны при встрече с набегающими образуют крутые холмы, расположенные беспорядочно — без видимой закономерности или системы. Эта толчея может распространяться на значительное расстояние от препятствия. Плавание на таком волнении оправдано только при обходе сильного встречного течения или существенном сокращении пути, в остальных случаях пребывание в таких волнах является большой ошибкой. При сильном волнении и ветре беспорядочные и крутые волны не только опасны для маленькой яхты. При «подпрыгивании» почти весь ветер «выбьется» из парусов и развернет яхту так, что ее скорость будет весьма незначительна по сравнению со скоростью, которую она могла бы развить при таком же ветре, но менее суровых волновых условиях.
Если волны на глубокой воде ударяются о стенки или береговой обрыв под углом, то волновая картина аналогична показанной на рис. 50.
Рис. 50. Картина, образующаяся при косом отражении волн от стенки. Отраженные волны, сталкиваясь с набегающими, образуют пучности (черные кружки) и ложбины (светлые кружки) удвоенной высоты и глубины
Набегающие гребни волн (сплошные линии) встречаются с отраженными (штрихпунктирные линии) в различных точках, показанных на рисунке черными кружками. В этих местах высота волн будет равна удвоенной высоте набегающей волны. Между этими пиками находятся впадины (показанные на рисунке белыми кружками), равные удвоенной глубине ложбин набегающих волн. Крайне маловероятно, что в природе картина набегающих волн будет настолько регулярна, как это показано на диаграмме, но принцип сохраняется.
Дифракция волн
Волны обладают также свойством, известным под названием «дифракция». Из-за дифракции волны после прохождения препятствия типа волнолома разворачиваются под прямым углом к своему первоначальному направлению и распространяются на гладкую до этого поверхность (Обычно дифракцией называют изменение структуры ветровых волн при огибании ими препятствий. Последнее определение не противоречит приведенному автором (Прим перев.)). Например, после входа в гавань волна без всякого отражения веерообразно распространяется по поверхности, защищенной от непосредственного воздействия волн. Когда волна дифрагирована, ее масса распределена на большем пространстве и, следовательно, высота уменьшается.
Наиболее важным свойством дифрагированной волны, огибающей конец стенки или волнолома, является увеличение высоты внутри входа и на прямой линии к нему. На рис. 51, где толщина линии соответствует высоте волн, видны места возможного увеличения высоты и представлена дифракция внутри гавани.
Рис. 51. Дифракция волн при входе в гавань. За стенкой изменяется направление фронта волны. Высота волны схематически показана толщиной линии, изображающей фронт волны
При следовании в порт на попутном волнении важно помнить об увеличении высот волн у краев входа.
Влияние ветра и течения
Умеренный ветер, дующий навстречу быстрому течению, будет всегда вызывать крутые, короткие, беспорядочные волны, которые при достаточно сильном ветре и течении опрокидываются. Течение, идущее навстречу волнам, замедляет и укорачивает их. Волны -как бы сжимаются в горизонтальном направлении, при этом они, естественно, становятся круче.
Большинство яхтсменов хорошо знает о крутом беспорядочном волнении на приливном потоке, направленном против ветра, а по крутизне волн можно судить о том, где течение достигает наибольшей силы. В главе 6 при обсуждении появления ряби от слабых ветров и роли течения в этом процессе подчеркивалось, что учет относительных скоростей и направлений ветра и течений необходим при использовании внешних признаков для выбора наиболее благоприятного курса. Аналогичные соображения важны и при встрече с крупными волнами.
Относительно крутые и, возможно, обрушивающиеся волны могут означать или наличие более сильного течения, или, при том же течении, более сильный ветер, чем в прилегающих районах. Важно представлять, который из этих двух взаимоисключающих факторов вызывает увеличение крутизны волн. Если это полоса более сильного ветра, то он может скоро исчезнуть и при выборе курса его не стоит принимать во внимание. Если увеличение крутизны вызвано течением, то, вероятно, оно останется постоянным дольше и поэтому может быть более надежным помощником. Топография района, а также информация о ветре и течениях из соответствующих глав должны помочь в формировании мнения по затронутым вопросам.
Течение против ветра
На рис. 52 показаны волны на поверхности воды, где постоянный ветер дует против течения. Тонкими линиями представлены относительно пологие волны (течение слабое), толстыми — более крутые (течение более сильное).
Рис. 52. Изменение высоты волны на течении против ветра
Если течение постоянно, а скорость ветра переменна, то более крутые волны будут наблюдаться там, где сильнее ветер.
