Аналоговые, дискретные и цифровые сигналы
Аналоговые, дискретные и цифровые сигналы — это три разных вида сигналов, которые используются для передачи и обработки информации. Они отличаются по способу представления данных, физическим свойствам и применению в различных областях.
Любая физическая величина по характеру изменения ее значения может быть постоянной (если она имеет только одно фиксированное значение), дискретной (если она может иметь два или более фиксированных значений), или аналоговой (если она может иметь бесчисленное множество значений). Все эти величины могут быть преобразованы в цифровую форму.
Аналоговые сигналы
Аналоговым (т. е. непрерывно меняющимся во времени) называется такой сигнал, который может быть представлен непрерывной линией из множества значений, определенных в каждый момент времени относительно временной оси.
Значения аналогового сигнала произвольны в каждый момент времени, поэтому он может быть в принципе представлен как некая непрерывная функция (зависящая от времени как от переменной) либо как кусочно-непрерывная функция времени.
Непрерывные сигналы генерируются непрерывными процессами и системами. Это, например, ЭЭГ – возникает из-за электрической активности головного мозга, ЭКГ – вырабатывается электрической активностью сердца, выход датчика, например такого как датчик частоты вращения — тахогенератор и т.п.
Аналоговым сигналом можно назвать, например, звуковой сигнал, генерируемый обмоткой электромагнитного микрофона или ламповым акустическим усилителем, поскольку такой сигнал непрерывен и его значения (напряжение или ток) сильно отличаются друг от друга в каждый момент времени.
На приведенном ниже рисунке изображен пример подобного рода аналогового сигнала.
Аналоговые величины могу иметь бесконечное множество значений в определенных пределах. Они непрерывны и их значения не могут изменяться скачками.
Пример аналогового сигнала: термопара передает в аналоговом виде значение температуры в программируемый логический контроллер, который управляет с помощью твердотельного реле температурой в электрической печи.
Любой аналоговый сигнал может быть представлен в виде соответствующего ему цифрового эквивалента, при этом точность представления зависит от количества разрядов эквивалентного числа.
Для обработки аналоговых сигналов применяются логические элементы.
По физическому признаку различают потенциальный и импульсный способ представления переменных в логических элементах. В потенциальных элементах высокий потенциал соответствует логической единице (1), низкий потенциал — нулю (0). Потенциалы могут быть как положительными так и отрицательными. При импульсном способе представлении чисел наличие импульса — состояние 1, отсутствие его — 0.
Для взаимодействия электронных устройств, обрабатывающих аналоговые сигналы с устройствами, оперирующими двоичными (цифровыми) сигналами, применяют цифро-аналоговые (ЦАП) и аналого-цифровые (АЦП) преобразователи.
Дискретные сигналы
Если некий сигнал принимает произвольные значения лишь в отдельные моменты времени, то такой сигнал называют дискретным. Чаще всего на практике применяются дискретные сигналы, распределенные по равномерной временной решетке, шаг которой называется интервалом дискретизации.
Дискретный сигнал принимает определенные не нулевые значения лишь в моменты дискретизации, то есть он является не непрерывным в отличие от аналогового сигнала. Если из звукового сигнала вырезать небольшие кусочки определенного размера через равные интервалы, такой сигнал можно будет назвать дискретным.
Дискретный сигнал состоит из последовательности выборок, которая в общем случае может принимать любое значение. Этот сигнал обычно создается путем дискретизации аналогового сигнала.
Ниже приведен пример формирования подобного дискретного сигнала с интервалом дискретизации Т. Обратите внимание, что квантуется лишь интервал дискретизации, но не сами значения сигнала.
Дискретные сигналы имеют два и более фиксированных значений (количество их значений всегда выражается целыми числами).
Пример простого дискретного сигнала на два значения: срабатывание путевого выключателя (переключение контактов выключателя в определенном положении механизма). Сигнал с путевого выключателя может быть получен только в двух вариантах — контакт разомкнут (нет действия, нет напряжения) и контакт замкнут (есть действие, есть напряжение).
В отечественной литературе переключательные устройства называются также «дискретными», «логическими», «устройствами релейного действия» или «релейными устройствами».
