Физика. 10 класс
§ 21. Работа силы однородного электростатического поля. Потенциал
Потенциальная энергия заряда в электростатическом поле. Воспользовавшись законом сохранения энергии, можно показать, что любое электростатическое поле является потенциальным. Это означает, что электростатическое и гравитационное поля имеют похожие свойства, определяемые их потенциальным характером. Применительно к электростатическому полю эти свойства выражаются в следующем:
а) точечный электрический заряд, находящийся в любой точке электростатического поля, обладает потенциальной энергией взаимодействия с этим полем. Значение этой энергии определяют относительно произвольно выбираемой нулевой точки. В нулевой точке потенциальную энергию заряда принимают равной нулю. Потенциальная энергия взаимодействия точечного заряда с электростатическим полем равна работе, которую совершила бы сила поля при перемещении данного заряда из указанной точки поля в нулевую точку;
б) работа силы поля по перемещению электрического заряда q из точки 1 в точку 2 (рис. 116) может служить мерой изменения потенциальной энергии этого заряда в поле, созданном зарядом Q.
Пусть Wп1 и Wп2 — потенциальные энергии перемещаемого заряда в точках 1 и 2 электростатического поля. Тогда работа силы поля
где ΔWп12 — приращение потенциальной энергии заряда q при его перемещении из точки 1 в точку 2.
Перепишем выражение (21.2) в виде
и проанализируем его, когда на заряд q действует только сила со стороны электростатического поля:
1) если работа силы поля A12 > 0 (перемещение положительного заряда q происходит в направлении линий напряжённости поля), то потенциальная энергия заряда уменьшается: ΔWп12 < 0. При этом, согласно закону сохранения энергии, увеличивается кинетическая энергия тела c зарядом q: ;
3) если работа силы поля A12 = 0 (перемещение заряда перпендикулярно направлению линий напряжённости поля), то потенциальная энергия заряда не изменяется.
Следует подчеркнуть, что потенциальная энергия — это энергия взаимодействия, и её необходимо относить не к заряженной частице или телу, а к системе в целом. В частности, для заряженной частицы (тела), находящейся в электростатическом поле, это потенциальная энергия взаимодействия заряженной частицы с полем, т. е. с другими заряженными частицами и (или) телами, являющимися источниками этого поля. Кратко это принято формулировать так: потенциальная энергия заряда в поле.
От теории к практике
В каком случае (см. рис. 115) при перемещении положительного (отрицательного) заряда между двумя точками поля потенциальная энергия этого заряда: а) увеличивается; б) уменьшается; в) не изменяется?
Потенциальная энергия электрического поля формула
Потенциальная энергия заряда в электрическом поле. Работу, совершаемую силами электрического поля при перемещении положительного точечного заряда q из положения 1 в положение 2, представим как изменение потенциальной энергии этого заряда:
,
где Wп1 и Wп2 – потенциальные энергии заряда q в положениях 1 и 2. При малом перемещении заряда q в поле, создаваемом положительным точечным зарядом Q, изменение потенциальной энергии равно
.
При конечном перемещении заряда q из положения 1 в положение 2, находящиеся на расстояниях r1 и r2 от заряда Q,
.
Если поле создано системой точечных зарядов Q1, Q2, ¼ , Q n , то изменение потенциальной энергии заряда q в этом поле:
.
Приведённые формулы позволяют найти только изменение потенциальной энергии точечного заряда q, а не саму потенциальную энергию. Для определения потенциальной энергии необходимо условиться, в какой точке поля считать ее равной нулю. Для потенциальной энергии точечного заряда q, находящегося в электрическом поле, созданном другим точечным зарядом Q, получим
,
где C – произвольная постоянная. Пусть потенциальная энергия равна нулю на бесконечно большом расстоянии от заряда Q (при r ® ¥ ), тогда постоянная C = 0 и предыдущее выражение принимает вид
.
