Аналого-цифровой преобразователь — назначение, классификация и принцип работы
Для преобразования аналогового сигнала в сигнал цифровой (в последовательность типа читаемого двоичного кода), служит электронное устройство, называемое аналого-цифровым преобразователем — сокращенно АЦП. В процессе преобразования аналогового сигнала в цифровой, реализуются: дискретизация, квантование и кодирование.
Под дискретизацией понимается выборка из непрерывного во времени аналогового сигнала отдельных (дискретных) значений, приходящихся на моменты времени, связанные с определенными интервалами и длительностью тактовых сигналов, следующими один за другим.
Квантование подразумевает округление значения аналогового сигнала, выбранного в ходе дискретизации, до ближайшего уровня квантования, причем уровни квантования имеют каждый собственный порядковый номер, и различаются эти уровни друг от друга на фиксированную величину дельта, которая есть ни что иное, как шаг квантования.
Строго говоря, дискретизация — это процесс представления непрерывной функции в виде ряда дискретных значений, а квантование — это разбиение сигнала (значений) на уровни. Что касается кодирования, то под кодированием здесь понимается сопоставление элементов, полученных в результате квантования, с предопределенной кодовой комбинацией.
Методов преобразования напряжения в код разработчикам известно очень много. При этом каждый из методов отличается индивидуальными особенностями: точностью, скоростью, сложностью. По типу способа преобразования, АЦП подразделяются на три
- параллельные,
- последовательные,
- последовательно-параллельные.
У каждого способа процесс преобразования сигнала во времени протекает по-своему, от того и названия. Отличия лежат в том, как осуществляются квантование и кодирование: последовательной, параллельной или последовательно-параллельной процедурой приближения цифрового результата к преобразуемому сигналу.
Схема параллельного аналого-цифрового преобразователя изображена на рисунке. Параллельные АЦП — наиболее быстродействующие из всех типов аналого-цифровых преобразователей.
Количество электронных устройств сравнения (общее число компараторов DA) соответствует разрядности АЦП: для двух разрядов достаточно трех компараторов, для трех — семь, для четырех — 15 и т. д. Делитель напряжения на резисторах предназначен для задания ряда неизменных опорных напряжений.
Входное напряжение (здесь измеряется значение этого входного напряжения) подается одновременно на входы всех компараторов, и сравнивается со всеми опорными напряжениями из тех, что позволяет получить данный резистивный делитель.
Те компараторы, на неинвертирующие входы которых подается напряжение больше опорного (подаваемого с делителя на инвертирующий вход) — дадут на выходе логическую единицу, остальные (где входное напряжение окажется меньше опорного или равно нулю) — выдадут ноль.
Далее подключен шифратор, его задача — преобразовать комбинацию единиц и нулей в стандартный, адекватно понимаемый бинарный код.
Схемы АЦП последовательного преобразования менее быстродейственны, чем схемы параллельного преобразования, однако имеют более простое элементное исполнение. Здесь используется компаратор, логическая схема «И», генератор тактовых импульсов, счетчик и цифро-аналоговый преобразователь.
На рисунке приведена схема такого АЦП. Например, пока измеряемое напряжение, подаваемое на вход схемы сравнения, выше линейно нарастающего сигнала на втором входе (опорном), счетчик отсчитывает импульсы тактового генератора. Получается, что измеряемое напряжение пропорционально числу отсчитанных импульсов.
Есть еще последовательно-параллельные АЦП, у которых процесс преобразования аналогового сигнала в цифровой разделен в пространстве так, что получается достичь максимального компромиссного быстродействия при минимальной сложности.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Аналого-цифровое преобразование для начинающих
В этой статье рассмотрены основные вопросы, касающиеся принципа действия АЦП различных типов. При этом некоторые важные теоретические выкладки, касающиеся математического описания аналого-цифрового преобразования остались за рамками статьи, но приведены ссылки, по которым заинтересованный читатель сможет найти более глубокое рассмотрение теоретических аспектов работы АЦП. Таким образом, статья касается в большей степени понимания общих принципов функционирования АЦП, чем теоретического анализа их работы.
«
В качестве отправной точки дадим определение аналого-цифровому преобразованию. Аналого-цифровое преобразование – это процесс преобразования входной физической величины в ее числовое представление. Аналого-цифровой преобразователь – устройство, выполняющее такое преобразование. Формально, входной величиной АЦП может быть любая физическая величина – напряжение, ток, сопротивление, емкость, частота следования импульсов, угол поворота вала и т.п. Однако, для определенности, в дальнейшем под АЦП мы будем понимать исключительно преобразователи напряжение-код.
Понятие аналого-цифрового преобразования тесно связано с понятием измерения. Под измерением понимается процесс сравнения измеряемой величины с некоторым эталоном, при аналого-цифровом преобразовании происходит сравнение входной величины с некоторой опорной величиной (как правило, с опорным напряжением). Таким образом, аналого-цифровое преобразование может рассматриваться как измерение значения входного сигнала, и к нему применимы все понятия метрологии, такие, как погрешности измерения.