Преимущества дискретных устройств обусловлены во многом тем, что их элементы достаточно просты и надежны. В большинстве случаев они имеют всего два различных состояния: включено — выключено (реле), открыт — заперт (транзистор) и т. д.
Такие элементы могут формировать или перерабатывать сигналы, обладающие только двумя значениями: одно значение сигнала связано с одним состоянием элемента, второе — со вторым. Поэтому часто под названием «дискретный сигнал» подразумевают сигнал с двумя значениями. Физически это означает, что сигнал имеет импульсный характер: высший уровень — одно значение, низший — другое. Обычно эти уровни обозначаются 1 и 0.
Цифровые сигналы
Когда дискретный сигнал принимает только какие-то фиксированные значения (которые могут быть расположены по сетке с определенным шагом), такие что они могут быть представлены как количество квантовых величин, такой дискретный сигнал называется цифровым.
То есть цифровой сигнал — это такой дискретный сигнал, который квантован не только по промежуткам времени, но и по уровню.
Последовательности импульсов представляют последовательности цифр и могут рассматриваться как двоичные числа. Поэтому их называют цифровыми, а связанные с ними методы обработки таких сигналов и соответствующие устройства и системы также называются цифровыми.
Цифровой сигнал — это сигнал, который дискретизируется и впоследствии квантуется. Он состоит из последовательности выборок, которые могут принимать только ограниченное число значений, поэтому его можно представить последовательностью целых чисел.
Информация всегда теряется при преобразовании аналогового сигнала в цифровой (как при дискретизации, так и при квантовании). Однако, увеличивая частоту дискретизации и количество уровней квантования, можно приблизиться к исходному сигналу со сколь угодно малым отклонением.
Например, каждый из двух стереоканалов записи аудио компакт-диска может быть представлен как последовательность из 44 100 шестнадцатибитных чисел в секунду, а цифровой телефонный сигнал в ISDN в виде последовательности 8000 восьмибитных чисел в секунду.
Практически дискретные и цифровые сигналы в ряде задач отождествляются, и могут быть легко заданы в форме отсчетов с помощью вычислительного устройства.
В отечественной литературе по отношению к описанным сигналам, устройствам и системам используется чаще термин «дискретные». Термин «цифровые» используется реже. Это оправдано тем, что по смыслу последний термин лучше относить к конкретным приборам с цифровым отсчетом (цифровым вольтметрам, амперметрам и т. п.).
Аналоговые сигналы должны быть преобразованы в цифровой формат, прежде чем они могут быть интерпрети рованы микропроцессором.
На рисунке приведен пример формирования цифрового сигнала на базе аналогового. Обратите внимание, что значения цифрового сигнала не могут принимать промежуточных значений, а только определенные — целое количество вертикальных шагов сетки.
Цифровой сигнал легко записывается и перезаписывается в память вычислительных устройств, просто считывается и копируется без потери точности, тогда как перезапись аналогового сигнала всегда сопряжена с утратой некоторой, пусть и незначительной, части информации.
Обработка цифровых сигналов позволяет получать устройства с очень высокими характеристиками благодаря выполнению вычислительных операций совершенно без потерь качества, либо с пренебрежимо малыми потерями.
В силу этих достоинств, именно цифровые сигналы повсеместно распространены сегодня в системах хранения и обработки данных. Вся современная память — цифровая. Аналоговые носители информации (такие, как пленочные кассеты и т.д.) давно ушли в прошлое.
Аналоговый и цифровой приборы для измерения напряжения:
Но даже у цифровых сигналов есть свои недостатки. Их невозможно передать напрямую как есть, ибо передача обычно реализуется посредством непрерывных электромагнитных волн. Поэтому при передаче и приеме цифровых сигналов необходимо прибегать к дополнительной модуляции и аналого-цифровому преобразованию.
Меньший динамический диапазон цифровых сигналов (отношение наибольшего значения к наименьшему), обусловленный квантованностью значений по сетке, является еще одним их недостатком.
Существуют и такие области, где аналоговые сигналы незаменимы. Например, аналоговый звук никогда не сравнится с цифровым, поэтому ламповые усилители и пластинки до сих пор не выходят из моды, несмотря на обилие цифровых форматов записи звука с самой высокой частотой дискретизации.