При этом потенциальная энергия определяется как работа перемещения заряда силами поля из данной точки в бесконечно удаленную. В случае электрического поля, создаваемого системой точечных зарядов, потенциальная энергия заряда q:
.
Потенциальная энергия системы точечных зарядов. В случае электростатического поля потенциальная энергия служит мерой взаимодействия зарядов. Пусть в пространстве существует система точечных зарядов Qi ( i = 1, 2, . , n). Энергия взаимодействия всех n зарядов определится соотношением
,
где rij — расстояние между соответствующими зарядами, а суммирование производится таким образом, чтобы взаимодействие между каждой парой зарядов учитывалось один раз.
Потенциал электростатического поля. Поле консервативной силы может быть описано не только векторной функцией, но эквивалентное описание этого поля можно получить, определив в каждой его точке подходящую скалярную величину. Для электростатического поля такой величиной является потенциал электростатического поля, определяемый как отношение потенциальной энергии пробного заряда q к величине этого заряда, j = Wп / q , откуда следует, что потенциал численно равен потенциальной энергии, которой обладает в данной точке поля единичный положительный заряд. Единицей измерения потенциала служит Вольт (1 В).
Потенциал поля точечного заряда Q в однородной изотропной среде с диэлектрической проницаемостью e :
.
Принцип суперпозиции. Потенциал есть скалярная функция, для неё справедлив принцип суперпозиции. Так для потенциала поля системы точечных зарядов Q1, Q2 ¼ , Q n имеем
,
где r i — расстояние от точки поля, обладающей потенциалом j , до заряда Qi . Если заряд произвольным образом распределен в пространстве, то
,
где r — расстояние от элементарного объема d x, dy, dz до точки (x, y, z), где определяется потенциал; V — объем пространства, в котором распределен заряд.
Потенциал и работа сил электрического поля. Основываясь на определении потенциала, можно показать, что работа сил электрического поля при перемещении точечного заряда q из одной точки поля в другую равна произведению величины этого заряда на разность потенциалов в начальной и конечной точках пути, A = q ( j 1 — j 2 ) .
Если по аналогии с потенциальной энергией считать, что в точках, бесконечно удалённых от электрических зарядов — источников поля, потенциал равен нулю, то работу сил электрического поля при перемещении заряда q из точки 1 в бесконечность можно представить как A ¥ = q j 1.
Таким образом, потенциал â данной точке электростатического поля — это физическая величина, численно равная работе, совершаемой силами электрического поля при перемещении единичного положительного точечного заряда из данной точки поля в бесконечно удаленную: j = A ¥ / q .
В некоторых случаях потенциал электрического поля нагляднее определяется как физическая величина, численно равная работе внешних сил против сил электрического поля при перемещении единичного положительного точечного заряда из бесконечности в данную точку. Последнее определение удобно записать следующим образом:
.
В современной науке и технике, особенно при описании явлений, происходящих в микромире, часто используется единица работы и энергии, называемая электрон-вольтом (эВ). Это работа, совершаемая при перемещении заряда, равного заряду электрона, между двумя точками с разностью потенциалов 1 В: 1 эВ = 1,60 × 10 — 1 9 Кл × 1 В = 1,60 × 10 — 1 9 Дж.
1) Дайте определение потенциала данной точки поля и разности потенциалов двух точек поля.
2) Приведите графики зависимостей напряженности поля и потенциала от расстояния для равномерно заряженной сферической поверхности. Дайте их объяснение и обоснование.
Потенциальная энергия электрического поля формула
Пусть точечный заряд `q` находится в однородном электрическом поле с напряжённостью `vecE`. (Обобщение на случай неоднородного поля см. ниже.) Тогда со стороны поля на него действует сила `vecF=qvecE`. Рассмотрим перемещение этого .