Основные характеристики АЦП
АЦП имеет множество характеристик, из которых основными можно назвать частоту преобразования и разрядность. Частота преобразования обычно выражается в отсчетах в секунду (samples per second, SPS), разрядность – в битах. Современные АЦП могут иметь разрядность до 24 бит и скорость преобразования до единиц GSPS (конечно, не одновременно). Чем выше скорость и разрядность, тем труднее получить требуемые характеристики, тем дороже и сложнее преобразователь. Скорость преобразования и разрядность связаны друг с другом определенным образом, и мы можем повысить эффективную разрядность преобразования, пожертвовав скоростью.
Существует множество типов АЦП, однако в рамках данной статьи мы ограничимся рассмотрением только следующих типов:
- АЦП параллельного преобразования (прямого преобразования, flash ADC)
- АЦП последовательного приближения (SAR ADC)
- дельта-сигма АЦП (АЦП с балансировкой заряда)
Наибольшим быстродействием и самой низкой разрядностью обладают АЦП прямого (параллельного) преобразования. Например, АЦП параллельного преобразования TLC5540 фирмы Texas Instruments обладает быстродействием 40MSPS при разрядности всего 8 бит. АЦП данного типа могут иметь скорость преобразования до 1 GSPS. Здесь можно отметить, что еще большим быстродействием обладают конвейерные АЦП (pipelined ADC), однако они являются комбинацией нескольких АЦП с меньшим быстродействием и их рассмотрение выходит за рамки данной статьи.
Среднюю нишу в ряду разрядность-скорость занимают АЦП последовательного приближения. Типичными значениями является разрядность 12-18 бит при частоте преобразования 100KSPS-1MSPS.
Наибольшей точности достигают сигма-дельта АЦП, имеющие разрядность до 24 бит включительно и скорость от единиц SPS до единиц KSPS.
Еще одним типом АЦП, который находил применение в недавнем прошлом, является интегрирующий АЦП. Интегрирующие АЦП в настоящее время практически полностью вытеснены другими типами АЦП, но могут встретиться в старых измерительных приборах.
АЦП прямого преобразования
АЦП прямого преобразования получили широкое распространение в 1960-1970 годах, и стали производиться в виде интегральных схем в 1980-х. Они часто используются в составе «конвейерных» АЦП (в данной статье не рассматриваются), и имеют разрядность 6-8 бит при скорости до 1 GSPS.
Архитектура АЦП прямого преобразования изображена на рис. 1
Рис. 1. Структурная схема АЦП прямого преобразования
Принцип действия АЦП предельно прост: входной сигнал поступает одновременно на все «плюсовые» входы компараторов, а на «минусовые» подается ряд напряжений, получаемых из опорного путем деления резисторами R. Для схемы на рис. 1 этот ряд будет таким: (1/16, 3/16, 5/16, 7/16, 9/16, 11/16, 13/16) Uref, где Uref – опорное напряжение АЦП.
Пусть на вход АЦП подается напряжение, равное 1/2 Uref. Тогда сработают первые 4 компаратора (если считать снизу), и на их выходах появятся логические единицы. Приоритетный шифратор (priority encoder) сформирует из «столбца» единиц двоичный код, который фиксируется выходным регистром.
Теперь становятся понятны достоинства и недостатки такого преобразователя. Все компараторы работают параллельно, время задержки схемы равно времени задержки в одном компараторе плюс время задержки в шифраторе. Компаратор и шифратор можно сделать очень быстрыми, в итоге вся схема имеет очень высокое быстродействие.
Но для получения N разрядов нужно 2^N компараторов (и сложность шифратора тоже растет как 2^N). Схема на рис. 1. содержит 8 компараторов и имеет 3 разряда, для получения 8 разрядов нужно уже 256 компараторов, для 10 разрядов – 1024 компаратора, для 24-битного АЦП их понадобилось бы свыше 16 млн. Однако таких высот техника еще не достигла.
АЦП последовательного приближения
АЦП последовательного приближения реализует алгоритм «взвешивания», восходящий еще к Фибоначчи. В своей книге «Liber Abaci» (1202 г.) Фибоначчи рассмотрел «задачу о выборе наилучшей системы гирь», то есть о нахождении такого ряда весов гирь, который бы требовал для нахождения веса предмета минимального количества взвешиваний на рычажных весах. Решением этой задачи является «двоичный» набор гирь. Подробнее о задаче Фибоначчи можно прочитать, например, здесь: http://www.goldenmuseum.com/2015AMT_rus.html.
Аналого-цифровой преобразователь последовательного приближения (SAR, Successive Approximation Register) измеряет величину входного сигнала, осуществляя ряд последовательных «взвешиваний», то есть сравнений величины входного напряжения с рядом величин, генерируемых следующим образом:
1. на первом шаге на выходе встроенного цифро-аналогового преобразователя устанавливается величина, равная 1/2Uref (здесь и далее мы предполагаем, что сигнал находится в интервале (0 – Uref).
2. если сигнал больше этой величины, то он сравнивается с напряжением, лежащим посередине оставшегося интервала, т.е., в данном случае, 3/4Uref. Если сигнал меньше установленного уровня, то следующее сравнение будет производиться с меньшей половиной оставшегося интервала (т.е. с уровнем 1/4Uref).