Присоединяйтесь к нашему каналу в Telegram «Автоматика и робототехника»! Узнавайте первыми о захватывающих новостях и увлекательных фактах из мира автоматизации: Автоматика и робототехника в Telegram
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Аналоговый и цифровой сигналы — различия, преимущества и недостатки
Любой сигнал, аналоговый или цифровой — это электромагнитные колебания, которые распространяются с определенной частотой, в зависимости от того, какой сигнал передается, устройство, принимающее данный сигнал, переводит его в текстовую, графическую или звуковую информацию, удобную для восприятия пользователя или самого устройства. Для примера, телевизионный или радиосигнал, вышка или радиостанция может передавать и аналоговый и, на даный момент, цифровой сигнал. Приемное устройство, получая данный сигнал, преобразует его в изображение или звук, дополняя текстовой информацией (современные радиоприемники).
Звук передается в аналоговой форме и уже через приемное устройство преобразуется в электромагнитные колебания, а как уже говорилось, колебания распространяются с определенной частотой. Чем выше будет частота звука, тем выше будут колебания, а значит звук на выходе будет громче. Говоря общими словами, аналоговый сигнал распространяется непрерывно, цифровой сигнал — прерывисто (дискретно).
Так как аналоговый сигнал распространяется постоянно, то колебания суммируются и на выходе возникает несущая частота, которая в данном случае является основной и на нее осуществляется настройка приемника. В самом приемнике происходит отделение данной частоты от других колебаний, которые уже преобразуются в звук. К очевидным недостаткам передачи при помощи аналогового сигнала относятся — большое количество помех, невысокая безопасность передаваемого сигнала, а также большой объем передаваемой информации, часть из которой явлляется лишней.
Если говорить о цифровом сигнале, где данные передаются дискретно, стоит выделить его явные преимущества:
- высокий уровень защиты передаваемой информации за счет ее шифрования;
- легкость приема цифрового сигнала;
- отсутствие постороннего «шума»;
- цифровое вещание способно обеспечить огромное количество каналов;
- высокое качество передачи — цифровой сигнал обеспечивает фильтрацию принимаемых данных;
Для преобразования аналогового сигнала в цифровой и наоборот испльзуются специальные устройства — аналого-цифровой преобразователь (АЦП) и цифро-аналоговый преобразователь (ЦАП). АЦП устанавливается в передатчике, ЦАП установлен в приемнике и преобразует дискретный сигнал в аналоговый.
Что касается безопасности, почему цифровой сигнал является более защищенным, чем аналоговый. Цифровой сигнал передается в зашифрованном виде и устройство, которое принимает сигнал, должно иметь код для расшифровки сигнала. Также стоит отметить, что АЦП может передавать и цифровой адрес приемника, если сигнал будет перехвачен, то полностью расшифровать его будет невозможно, тка как отсутствует часть кода — такой подход широко используется в мобильной связи.
Подведем итог, основное различие между аналоговым и цифровым сигналом заключается в структуре передаваемого сигнала. Аналоговые сигналы представляют из себя непрерывный поток колебаний с изменяющимися амплитудой и частотой. Цифровой сигнал представляет из себя дискретные колебания, значения которых зависят от передающей среды.
Отличия аналогового звука от цифрового
Очень часто мы слышим такие определения, как «цифровой» или «дискретный» сигнал, в чем его отличие от «аналогового»?
Суть различия в том, что аналоговый сигнал непрерывный во времени (голубая линия), в то время как цифровой сигнал состоит из ограниченного набора координат (красные точки). Если все сводить к координатам, то любой отрезок аналогового сигнала состоит из бесконечного количества координат.
У цифрового сигнала координаты по горизонтальной оси расположены через равные промежутки времени, в соответствии с частотой дискретизации. В распространенном формате Audio-CD это 44100 точек в секунду. По вертикали точность высоты координаты соответствует разрядности цифрового сигнала, для 8 бит это 256 уровней, для 16 бит = 65536 и для 24 бит = 16777216 уровней. Чем выше разрядность (количество уровней), тем ближе координаты по вертикали к исходной волне.