Автор
Чудновский Александр Витальевич 293 статьи
1.4. Работа сил электростатического поля и потенциальная энергия заряженных частиц. Потенциал, разность потенциалов
Пусть точечный заряд `q` находится в однородном электрическом поле с напряжённостью `vecE`. (Обобщение на случай неоднородного поля см. ниже.) Тогда со стороны поля на него действует сила `vecF=qvecE`. Рассмотрим перемещение этого заряда из точки `1`, характеризуемой радиус — вектором `vecr_1`, в точку `2` — с радиус — вектором `vecr_2` по, вообще говоря, криволинейной траектории (рис. 11). Мысленно разобьём всю траекторию на большое число малых перемещений `Deltavecr_i`, так что `Deltavecr=vecr_2-vecr_1=sum_i Deltavecr_i`, где все векторы `Deltavecr_i` считаем сложенными по правилу многоугольника.
Работой силы со стороны электрического поля при перемещении заряда `q` из точки `1` в точку `2` называют величину (сумму работ на отдельных участках)
`A_(12)=sum_i vecF_i Deltavecr_i`, (1.4.1.)
где `vecF_i` — сила, действующая на заряд на малом участке `Deltavecr_i`, `vecF_iDeltavecr_i` — скалярное произведение векторов. В нашем случае (однородного электрического поля) сила на всех участках одна и та же, `vecF=qvecE`, поэтому получаем
`A_(12)=sum_i vecF_i Deltavecr_i= qvecE sum_i Deltavecr_i=qvecE(vecr_2-vecr_1)`. (1.4.2)
Заметим, что работа силы электростатического поля (1.4.2) определяется лишь начальной и конечной точками (двумя радиус-векторами `vecr_1` и `vecr_2`) и не зависит от конкретной траектории, по которой двигался заряд (в ответ вошла лишь разность этих векторов). Силы, обладающие тем свойством, что работа этих сил не зависит от траектории, называют консервативными силами, а соответствующие поля — потенциальными полями. Не все силы обладают этим свойством; пример неконсервативной силы — сила трения. Другой важный пример не потенциального поля (и неконсервативной силы) — изменяющееся со временем электрическое поле.
По общей теореме механики изменение кинетической энергии заряда равно сумме работ всех сил:
`(mv_2^2)/2 — (mv_1^2)/2 =A_(12)^(«всех сил»)`. (1.4.3)
Если заряд двигался только под действием сил электрического поля (не было никаких ниточек, за которые бы мы тянули заряд, не было силы трения и др.), то вместо (1.4.3) (и согласно (1.4.2)) имеем:
`(mv_2^2)/2 — (mv_1^2)/2 =qvecE(vecr_2-vecr_1)`. (1.4.4)
Последнее равенство перепишем ещё в форме
`(mv_2^2)/2 -qvecEvecr_2= (mv_1^2)/2-qvecEvecr_1`, (1.4.4′)
которая допускает следующую важную трактовку. Скажем, что заряд `q` в однородном электростатическом поле обладает потенциальной энергией
где `Pi_0` — произвольная константа. Тогда с учётом того, что `K=(mv^2)/2` — кинетическая энергия заряда, равенство (1.4.4’) – это просто закон сохранения энергии:
т. е. в процессе движения сумма кинетической и потенциальной энергий не изменяется (сохраняет своё значение).
Если приписать точке `A` с радиус-вектором `vecr_0` потенциальную энергию, равную нулю, то это эквивалентно выбору константы `Pi_0=+qvecEvecr_0`. Выбрав в качестве точки `A` начало координат `(vecr_0=0)`, получаем `Pi_0=0` и `Pi(vecr)=-qvecEr`.
Важнейшим понятием в учении об электричестве является потенциал. Перепишем выражение для работы сил электростатического поля в виде
введя потенциал однородного электростатического поля по формуле
`varphi_0` — произвольная постоянная.
Записав (1.4.8) в виде `varphi(vecr)=-(+1)vecEvecr+varphi_0`, можно чисто формально (в согласии с (1.4.5)) трактовать потенциал как потенциальную энергию единичного положительного заряда `(+1)` в электрическом поле. Важно, однако, помнить, что потенциал и потенциальная энергия имеют разные размерности. В силу равенства (1.4.7) и, соответственно,
потенциал измеряется в единицах Дж/Кл = В (вольт).