3. Шаг 2 повторяется N раз. Таким образом, N сравнений («взвешиваний») порождает N бит результата.
Рис. 2. Структурная схема АЦП последовательного приближения.
Таким образом, АЦП последовательного приближения состоит из следующих узлов:
1. Компаратор. Он сравнивает входную величину и текущее значение «весового» напряжения (на рис. 2. обозначен треугольником).
2. Цифро-аналоговый преобразователь (Digital to Analog Converter, DAC). Он генерирует «весовое» значение напряжения на основе поступающего на вход цифрового кода.
3. Регистр последовательного приближения (Successive Approximation Register, SAR). Он осуществляет алгоритм последовательного приближения, генерируя текущее значение кода, подающегося на вход ЦАП. По его названию названа вся данная архитектура АЦП.
4. Схема выборки-хранения (Sample/Hold, S/H). Для работы данного АЦП принципиально важно, чтобы входное напряжение сохраняло неизменную величину в течение всего цикла преобразования. Однако «реальные» сигналы имеют свойство изменяться во времени. Схема выборки-хранения «запоминает» текущее значение аналогового сигнала, и сохраняет его неизменным на протяжении всего цикла работы устройства.
Достоинством устройства является относительно высокая скорость преобразования: время преобразования N-битного АЦП составляет N тактов. Точность преобразования ограничена точностью внутреннего ЦАП и может составлять 16-18 бит (сейчас стали появляться и 24-битные SAR ADC, например, AD7766 и AD7767).
Дельта-сигма АЦП
И, наконец, самый интересный тип АЦП – сигма-дельта АЦП, иногда называемый в литературе АЦП с балансировкой заряда. Структурная схема сигма-дельта АЦП приведена на рис. 3.
Рис.3. Структурная схема сигма-дельта АЦП.
Принцип действия данного АЦП несколько более сложен, чем у других типов АЦП. Его суть в том, что входное напряжение сравнивается со значением напряжения, накопленным интегратором. На вход интегратора подаются импульсы положительной или отрицательной полярности, в зависимости от результата сравнения. Таким образом, данный АЦП представляет собой простую следящую систему: напряжение на выходе интегратора «отслеживает» входное напряжение (рис. 4). Результатом работы данной схемы является поток нулей и единиц на выходе компаратора, который затем пропускается через цифровой ФНЧ, в результате получается N-битный результат. ФНЧ на рис. 3. Объединен с «дециматором», устройством, снижающим частоту следования отсчетов путем их «прореживания».
Рис. 4. Сигма-дельта АЦП как следящая система
Ради строгости изложения, нужно сказать, что на рис. 3 изображена структурная схема сигма-дельта АЦП первого порядка. Сигма-дельта АЦП второго порядка имеет два интегратора и две петли обратной связи, но здесь рассматриваться не будет. Интересующиеся данной темой могут обратиться к [3].
На рис. 5 показаны сигналы в АЦП при нулевом уровне на входе (сверху) и при уровне Vref/2 (снизу).
Рис. 5. Сигналы в АЦП при разных уровнях сигнала на входе.
Более наглядно работу сигма-дельта АЦП демонстрирует небольшая программа, находящаяся тут: http://designtools.analog.com/dt/sdtutorial/sdtutorial.html.
Теперь, не углубляясь в сложный математический анализ, попробуем понять, почему сигма-дельта АЦП обладают очень низким уровнем собственных шумов.
Рассмотрим структурную схему сигма-дельта модулятора, изображенную на рис. 3, и представим ее в таком виде (рис. 6):
Рис. 6. Структурная схема сигма-дельта модулятора
Здесь компаратор представлен как сумматор, который суммирует непрерывный полезный сигнал и шум квантования.
Пусть интегратор имеет передаточную функцию 1/s. Тогда, представив полезный сигнал как X(s), выход сигма-дельта модулятора как Y(s), а шум квантования как E(s), получаем передаточную функцию АЦП:
То есть, фактически сигма-дельта модулятор является фильтром низких частот (1/(s+1)) для полезного сигнала, и фильтром высоких частот (s/(s+1)) для шума, причем оба фильтра имеют одинаковую частоту среза. Шум, сосредоточенный в высокочастотной области спектра, легко удаляется цифровым ФНЧ, который стоит после модулятора.
Рис. 7. Явление «вытеснения» шума в высокочастотную часть спектра
Однако следует понимать, что это чрезвычайно упрощенное объяснение явления вытеснения шума (noise shaping) в сигма-дельта АЦП.
Итак, основным достоинством сигма-дельта АЦП является высокая точность, обусловленная крайне низким уровнем собственного шума. Однако для достижения высокой точности нужно, чтобы частота среза цифрового фильтра была как можно ниже, во много раз меньше частоты работы сигма-дельта модулятора. Поэтому сигма-дельта АЦП имеют низкую скорость преобразования.
Они могут использоваться в аудиотехнике, однако основное применение находят в промышленной автоматике для преобразования сигналов датчиков, в измерительных приборах, и в других приложениях, где требуется высокая точность. но не требуется высокой скорости.