Аналоговыми источниками являются: винил и аудиокассеты. Цифровыми источниками являются: CD-Audio, DVD-Audio, SA-CD (DSD) и файлы в WAVE и DSD форматах (включая производные APE, Flac, Mp3, Ogg и т.п.).
Преимущества и недостатки аналогового сигнала
Преимуществом аналогового сигнала является то, что именно в аналоговом виде мы воспринимаем звук своими ушами. И хотя наша слуховая система переводит воспринимаемый звуковой поток в цифровой вид и передает в таком виде в мозг, наука и техника пока не дошла до возможности именно в таком виде подключать плееры и другие источники звука напрямик. Подобные исследования сейчас активно ведутся для людей с ограниченными возможностями, а мы наслаждаемся исключительно аналоговым звуком.
Недостатком аналогового сигнала являются возможности по хранению, передаче и тиражированию сигнала. При записи на магнитную ленту или винил, качество сигнала будет зависеть от свойств ленты или винила. Со временем лента размагничивается и качество записанного сигнала ухудшается. Каждое считывание постепенно разрушает носитель, а перезапись вносит дополнительные искажения, где дополнительные отклонения добавляет следующий носитель (лента или винил), устройства считывания, записи и передачи сигнала.
Делать копию аналогового сигнала, это все равно, что для копирования фотографии ее еще раз сфотографировать.
Преимущества и недостатки цифрового сигнала
К преимуществам цифрового сигнала относится точность при копировании и передачи звукового потока, где оригинал ничем не отличается от копии.
Основным недостатком можно считать то, что сигнал в цифровом виде является промежуточной стадией и точность конечного аналогового сигнала будет зависеть от того, насколько подробно и точно будет описана координатами звуковая волна. Вполне логично, что чем больше будет точек и чем точнее будут координаты, тем более точной будет волна. Но до сих пор нет единого мнения, какое количество координат и точность данных является достаточным для того, что бы сказать, что цифровое представление сигнала достаточно для точного восстановления аналогового сигнала, неотличимого от оригинала нашими ушами.
Если оперировать объемами данных, то вместимость обычной аналоговой аудиокассеты составляет всего около 700-1,1 Мб, в то время как обычный компакт диск вмещает 700 Мб. Это дает представление о необходимости носителей большой емкости. И это рождает отдельную войну компромиссов с разными требованиями по количеству описывающих точек и по точности координат.
На сегодняшний день считается вполне достаточным представление звуковой волны с частотой дискретизации 44,1 кГц и разрядности 16 бит. При частоте дискретизации 44,1 кГц можно восстановить сигнал с частотой до 22 кГц. Как показывают психоакустические исследования, дальнейшее повышение частоты дискретизации мало заметно, а вот повышение разрядности дает субъективное улучшение.
Как ЦАП строят волну
ЦАП – это цифро-аналоговый преобразователь, элемент, переводящий цифровой звук в аналоговый. Мы рассмотрим поверхностно основные принципы. Если по комментариям будет виден интерес более подробно рассмотреть ряд моментов, то будет выпущен отдельный материал.
Мультибитные ЦАП
Очень часто волну представляют в виде ступенек, что обусловлено архитектурой первого поколения мультибитных ЦАП R-2R, работающих аналогично переключателю из реле.
На вход ЦАП поступает значение очередной координаты по вертикали и в каждый свой такт он переключает уровень тока (напряжения) на соответствующий уровень до следующего изменения.
Хотя считается, что ухо человека слышит не выше 20 кГц, и по теории Найквиста можно восстановить сигнал до 22 кГц, остается вопрос качества этого сигнала после восстановления. В области высоких частот форма полученной «ступенчатой» волны обычно далека от оригинальной. Самый простой выход из ситуации – это увеличивать частоту дискретизации при записи, но это приводит к существенному и нежелательному росту объема файла.
Альтернативный вариант – искусственно увеличить частоту дискретизации при воспроизведении в ЦАП, добавляя промежуточные значения. Т.е. мы представляем путь непрерывной волны (серая пунктирная линия), плавно соединяющий исходные координаты (красные точки) и добавляем промежуточные точки на этой линии (темно фиолетовые).
При увеличении частоты дискретизации обычно необходимо повышать и разрядность, чтобы координаты были ближе к аппроксимированной волне.