По формуле (1.4.8) найдём ещё изменение потенциала при переходе от одной точки поля к другой — с радиус-векторами `vecr_1` и `vecr_2`:
Заметим, что если перемещение перпендикулярно электрическому полю, `Deltavecr_|_vecE`, то скалярное произведение `vecEDeltavecr=0`, т. е. `Deltavarphi=0`: перемещаясь в плоскости перпендикулярно вектору напряжённости электрического поля `vecE`, переходим от одной точки к другой с таким же потенциалом. О таких плоскостях (в общем случае – о поверхностях) говорят как об эквипотенциальных поверхностях.
А как будет изменяться потенциал при переходе от одной эквипотенциальной плоскости к другой? Рассмотрим перемещение вдоль электрического поля `Deltavecr«||«vecE`. Направим ось `X` параллельно электрическому полю (не обязательно по полю, м. б., и против поля, так что проекция `E_x` вектора `vecE` на ось `X` может иметь любой знак). Согласно основным свойствам скалярного произведения векторов `(vecavecb=|veca|*|vecb|cosalpha=a_xb_x+a_yb_y+a_zb_z)` имеем
а для приращения потенциала
Формуле (1.4.10’) можно придать ещё следующий вид. Пусть ось `X` направлена по полю `(E=E_x>0)` и пусть `d=x_2-x_1`. Введём разность потенциалов (напряжение) по формуле `U=varphi_1-varphi_2`. Тогда согласно (1.4.10’) получаем `U=Ed`.
Определить разность потенциалов между двумя параллельными друг другу равномерно заряженными плоскостями, одна из которых заряжена положительно с поверхностной плотностью `sigma_1=+sigma`, а вторая отрицательно `sigma_2=-sigma`. Расстояние между плоскостями равно `d`. Определить также:
1) чему будет равен потенциал 2-ой плоскости, если потенциал 1-ой принять равным нулю?
2) Каким будет потенциал 1-ой плоскости, если за нуль потенциала принять потенциал 2-ой плоскости?
Направим ось `X` от 1-й плоскости ко 2-й перпендикулярно им обоим и совместим начало координат с 1-й плоскостью. Тогда `U=Ed=sigma/(epsilon_0)d`.
1) Полагая в формуле `varphi(x)=-E_x x+varphi_0`, (1.4.8′) `varphi(0)=0`, получаем `varphi_0=0` и `varphi(d)=-U`.
2) В этом случае положим в (1.4.8′) `varphi(d)=0`, тогда `varphi_0=U` и `varphi(0)=+U`.
Ускоряющее напряжение в электронно-лучевой трубке кинескопа телевизора `U=30` кВ. До какой скорости разгоняются в ней электроны? Какой процент она составляет от скорости света в вакууме `c=3*10^8` м/с. Начальная скорость электрона равна нулю. Масса электрона `m=0,91*10^(-30)` кг.
Воспользуемся законом сохранения энергии:
откуда получаем `v=sqrt((2eU)/m)~~103000` км/с `~~0,34` с (т. е. составляет `34%` от скорости света).
До сих пор мы рассматривали лишь однородное электростатическое поле. Простейшим примером неоднородного поля является поле точечного заряда. К сожалению, нахождение работы сил даже этого сравнительно простого поля без привлечения высшей математики весьма затруднительно. Поэтому формулу для неё приведём без вывода.