Немного истории
Самым старым упоминанием АЦП в истории является, вероятно, патент Paul M. Rainey, «Facsimile Telegraph System,» U.S. Patent 1,608,527, Filed July 20, 1921, Issued November 30, 1926. Изображенное в патенте устройство фактически является 5-битным АЦП прямого преобразования.
Рис. 8. Первый патент на АЦП
Рис. 9. АЦП прямого преобразования (1975 г.)
Устройство, изображенное на рисунке, представляет собой АЦП прямого преобразования MOD-4100 производства Computer Labs, 1975 года выпуска, собранный на основе дискретных компараторов. Компараторов 16 штук (они расположены полукругом, для того, чтобы уравнять задержку распространения сигнала до каждого компаратора), следовательно, АЦП имеет разрядность всего 4 бита. Скорость преобразования 100 MSPS, потребляемая мощность 14 ватт.
На следующем рисунке изображена продвинутая версия АЦП прямого преобразования.
Рис. 10. АЦП прямого преобразования (1970 г.)
Устройство VHS-630 1970 года выпуска, произведенное фирмой Computer Labs, содержало 64 компаратора, имело разрядность 6 бит, скорость 30MSPS и потребляло 100 ватт (версия 1975 года VHS-675 имела скорость 75 MSPS и потребление 130 ватт).
W. Kester. ADC Architectures I: The Flash Converter. Analog Devices, MT-020 Tutorial. www.analog.com/static/imported-files/tutorials/MT-020.pdf
W. Kester. ADC Architectures II: Successive Approximation ADC. Analog Devices, MT-021 Tutorial. www.analog.com/static/imported-files/tutorials/MT-021.pdf
W. Kester. ADC Architectures III: Sigma-Delta ADC Basics. Analog Devices, MT-022 Tutorial. www.analog.com/static/imported-files/tutorials/MT-022.pdf
W. Kester. ADC Architectures IV: Sigma-Delta ADC Advanced Concepts and Applications. Analog Devices, MT-023 Tutorial. www.analog.com/static/imported-files/tutorials/MT-023.pdf
Что такое аналого-цифровой преобразователь (АЦП)?
В этой статье мы рассмотрим основные типы современных аналого-цифровых преобразователей (АЦП). Прочитав ее, вы сможете:
- ознакомиться с технологиями, лежащими в основе каждого типа АЦП;
- узнать об основных функциях и возможностях АЦП;
- понять, какие типы АЦП лучше всего подходят для современных систем;
- выяснить, какие два основных типа АЦП выбрала компания Dewesoft и почему.
Что такое аналого-цифровой преобразователь (АЦП)?
Аналого-цифровые преобразователи (АЦП) являются одним из основных элементов современных систем сбора данных. Такие системы состоят из следующих базовых компонентов:
- датчиков (см. справочник «Что такое датчики?»);
- преобразователей сигналов (см. руководство «Что такое преобразование сигналов?»);
- аналого-цифровых преобразователей (АЦП) (данная статья)
- и какого-либо компьютера с ПО для сбора данных, позволяющего регистрировать и анализировать сигналы.
Преобразователи АЦП играют большую роль в современных цифровых системах сбора данных.
Узнайте больше о сборе данных:
Что такое системы сбора данных? Полное руководство по сбору данных (DAQ). Узнайте, как работают системы сбора данных и каковы основные элементы современных систем сбора цифровых данных.
Главные функции аналого-цифровых преобразователей
Основное назначение АЦП в системе сбора данных заключается в преобразовании подготовленных аналоговых сигналов в поток цифровых данных, обрабатываемых системой сбора данных для отображения, хранения и анализа.
Основные типы аналого-цифровых преобразователей
Хотя на сегодняшний день существует пять основных типов АЦП, в сфере сбора данных все сводится к двум из них:
- АЦП последовательного приближения и
- дельта-сигма.
Другие типы тоже вполне эффективны, но лучше подходят для сфер применения, не связанных со сбором данных. Например, сдвоенные АЦП работают довольно медленно и поэтому применяются в основном в ручных вольтметрах.
Кроме того, существуют параллельные АЦП, которые обеспечивают чрезвычайно высокую частоту выборки, но их разрешение по амплитудной оси слишком низкое для нужд сбора данных. Конвейерные АЦП основаны на использовании нескольких параллельных преобразователей для повышения разрешения по амплитудной оси, но их возможности пока ограничены.
Сравнение основных типов АЦП
Тип АЦП | Преимущества | Недостатки | Макс. разрешение | Max Sample Rate |
---|---|---|---|---|
Сдвоенный | Низкая стоимость | Низкая скорость | 20 бит | 100 Гц |
Параллельный | Очень быстрый | Низкое битовое разрешение | 12 бит | 10 ГГц |
Конвейерный | Очень быстрый | Ограниченное разрешение | 16 бит | 1 ГГц |
Последовательного приближения (РПП) | Хорошее соотношение скорости и разрешения | Отсутствие внутренней защиты от искажения | 18 бит | 10 МГц |
Дельта-сигма (ΔΣ) | Высокая динамическая производительность, защита от искажения | Отставание на искусственных сигналах | 32 бита | 1 MHz |
Таким образом, специалисты в области сбора данных остановились на АЦП последовательного приближения (РПП) и дельта-сигма (ΔΣ) АЦП. Каждый из них имеет свои преимущества и недостатки и, следовательно, пригоден для решения определенных задач. Рассмотрим принцип работы каждого АЦП и сравним их:
АЦП последовательного приближения (РПП)
«Рабочая лошадка» сферы обработки данных — это аналогово-цифровой преобразователь РПП. Он обеспечивает превосходный баланс скорости и разрешения и обрабатывает широкий спектр сигналов с отменной точностью.