Если колебания крутизны волны вызваны различной скоростью течения, то у яхты, идущей в лавировку, обычно лучший ход в районе с крутыми волнами. Здесь может быть единственное исключение — когда встречное влияние очень крутых волн компенсирует преимущество от попутного течения или когда большая крутизна волн заставляет маленькую яхту принимать на борт чрезмерное количество воды и брызг.
При тех же условиях на фордевинде (и, следовательно, против течения) лучше остаться на более пологих волнах и более слабом встречном течении. Единственным исключением из этого правила является случаи, когда яхте, глиссирующей при попутном ветре, помогают более крутые волны. В этом случае дополнительная скорость относительно воды может быть важнее, чем проигрыш из-за более сильного встречного течения.
При следовании в галфвинд через изменчивое волнение редко имеется возможность значительно изменить курс, поэтому прямой курс — обычно самый лучший. Следовательно, в этом случае надо приспосабливаться к окружающей обстановке, но более сильное течение, выталкивая яхту на ветер к более крутым волнам, естественно, позволит уваливаться немного больше и все-таки идти тем же путем. В сильный ветер выбор правильного курса через волны в галфвинд, разумеется, почти целиком зависит от глиссирующих способностей яхты: если ветер направлен незначительно к носу, то для лучшего, чем на спокойной воде (где течение слабое), глиссирования можно позволить более сильному течению вынести лодку на ветер, а не уваливаться от него.
Когда течение идет навстречу ветру, то более крутые волны вызываются более сильным ветром, а не течением, поэтому рекомендация выбора района зависит от типа яхты и общей силы ветра. Если ветер позволяет яхте идти в лавировку с хорошей скоростью, то никакой выгоды от плавания в районе с более крутыми волнами и сильным ветром не будет, так как яхта может достаточно сильно замедляться. Вероятно, на яхте дочти любого типа выгодно держаться гладкой воды, исключением может быть лодка с длинным и узким корпусом с некоторым дифферентом на корму. Если яхта может управляться на полных курсах, то всегда выгодней направляться к более крутым волнам; на галфвинде это выгодно до тех пор, пока волны не начнут затруднять устойчивое глиссирование.
Течение по ветру
На рис. 53 показаны волны на поверхности воды при постоянном ветре по течению. В отличие от ситуации, изображенной на рис. 52, здесь более пологие волны указывают да сильное течение, а более крутые — на более слабое. С другой стороны, если течение постоянно, а сила ветра изменчива, то при совпадающем с ветром течении более крутые волны образуются при более сильном ветре. Если при ситуации, изображенной на рис. 53, яхта идет в лавировку, то, держась района с более крутыми волнами, она почти всегда получает преимущество от пребывания в менее сильном встречном течении. Такой курс будет невыгоден только при очень крутых волнах, существенно замедляющих яхту и заплескивающих значительное количество воды, но при течении по ветру волны такой крутизны встречаются редко.
Рис. 53. Изменение высоты волны на течении по ветру
При полном курсе постоянным ветром и переменным попутным течением обычно выгодно идти туда, где водная поверхность наиболее гладкая, а течения — более сильные и благоприятные. Исключением является случай, когда в районе с более слабыми течениями крутые волны могут быть использованы для глиссирования или сёрфинга.
В галфвинд при ветре немного к носу, выходя на более крутые волны, выгодно немного привестись, чтобы компенсировать влияние более сильного, идущего по ветру (рис. 53) течения, где волны положе. Однако если на крутых волнах много вторичных волн, которые, вероятно, будут тормозить идущую против них на ветер яхту, то лучше сделать обратный маневр и привестись яа более гладкой воде.
Если на течении по ветру более крутые волны возникли из-за более сильного ветра, а не слабого течения, то от силы ветра зависит, что выгоднее: идти ли в более сильный ветер и крутые волны или в более легкий ветер и гладкую воду. Этот выбор всегда лотерея, и очень многое здесь зависит от типа яхты и ее возможностей: более мощная лодка выиграет от более сильного ветра и на нее не будут столь отрицательно влиять встречные крутые волны. При этих условиях на полных курсах или галфвинде всегда выгодней идти в более сильный ветер и крутые волны, за исключением того случая, когда волны настолько круты, что затрудняют управление яхтой.
Таблица 1
Понятие волна и её характеристики
Волной называют колебания, распространяющиеся в пространстве с течением времени. Важнейшей характеристикой волны является ее скорость. Волны любой природы не распространяются в пространстве мгновенно. Их скорость конечна. При распространении механической волны движение передается от одного участка тела к другому. С передачей движения связана передача энергии. Основное свойство всех волн независимо от их природы состоит в переносе ими энергии без переноса вещества. Энергия поступает от источника, возбуждающего колебания начала шнура, струны и т. д., и распространяется вместе с волной. Через любое поперечное сечение непрерывно течет энергия.