Пусть имеется неподвижный точечный заряд `q` и пусть другой заряд `q_0` перемещается в поле этого заряда. Пусть он переместился из точки `1`, характеризуемой радиус-вектором `vecr_1`, в точку `2` — с радиус-вектором `vecr_2` по, вообще говоря, криволинейной траектории. Можно показать (вывод можно найти в книге `[3]`), что в этом случае работа сил электростатического поля будет равна
`A_(12)=(q_0q)/(4pi epsilon_0r_1) — (q_0q)/(4pi epsilon_0r_2)`, (1.4.11)
где `r_1=|vecr_1|`, `r_2=|vecr_2|`. Далее действуем, как и в случае однородного поля. Если в процессе движения заряда `q_0` никаких других сил, кроме кулоновской силы со стороны заряда `q` не действовало, то по теореме об изменении кинетической энергии имеем:
`(mv_2^2)/2-(mv_1^2)/2=(q_0q)/(4pi epsilon_0r_1)-(q_0q)/(4pi epsilon_0r_2)`, | |
или иначе | |
`(mv_2^2)/2+(q_0q)/(4pi epsilon_0r_2)= (mv_1^2)/2+(q_0q)/(4pi epsilon_0r_1)` | (1.4.12) |
Определяя потенциальную энергию взаимодействия точечных зарядов `q` и `q_0` находящихся на расстоянии `r` друг от друга, формулой
`Pi(r)=(q_0q)/(4pi epsilon_0r)+Pi_0`, (1.4.13)
где `Pi_0` — произвольная постоянная, мы можем придать равенству (1.4.12) вид закона сохранения энергии `K_2+Pi_2=K_1+Pi_1`.
В случае точечных зарядов весьма часто константу `Pi_0` выбирают равной нулю так, чтобы потенциальная энергия взаимодействия двух зарядов стремилась к нулю при разнесении зарядов на бесконечно большое расстояние друг от друга (когда они перестанут «чувствовать» друг друга). В этом случае
`Pi(r)=(q_0q)/(4pi epsilon_0r)`. (1.4.13′)
Пусть в одну и ту же точку поля точечного заряда `q` на расстоянии `r` от него поочерёдно помещаются разные пробные заряды `q_1`, `q_2`, `. `. Энергии этих зарядов будут разными `Pi_1`, `Pi_2`, `. `. Существенно, однако, что отношение этих энергий в величинам пробных зарядов будет одним и тем же
`(Pi_1(r))/(q_1)=(Pi_2(r))/(q_2)=. =q/(4pi epsilon_0r)-=varphi(r)`. (1.4.14)
Последним равенством определяется потенциал `varphi(r)` точечного заряда `q` на расстоянии `r` от него. Заметим, что согласно (1.4.11) потенциал `varphi(r)=q/(4pi epsilon_0r)` равен работе сил электростатического поля заряда `q` при перемещении единичного положительного точечного заряда из точки на расстоянии `r` от заряда `q` на бесконечность. Потенциал, как и потенциальная энергия, определён, вообще говоря, неоднозначно — с точностью до произвольной константы
`varphi(r)=q/(4pi epsilon_0r)+varphi_0`, (1.4.14′)
которую весьма часто выбирают равной нулю с тем, чтобы при удалении от заряда на бесконечно большое расстояние потенциал заряда в этих (бесконечно удалённых точках) стремился к нулю.
Согласно формуле (1.4.14′) потенциал точечного заряда одинаков во всех точках, равноудалённых от него. Это означает, что эквипотенциальными поверхностями в данном случае будут концентрические сферы. Как и в случае однородного поля, в каждой точке поля напряжённость перпендикулярна эквипотенциальной поверхности.
Если электростатическое поле создаётся несколькими зарядами `q_1,q_2. `, потенциал в произвольной точке поля равен сумме потенциалов, создаваемых каждым из зарядов в той точке:
что, как и в случае напряжённостей полей, называют принципом суперпозиции. Важно, что напряжённости полей надо складывать векторно, а потенциалы — алгебраически (т. е. все же с учётом знаков).
Если воздушный шарик радиусом `R=10` см потереть о шерсть, о мех или о волосы, то он приобретёт довольно большой отрицательный заряд – порядка `q=0,1` мкКл. Каким будет при этом потенциал шарика?