Благодаря промежуточным координатам удается уменьшить «ступеньки» и построить волну ближе к оригиналу.
Когда вы видите функцию повышения частоты с 44.1 до 192 кГц в плеере или внешнем ЦАП, то это функция добавления промежуточных координат, а не восстановления или создание звука в области выше 20 кГц.
Изначально это были отдельные SRC микросхемы до ЦАП, которые потом перекочевали непосредственно в сами микросхемы ЦАП. Сегодня можно встретить решения, где к современным ЦАП добавляется такая микросхема, это сделано для того, чтобы обеспечить альтернативу встроенным алгоритмам в ЦАП и порой получить еще более лучший звук (как например это сделано в Hidizs AP100).
Основной отказ в индустрии от мультибитных ЦАП произошел из-за невозможности дальнейшего технологического развития качественных показателей при текущих технологиях производства и более высокой стоимости против «импульсных» ЦАП-ов с сопоставимыми характеристиками. Тем не менее, в Hi-End продуктах предпочтение отдают зачастую старым мультибитным ЦАП-ам, нежели новым решениям с технически более хорошими характеристиками.
Импульсные ЦАП
В конце 70-тых широкое распространение получил альтернативный вариант ЦАП-ов, основанный на «импульсной» архитектуре – «дельта-сигма». Технология импульсных ЦАП-ов стала возможной появлению сверх-быстрых ключей и позволила использовать высокую несущую частоту.
Амплитуда сигнала является средним значением амплитуд импульсов (зеленым показаны импульсы равной амплитуды, а белым итоговая звуковая волна).
Например последовательность в восемь тактов пяти импульсов даст усредненную амплитуду (1+1+1+0+0+1+1+0)/8=0,625. Чем выше несущая частота, тем больше импульсов попадает под сглаживание и получается более точное значение амплитуды. Это позволило представить звуковой поток в однобитном виде с широким динамическим диапазоном.
Усреднение возможно делать обычным аналоговым фильтром и если такой набор импульсов подать напрямую на динамик, то на выходе мы получим звук, а ультра высокие частоты не будут воспроизведены из-за большой инертности излучателя. По этому принципу работают ШИМ усилители в классе D, где плотность энергии импульсов создается не их количеством, а длительностью каждого импульса (что проще в реализации, но невозможно описать простым двоичным кодом).
Мультибитный ЦАП можно представить как принтер, способный наносить цвет пантоновыми красками. Дельта-Сигма – это струйный принтер с ограниченным набором цветов, но благодаря возможности нанесению очень мелких точек (в сравнении с пантовым принтером), за счет разной плотности точек на единицу поверхности дает больше оттенков.
На изображении мы обычно не видим отдельных точек из-за низкой разрешающей способности глаза, а только средний тон. Аналогично и ухо не слышит импульсов по отдельности.
В конечном итоге при текущих технологиях в импульсных ЦАП можно получить волну, близкую к той, что теоретически должна получится при аппроксимации промежуточных координат.
Надо отметить, что после появления дельта-сигма ЦАП исчезла актуальность рисовать «цифровую волну» ступеньками, т.к. так ступеньками волну современные ЦАП не строят. Правильно дискретный сигнал строить точками соединенной плавной линией.
Являются ли идеальными импульсные ЦАП?
Но на практике не все безоблачно, и существует ряд проблем и ограничений.
Т.к. подавляющее количество записей сохранено в многоразрядном сигнале, то перевод в импульсный сигнал по принципу «бит в бит» требует излишне высокую несущую частоту, которую современные ЦАП не поддерживают.
Основной функцией современных импульсных ЦАП является перевод многоразрядного сигнала в однобитный с относительно невысокой несущей частотой с прореживанием данных. В основном именно эти алгоритмы и определяют конечное качество звучания импульсных ЦАП-ов.
Чтобы уменьшить проблему высокой несущей частоты, звуковой поток разбивается на несколько однобитных потоков, где каждый поток отвечает за свою группу разряда, что эквивалентно кратному увеличению несущей частоты от числа потоков. Такие ЦАП называются мультибитными дельта-сигма.