Этот преобразователь существует уже давно, поэтому модели РПП стабильны и надежны, а чипы относительно недороги. Они могут быть настроены как для простых АЦП-карт, где один АЦП-чип «совместно используется» несколькими входными каналами (мультиплексные АЦП-платы), так и для моделей, где каждый входной канал имеет свой собственный АЦП для одновременной выборки.
Аналоговый вход большинства АЦП составляет 5 В, поэтому почти все интерфейсы формирования сигнала преобразовывают его одинаково. Типичный АЦП последовательного приближения использует схему выборки и хранения, которая принимает преобразованное аналоговое напряжение от интерфейса преобразования сигнала.
Встроенная система обработки данных создает аналоговое опорное напряжение, равное выходному сигналу цифрового кода устройства выборки-хранения. Оба сигнала передаются в компаратор, который отправляет результат сравнения в РПП. Этот процесс продолжается в течение n последовательных раз, причем n является битовым разрешением самого АЦП, пока не будет найдено значение, ближайшее к фактическому сигналу.
АЦП последовательного приближения не имеют внутреннего механизма фильтрации-сглаживания, поэтому, если в системе сбора данных такой компонент не предусмотрен перед АЦП, при выборе слишком низкой частоты выборки ложные сигналы (они же «помехи») будут оцифрованы АЦП РПП. Искажение особенно проблематично, поскольку его невозможно исправить после оцифровки.
Нет способа исправить его с помощью программного обеспечения. Оно должно быть предотвращено путем постоянной выборки на частоте, превышающей частоту Найквиста всех входных сигналов, либо путем фильтрации сигналов перед и внутри АЦП.
Дополнительные сведения см. в разделе «Искажение и опасность недостаточной частоты выборки» ниже
АЦП РПП — надежное решение для многих современных систем сбора данных. Они широко используются на рынке бюджетных устройств, поскольку их можно использовать в мультиплексном режиме, когда выборка по нескольким каналам осуществляется с помощью одного АЦП. Они также широко используются для устройств средней ценовой категории благодаря скорости и хорошему разрешению амплитудной оси.
Из-за ограниченного разрешения амплитудной оси они не подходят для высокодинамичных измерений, включая шум, звук, удар и вибрацию, балансировку, обработку синусоидальных сигналов и т.д. Для таких сфер применения следует обратить внимание на дельта-сигма АЦП, как рассказывается в следующем разделе.
Дельта-сигма АЦП (ΔΣ)
Более новая технология — это дельта-сигма АЦП, использующие преимущества технологии ЦОС для повышения разрешения амплитудной оси и уменьшения высокочастотного шума квантования, присущего РПП.
Сложные и мощные дельта-сигма АЦП идеальны для динамических измерений, требующих как можно большего разрешения амплитудной оси. Именно их применяют при работе со звуком и вибрациями, а также во многих передовых системах сбора данных.
Фильтр нижних частот, реализованный в процессоре ЦОС, практически исключает шумы квантования, что обеспечивает отношение «сигнал-шум», близкое к идеальному.
Реализация этих чипов в системах сбора данных обычно подразумевает интерфейсную фильтрацию-сглаживание, что практически исключает оцифровку ложных сигналов.
При интеграции на уровне аналогового интерфейса с максимально возможной частотой выборки по Найквисту, а затем динамически через ЦОС-процессор в соответствии с выбранной частотой выборки, производительность фильтрации-сглаживания этих АЦП просто превосходна.
Сдвоенные дельта-сигма АЦП — DualCoreADC®
Компания Dewesoft также воспользовалась преимуществами этих АЦП, объединив два преобразователя на каждом входном канале. Один АЦП настроен на низкий коэффициент усиления, а другой — на более высокий. Оба АЦП отслеживают сигнал одновременно, а запатентованная схема сравнивает их в реальном времени и использует тот, который имеет лучшее соотношение «сигнал-шум» в любой момент времени, объединяя параллельные цифровые сигналы в непрерывный единый поток со значительно расширенным динамическим диапазоном.
Этот метод значительно расширяет динамический диапазон, чего невозможно было бы достичь с помощью одного АЦП. Он увеличивает динамический диапазон до целых 160 дБ. Компания Dewesoft запатентовала эту технологию, которая на рынке известна как DualCoreADC.
Видео про DualCoreADC от компании Dewesoft
Интересно отметить, что даже при очень медленных сигналах, таких как от большинства термопар, максимально возможное разрешение амплитудной оси делает эти дельта-сигма АЦП предпочтительнее АЦП РПП.