Поле вне шара совпадает с полем точечного заряда. Потенциал шара будет равен
`varphi=1/(4pi epsilon_0) q/R=9000` В,
т. е. почти `10` киловольт (!). Возникает естественный вопрос: не слишком много вольт мы здесь получили? Нет ли ошибки в нашей оценке? Нет, мы не ошибаемся. Несмотря на столь внушительный потенциал, шар будет обладать весьма незначительной энергией. Оценить энергию воздушного шарика можно по формуле `W=(1//2)qvarphi`, которую мы приведём без вывода, что даёт `W~~10,5*10^(-3)` Дж, поэтому все эти `9` тысяч вольт реальной опасности не представляют.
В случае движения отдельных элементарных частиц (электронов, протонов) удобной единицей измерения энергии является электрон-вольт (эВ). Так называют энергию, которую приобретает частица с зарядом, равным элементарному электрическому заряду, пройдя разность потенциалов в `1` вольт. Энергия электрона в атоме водорода равна `W=-13,6` эВ. Считая, что электрон в атоме водорода движется по круговой орбите, найти радиус этой орбиты.
Энергия электрона складывается из кинетической и потенциальной: `W=(mv^2)/2-(e^2)/(4pi epsilon_0r)`. Запишем ещё 2-й закон Ньютона для движения электрона в поле протона: `(mv^2)/r=(e^2)/(4pi epsilon_0r^2)`, откуда получаем `(mv^2)/2=1/2 (e^2)/(4pi epsilon_0r)` и `W=-1/2 (e^2)/(4pi epsilon_0r)`. Решая это уравнение относительно `r`, после подстановки числовых значений находим `r=0,53*10^(-10)` м.
Два основных объекта нашего дальнейшего изучения это – проводники и диэлектрики в электрическом поле, а также электрические поля в вакууме в их присутствии. Считается, что в проводниках имеется большое число подвижных носителей заряда (способных свободно перемещаться в пределах проводника). В диэлектриках, напротив, считается, что таких подвижных зарядов практически нет (их число пренебрежимо мало).
Потенциал. Разность потенциалов. Напряжение.Эквипотенциальные поверхности
Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.
За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора.
— следствие принципа суперпозиции полей (потенциалы складываютсяалгебраически).
Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.
В СИ потенциал измеряется в вольтах:
Разность потенциалов
Напряжение — разность значений потенциала в начальной и конечнойточках траектории.
Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.
Разность потенциалов (напряжение) не зависит от выбора
Единица разности потенциалов
Напряжение равно 1 В, если при перемещении положительного заряда в 1 Кл вдоль силовых линий поле совершает работу в 1 Дж.
Связь между напряженностью и напряжением.
Из доказанного выше: →
напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).
Из этого соотношения видно:
- Вектор напряженности направлен в сторону уменьшения потенциала.
- Электрическое поле существует, если существует разность потенциалов.
- Единица напряженности: — Напряженность поля равна1 В/м, если между двумя точками поля, находящимися на расстоянии 1 м друг от друга существует разность потенциалов 1 В.
Эквипотенциальные поверхности.
ЭПП — поверхности равного потенциала.
— работа при перемещении заряда вдоль эквипотенциальной поверхности не совершается;
— вектор напряженности перпендикулярен к ЭПП в каждой ее точке.
Измерение электрического напряжения (разности потенциалов)
Между стержнем и корпусом — электрическое поле. Измерение потенциала кондуктора Измерение напряжения на гальваническом элементе Электрометр дает большую точность, чем вольтметр.
Потенциальная энергия взаимодействия зарядов.
Потенциал поля точечного заряда
Потенциал заряженного шара
а) Внутри шара Е=0, следовательно, потенциалы во всех точках внутри заряженного металлического шара одинаковы (. ) и равны потенциалу на поверхности шара.
б) Снаружи поле шара убывает обратно пропорционально расстоянию от центра шара, как и в случае точечного заряда.
Перераспределение зарядов при контакте заряженных проводников.
Переход зарядов происходит до тех пор, пока потенциалы контактирующих тел не станут равными.