Сегодня импульсные ЦАП-ы получили второе дыхание в быстродействующих микросхемах общего назначения в продуктах компаний NAD и Chord за счет возможности гибко программировать алгоритмы преобразования.
Формат DSD
После широкого распространения дельта-сигма ЦАП-ов вполне логичным было и появления формата записи двоичного кода напрямую дельта-сигма кодировке. Этот формат получил название DSD (Direct Stream Digital).
Широкого распространения формат не получил по нескольким причинам. Редактирование файлов в этом формате оказалось излишне ограниченным: нельзя микшировать потоки, регулировать громкость и применять эквализацию. А это значит, что без потери качества можно лишь архивировать аналоговые записи и производить двухмикрофонную запись живых выступлений без последующей обработки. Одним словом – денег толком не заработать.
В борьбе с пиратством диски формата SA-CD не поддерживались (и не поддерживаются до сих пор) компьютерами, что не позволяет делать их копии. Нет копий – нет широкой аудитории. Воспроизвести DSD аудиоконтент можно было только с отдельного SA-CD проигрывателя с фирменного диска. Если для PCM формата есть стандарт SPDIF для цифровой передачи данных от источника к отдельному ЦАП, то для DSD формата стандарта нет и первые пиратские копии SA-CD дисков были оцифровками с аналоговых выходов SA-CD проигрывателей (хоть ситуация и кажется глупой, но на деле некоторые записи выходили только на SA-CD, либо та же запись на Audio-CD специально была сделана некачественно для продвижения SA-CD).
Переломный момент произошел с выходом игровых приставок SONY, где SA-CD диск до воспроизведения автоматически копировался на жесткий диск приставки. Этим воспользовались поклонники формата DSD. Появление пиратских записей простимулировало рынок на выпуск отдельных ЦАП для воспроизведения DSD потока. Большинство внешних ЦАП с поддержкой DSD на сегодняшний день поддерживает передачу данных по USB используя формат DoP в виде отдельного кодирования цифрового сигнала через SPDIF.
Несущие частоты для DSD сравнительно небольшие, 2.8 и 5.6 МГц, но этот звуковой поток не требует никаких преобразований с прореживанием данных и вполне конкурентно-способен с форматами высокого разрешения, такими как DVD-Audio.
На вопрос что лучше, DSP или PCM однозначного ответа нет. Все упирается в качество реализации конкретного ЦАП и таланта звукорежиссера при записи конечного файла.
Общий вывод
Аналоговый звук – это то, что мы слышим и воспринимаем, как окружающий мир глазами. Цифровой звук, это набор координат, описывающих звуковую волну, и который мы напрямую услышать не можем без преобразования в аналоговый сигнал.
Аналоговый сигнал, записанный напрямую на аудиокассету или винил нельзя без потери качества перезаписать, в то время как волну в цифровом представлении можно копировать бит в бит.
Цифровые форматы записи являются постоянным компромиссом между количеством точностью координат против объема файла и любой цифровой сигнал является лишь приближением к исходному аналоговому сигналу. Однако при этом разный уровень технологий записи и воспроизведения цифрового сигнала и хранения на носителях для аналогового сигнала дают больше преимуществ цифровому представлению сигнала, аналогично цифровой фотокамере против пленочного фотоаппарата.
Автор Кузнецов Роман romanrex
Аналоговый и цифровой сигналы
Аналоговые и цифровые сигналы передают информацию. По сути, это функция электрического тока, которая сообщает: в точке А произошло некое событие и данные о нем необходимо доставить в точку Б. При схожем назначении аналоговый и цифровой сигнал различаются своими особенностями.
Что такое аналоговый сигнал
У «цифры» амплитуда принимает только ограниченные, дискретные значения. Цифровой сигнал – это последовательность цифровых значений или байтов информации – 0 и 1. За определенный период времени информация представляется только в определенном значении. Графически цифровой сигнал можно выразить в виде прямоугольников на шкале времени.
Сегодня цифровые сигналы – основа современных технологий. «Цифру» проще генерировать и управлять ею. Можно сказать, что цифровой сигнал более продуктивен и предсказуем. Кроме того, на него почти не влияют помехи из окружающей среды. Вот почему у этого сигнала по умолчанию значительно шире диапазон применения, чем у «аналога». В этом и заключается ключевая разница между аналоговым и цифровым сигналом.