Представьте себе термопару, способную измерять температуру в диапазоне 1500° — чем больше амплитудная ось на АЦП, тем большее разрешение будет иметь сигнал температуры. Учтите, что каждый бит эффективно удваивает разрешение вертикальной оси.
Что лучше? РПП или дельта-сигма?
Каждая технология АЦП имеет свои преимущества. И поскольку сферы применения слишком различны, нельзя сказать, что одна из них лучше другой в целом. Тем не менее, можно утверждать, что одна из них лучше другой по ряду критериев современных систем:
Критерий | АЦП последовательного приближения | Дельта-сигма (ΔΣ) АЦП |
---|---|---|
Требуется максимальное разрешение амплитудной оси (даже для медленных сигналов, таких как термопары) | Обычно максимум 16 или 18 бит | Предпочтительнее. Разрешение 24 бита фактически является современным стандартом среди дельта-сигма плат. |
Необходимо использовать недорогую мультиплексную АЦ-плату | Единственный вариант. Можно мультиплексировать один АЦП РПП на нескольких каналах для создания недорогих систем сбора данных, если небольшие искажения не критичны. | Н/Д |
Требуется максимально возможная частота выборки | Предпочтительнее. Существуют АЦП последовательного приближения для сбора данных с частотой выборки до 10 Мвыб./с. | Встроенный ЦОС-процессор ограничивает макс. частоту выборки дельта-сигма АЦП по сравнению с АЦП РПП. |
Желательна фильтрация-сглаживание | Дорого и сложно добавить в АЦП последовательного приближения. | Предпочтительнее, поскольку фильтрация-сглаживание встроена в дельта-сигма АЦП. |
Требуется максимальное соотношение «сигнал-шум» | Единственный вариант. Возможно достижение 160 дБ с помощью запатентованной технологии DualCoreADC® компании Dewesoft. | |
В основном будут регистрироваться искусственные сигналы (например, прямоугольные) | Лучше воспроизводит прямоугольные волны. |
Подробнее о различных типах АЦ-преобразователей:
Оптимальный инструмент для работы
Хотя знаковыми решениями Dewesoft являются 24-битные дельта-сигма АЦП и технология DualCoreADC, компания также использует 16-битные АЦП последовательного приближения для достижения максимальной частоты выборки 1 Мвыб./с в линейке систем сбора данных SIRIUS.
К ним относятся высокоскоростные преобразователи сигналов SIRIUS HS. В преобразователях сигналов стандартной и HD-серии используются 24-битные дельта-сигма АЦП.
Преобразователи сигналов SIRIUS HS реализуют мощную фильтрацию-сглаживание в форме фильтрации 100 кГц 5-го порядка. В цифровой области предусмотрен дополнительный фильтр (Бесселя, Баттерворта (или обходной) на выбор) вплоть до 8-го порядка.
Мощная фильтрация-сглаживание встроена во все 24-битные преобразователи сигналов АЦП от Dewesoft.
Мультиплексирование или один АЦП на канал
Очень часто в недорогих системах сбора данных, таких как регистраторы данных или промышленные системы управления, используются мультиплексные АЦ-платы, поскольку они дешевле, чем реализация отдельных чипов АЦП на каждый входной канал.
В мультиплексной АЦП-системе один аналого-цифровой преобразователь используется для преобразования нескольких сигналов из аналоговой формы в цифровую. Это реализуется путем мультиплексирования аналоговых сигналов в АЦП по одному.
Это более экономичный подход, однако невозможно точно выровнять сигналы по оси времени, поскольку только один сигнал может быть преобразован за один раз. Поэтому между каналами всегда существует временной перекос. Если небольшие искажения некритичны в данной сфере применения, то это необязательно плохо. То же самое относится и к аналоговым устройствам, используемым в системе: важен выбор оптимального решения с учетом функциональности и срока службы.
Кроме того, поскольку максимальная частота выборки всегда делится на количество считываемых каналов, максимальная частота выборки на канал в мультиплексных системах обычно ниже, за исключением случаев, когда регистрируется только один или небольшое число каналов.
Что касается современных систем сбора данных, мультиплексные АЦП используются в основном в бюджетных решениях, где стоимость важнее точности или скорости.
Что такое частота выборки?
Скорость, с которой преобразуются сигналы, называется частотой выборки. Некоторые области применения, такие как большинство измерений температуры, не требуют высокой скорости, поскольку сигналы изменяются не очень быстро.
Однако при анализе напряжения и силы переменного тока, ударов и вибрации, а также во многих других сферах применения требуются частоты выборки, составляющие десятки или сотни тысяч выборок в секунду и более. Частота выборки обычно называется осью измерения T (или X).