Эта энергия слагается из кинетической энергии движения участков шнура и потенциальной энергии его упругой деформации. Постепенное уменьшение амплитуды колебаний, при распространении волны связано с превращением части механической энергии во внутреннюю. Если заставить конец растянутого резинового шнура колебаться гармонически с определенной частотой v, то эти колебания начнут распространяться вдоль шнура. Колебания любого участка шнура происходят с той же частотой и амплитудой, что и колебания конца шнура. Но только эти колебания сдвинуты по фазе друг относительно друга. Подобные волны называются монохроматическими.
Электромагнитные волны
Теперь перейдем к рассмотрению непосредственно электромагнитных волн. Фундаментальные законы природы могут дать гораздо больше, чем заключено в тех фактах, на основе которых они получены. Одним из таких относятся открытые Максвеллом законы электромагнетизма. Среди бесчисленных, очень интересных и важных следствий, вытекающих из максвелловских законов электромагнитного поля, одно заслуживает особого внимания. Это вывод о том, что электромагнитное взаимодействие распространяется с конечной скоростью. Согласно теории близкодействия Перемещение заряда меняет электрическое поле вблизи него. Это переменное электрическое поле порождает переменное магнитное поле в соседних областях пространства. Переменное же магнитное поле в свою очередь порождает переменное электрическое поле и т. д.
Перемещение заряда вызывает, таким образом, «всплеск» электромагнитного поля, который, распространяясь, охватывает все большие области окружающего пространства. Максвелл математически доказал, что скорость распространения электромагнитных волн равна скорости света в вакууме. Длина электромагнитной волны в вакууме обратно пропорциональна частоте и выражается через скорость света. Представьте себе, что электрический заряд не просто сместился из одной точки в другую, а приведен в быстрые колебания вдоль некоторой прямой. Тогда электрическое поле в непосредственной близости от заряда начнет периодически изменяться.
Период этих изменений, очевидно, будет равен периоду колебаний заряда. Переменное электрическое поле будет порождать периодически меняющееся магнитное поле, а последнее в свою очередь вызовет появление переменного электрического поля уже на большем расстоянии от заряда и т.д. В каждой точке пространства электрические и магнитные поля меняются во времени периодически. Чем дальше расположена точка от заряда, тем позднее достигнут ее колебания полей. Следовательно, на разных расстояниях от заряда колебания происходят с различными фазами. Направления колеблющихся векторов напряженности электрического поля и индукции магнитного поля перпендикулярны к направлению распространения волны. Электромагнитная волна является поперечной. Электромагнитные волны излучаются колеблющимися зарядами.
При этом существенно, что скорость движения таких зарядов меняется со временем, т. е. что они движутся с ускорением. Наличие ускорения-главное условие излучения электромагнитных волн. Электромагнитное поле излучается заметным образом не только при колебаниях заряда, но и при любом быстром изменении его скорости. Интенсивность излученной волны тем больше, чем больше ускорение, с которым движется заряд. Максвелл был глубоко убежден в реальности электромагнитных волн. Но он не дожил до их экспериментального обнаружения. Лишь через 10 лет после его смерти электромагнитные волны были экспериментально получены Герцем.
Свойства электромагнитных волн
Современные радиотехнические устройства позволяют провести очень наглядные опыты по наблюдению свойств электромагнитных волн. При этом лучше всего пользоваться волнами сантиметрового диапазона. Эти волны излучаются специальным генератором сверхвысокой частоты (СВЧ).
Стоит отметить, что влияние электромагнитных волн на человека это – предмет жарких споров. К примеру, в Дании «электромагнитную аллергию» считают настоящим недугом. Всемирная организация здравоохранения относит такую реакцию организма как «возможное заболевание». Среди симптомов присутствует головная боль, вялость, расстройства памяти.
Электрические колебания генератора модулируют звуковой частотой. Принятый сигнал после детектирования подается на громкоговоритель. Я не буду описывать проведение всех опытов, а остановлюсь на основных. Диэлектрики способны поглощать электромагнитные волны. Некоторые вещества (например, металл) способны поглощать электромагнитные волны. Электромагнитные волны способны изменять свое направление на границе диэлектрика. Электромагнитные волны являются поперечными волнами. Это означает, что векторы Е и В электромагнитного поля волны перпендикулярны к направлению ее распространения.