Где применяют «цифру»:
- Цифровые передатчики.
- IP-телефония.
- Цифровые часы.
- Цифровые видеосигналы.
- CD и DVD.
Что такое цифровой сигнал
У «цифры» амплитуда принимает только ограниченные, дискретные значения. Цифровой сигнал – это последовательность цифровых значений или байтов информации – 0 и 1. За определенный период времени информация представляется только в определенном значении. Графически цифровой сигнал можно выразить в виде прямоугольников на шкале времени.
Сегодня цифровые сигналы – основа современных технологий. «Цифру» проще генерировать и управлять ею. Можно сказать, что цифровой сигнал более продуктивен и предсказуем. Кроме того, на него почти не влияют помехи из окружающей среды. Вот почему у этого сигнала по умолчанию значительно шире диапазон применения, чем у «аналога». В этом и заключается ключевая разница между аналоговым и цифровым сигналом.
Где применяют «цифру»:
- Цифровые передатчики.
- IP-телефония.
- Цифровые часы.
- Цифровые видеосигналы.
- CD и DVD.
Спасибо!
Ваша заявка отправлена!
Чем отличается аналоговый сигнал от цифрового
Аналоговый сигнал представляет собой непрерывную волну, которая меняется с течением времени. С другой стороны, цифровой сигнал представляет собой прерывистую волну, несущую информацию в двоичном формате и имеющую дискретные значения.
Аналоговый сигнал описывает поведение волны в отношении амплитуды, периода или частоты и фазы. Цифровой сигнал определяет поведение волны в отношении скорости передачи и битового интервала.
Диапазон аналогового сигнала не фиксирован, тогда как диапазон цифрового сигнала конечен и может принимать значения 0 или 1. Аналоговый сигнал более склонен к искажениям в ответ на шум, но цифровой сигнал невосприимчив к шуму, поэтому он редко сталкивается с какими-либо искажениями.
Лучшим примером аналогового сигнала является человеческий голос, а лучшим примером цифрового сигнала является передача данных в компьютере.
Для большей наглядности мы распределили отличия между аналоговым и цифровым сигналом в таблице:
Характеристика
Аналоговый сигнал
Цифровой сигнал
Постоянство
Непрерывен и изменяется во времени
Имеет два или более состояний и двоичную форму
Неполадки
Графическое представление
Обычно имеет форму синусоиды
Имеет форму прямоугольной волны
Как влияют помехи
Стабилен и менее подвержен шуму
Как влияют шумы
Могут повлиять на точность
Точность не зависит от шума
Энергопотребление
Потребляет больше энергии
Потребляет меньше энергии
Примеры применения
Резисторы, конденсаторы, катушки индуктивности, диоды
Транзисторы, логические элементы и микроконтроллеры
Плюсы аналогового сигнала
Преимущества аналоговых сигналов в следующем:
- Легко обрабатывать и интерпретировать.
- Низкие расходы на внедрение.
- Высокая плотность сигнала позволяет точнее представлять информацию.
Преимущества цифрового сигнала
Поставить текущее содержимое блока
Преимущества цифрового сигнала перед аналоговым заключаются в шести аспектах:
- Легко сжать, преобразовать, распаковать.
- Широкие возможности шифрования.
- Цифровое оборудование проще и дешевле спроектировать и создать.
- Сигнал легко редактировать.
- Доступно множество инструментов редактирования.
- Высокая скорость передачи по сети.
Заключение
Как аналоговые, так и цифровые сигналы широко используются в вычислительных и коммуникационных системах для хранения и передачи информации. Однако оба типа сигналов имеют много различий, которые необходимо учитывать при выборе решения для связи. Если вам необходима стабильная телефония, не подверженная недостаткам аналоговых сигналов, ваш выбор — цифровое решение ВАТС от New-Tel.
Сделайте свой бизнес эффективнее, переходите на сторону IP-телефонии от New-Tel. Стабильная и надежная связь по выгодным тарифам, возможность подключить любое количество городских номеров и номеров 8800, интеграция с популярными CRM-сервисами, сквозная аналитика, возможность хранить запись телефонных разговоров и многое другое.