Компания Dewesoft предлагает системы сбора данных с максимальными частотами выборки, как показано ниже:
Модель | Вариант | Интерфейс | Макс. частота выборки (на канал) |
---|---|---|---|
SIRIUS | Dual Core | USB 2.0 | 200 квыб./с |
SIRIUS MINI | Dual Core | USB 2.0 | 200 квыб./с |
SIRIUS | Dual Core | EtherCAT | 20 квыб./с |
SIRIUS | HD (высокая плотность) | USB 2.0 | 200 квыб./с |
SIRIUS | HD (высокая плотность) | EtherCAT | 10 квыб./с |
SIRIUS | HS (высокая скорость) | USB 2.0 | 1 Мвыб./с |
SIRIUS | XHS (сверхвысокая скорость) | USB 3 / Gigabit LAN | 15 Мвыб./с |
DEWE-43A | / | USB 2.0 | 200 квыб./с |
MINITAURs | / | USB 2.0 | 200 квыб./с |
KRYPTON | Многоканальный | EtherCAT | 20 квыб./с |
KRYPTON | Одноканальный | EtherCAT | 40 квыб./с |
IOLITE | Стойка | EtherCAT | 20 квыб./с |
IOLITE | Модульный | EtherCAT | 20 квыб./с |
Искажение и опасность недостаточной частоты выборки
Понимание характера сигналов и их максимально возможных частот является важной частью точных измерений. Предположим, мы хотим измерить выходной сигнал акселерометра.
Если мы ожидаем, что он будет испытывать колебания с максимальной частотой 100 Гц, мы должны установить частоту выборки по крайней мере в два раза больше (принцип Найквиста). На практике же для получения качественного сигнала лучше устанавливать частоту выборки в 10 раз больше. Поэтому в этом случае мы устанавливаем частоту выборки 1000 Гц и выполняем измерение.
Теоретически все как надо, но что, если частота сигнала при высокой амплитуде не увеличилась? Если это так, то наша система не сможет точно измерить или преобразовать сигнал. Кроме того, измеренные значения могут оказаться вовсе неверными.
Чтобы представить себе искажения из-за недостаточной частоты выборки, посмотрите старый фильм про проезжающий вагон, когда камеры еще снимали со скоростью 24 кадра в секунду: при разных скоростях это может выглядеть так, как будто колеса вращаются назад или же вообще не двигаются.
Это своего рода стробоскопический визуальный эффект, вызванный гармонической зависимостью между частотой вращения колеса и скоростью съемки камеры. Возможно, вам попадались видео, где кажется, что вертолет висит в воздухе, а его лопасти вообще не двигаются. Это происходит, если выдержка камеры была синхронизирована со скоростью вращения лопастей вертолета.
Это несущественно для кинематографии, но если мы занимаемся наукой, для нас невозможно серьезно полагать, что колеса автомобиля вращаются назад, а быстро вращающиеся лопасти вертолета не двигаются.
С точки зрения оцифровки сигналов напряжения с помощью АЦП важно, чтобы частота выборки была установлена соответствующим образом. Если задать слишком высокое значение, мы потратим впустую вычислительную мощность и в конечном итоге получим файлы данных, которые слишком велики и неудобочитаемы. Слишком низкая частота выборки, в свою очередь, порождает две проблемы:
- утрата важных компонентов динамического сигнала;
- получение ложных (искаженных) сигналов (если в системе отсутствует фильтрация-сглаживание).
Предотвращение искажения
Решения Dewesoft предотвращают искажение благодаря использованию 24-битных АЦП со встроенными фильтрами сглаживания. Эти фильтры работают в несколько этапов. Один из этапов включает автоматическую настройку на частоту Найквиста (обычно около 40%) от выбранной частоты выборки. Таким образом, даже если вы выберете слишком низкую частоту выборки, ложные или «искаженные» сигналы не смогут испортить измерение.
Что такое битовое разрешение и почему оно важно?
В эпоху зарождения сбора данных 8-битные АЦП были обычным явлением. На момент написания этой статьи 24-битные АЦП являются стандартом для большинства систем сбора данных, предназначенных для проведения динамических измерений, а 16 бит считаются минимальным разрешением для сигналов в целом. Существует ряд бюджетных систем, использующих 12-битные АЦП.
Поскольку каждый бит разрешения эффективно удваивает разрешение преобразования, системы с 24-битными АЦП обеспечивают 2^24 = 16 777 216. Таким образом входной одновольтный сигнал можно разделить на более чем 16 миллионов шагов по оси Y.
16 777 216 шагов для 24-битного АЦП значительно лучше, чем максимальные теоретические 65 656 шагов для 16-битного АЦП. Таким образом, чем выше разрешение, тем лучше форма и точность волновых функций. То же самое применимо и к оси времени.
Технология DualCoreADC® и почему она важна
Одной из давних инженерных проблем с амплитудной осью является динамический диапазон. Например: что делать, если у нас есть сигнал, который обычно составляет менее 5 вольт, но иногда может резко колебаться вверх? Если мы установим разрешение АЦП в расчете на 0–5 В, то система будет полностью перегружена, если сигнал превысит этот уровень.
Одним из решений было бы задействовать два канала, настроенных на разные коэффициенты усиления; и на один из них направлять данные 0–5 В, а на другой — с более высокой амплитудой. Но это очень неэффективно: мы не можем использовать два канала для каждого входного сигнала — это вдвое снизит производительность системы сбора данных. Также усложнится и затянется анализ данных после каждого измерения.
Технология DualCoreADC® от компании Dewesoft решает эту проблему путем использования двух отдельных 24-битных АЦП на канал, а также автоматического переключения между ними в режиме реального времени и создания единого непрерывного канала. Эти два АЦП всегда измеряют высокий и низкий коэффициент усиления входного сигнала. Благодаря этому достигается полное измерение диапазона датчика и предотвращается отсечение сигнала.
Видео, объясняющее технологию DualCoreADC от компании Dewesoft
Благодаря технологии DualCoreADC® системам сбора данных SIRIUS удается достичь соотношения «сигнал-шум» 130 дБ и более 160 дБ в динамическом диапазоне. Это в 20 раз лучше, чем могут обеспечить типичные 24-битные системы.
Выводы
Выбор технологии АЦП должен основываться на условиях применения. Если вы в основном имеете дело со статическими и квазистатическими (медленными) сигналами, вам нужна не сверхскоростная система, а как можно большее разрешение амплитудной оси.
Фиксированные системы, используемые в промышленности, как правило, имеют стандартные требования, что упрощает задачу выбора.
Выбор в случае систем сбора данных сложнее: одна и та же система должна удовлетворять разным сферам применения. Прежде всего необходимо учитывать оптимальную производительность и защиту от шума, искажения и износа.
Ознакомьтесь с системами сбора данных компании Dewesoft с передовыми возможностями преобразования сигналов
Аналогово-цифровые преобразователи
В данной статье рассмотрены основные типы аналого-цифровых преобразователей: прямого преобразования, последовательного приближения, дельта-сигма. Особое внимание уделено основным плюсам и минусам АЦП данных типов, скоростям обработки информации, принципам работы, а также приведены некоторые характеристики современных АЦП.
Аннотация статьи
аналого-цифровой преобразователь
прямое преобразование
последовательное приближение
дельта-сигма АЦП
компаратор
аналоговый сигнал
цифровой сигнал
Ключевые слова
Нелюцков Михаил Александрович
Большакова Виктория Евгеньевна
Гаврина Дарья Федоровна
Радиотехника, электроника
«Актуальные исследования» #4 (83), февраль ’22
Поделиться
Цитировать
Актуальные исследования
# 4 ( 83 ), февраль ‘ 22
Задача АЦП – это преобразование напряжения в последовательность цифровых значений этого напряжения, которое измеряется через равные промежутки времени. Разрядность выходных данных является одним из основных параметров АЦП. Данный параметр обеспечивает отношение сигнал/шум преобразования и в конечном итоге динамический диапазон цифрового сигнала. Данное отношение (сигнал/шум) стараются увеличивать, для этого увеличивают разрядность АЦП. Отношение сигнал/шум аналого-цифрового преобразователя определяется исходя из формулы:
SN = N 6,02 + 1,76 (дБ)
где N – количество двоичных разрядов на выходе АЦП [1].
Еще одним важным параметром АЦП является время получения сигнала на выходе. Одной из сложнейших задач при создании АЦП является возможность получения одновременно большой разрядности и высокой скорости преобразования.
В современном мире существуют различные виды АЦП, некоторые из них:
- прямого преобразования
- последовательного приближения
- дельта-сигма
АЦП прямого преобразования
Аналого-цифровые преобразователи данного типа были разработаны в 1960-1970 годах, а в 1980 стали производиться в виде интегральных микросхем. Зачастую их применяют в АЦП конвейерного типа (рис.1) [2, 3].
Конвейерная работа АЦП, применяется в параллельно-последовательных АЦП прямого преобразования. В них данные передаются по мере готовности, до окончания преобразования в отличие от обычного режима работы, когда данные передаются лишь после полного преобразования. АЦП прямого преобразования обладают разрядностью 6-8 бит и скоростью до 1 GSPS.
Рис. 1. Структурная схема АЦП прямого преобразования
АЦП данного типа работаю по очень простому принципу. Исходный сигнал подается на все положительные входы компараторов одновременно, а к минусовым подтягивается опорное напряжение, пропущенное через делители. Таким образом, напряжение принимает дробные значения от опорного напряжения. Например, это может быть 1/16, 3/16, 5/16, 7/16, 9/16, 11/16, 13/16.
Далее происходит сравнение подаваемого напряжения с напряжением на делителях. В том случае, когда подаваемое напряжение больше, мы получаем на выходе логическую единицу, в противном же случае ноль. Затем приоритетный шифратор формирует двоичный код. Этот код зафиксируется выходным регистром.
Однако у АЦП данного типа есть недостаток. Для того чтобы получить N разрядов, необходимо 2 N компараторов. Для того, чтобы получить 8 разрядов необходим 256 компараторов, а для 24 – свыше 16 млн. К сожалению, наука и техника не достигла высот, необходимых для создания таких АЦП [4].
АЦП последовательного приближения
В основе АЦП данного типа лежит алгоритм взвешивания, разработанный Фибоначчи.
АЦП последовательного приближения работает по принципу сравнения величины входного сигнала с рядом опорных величин. Данное сравнение проходит по следующему алгоритму:
- На входе АЦП устанавливается величина равная ½ от опорного напряжения.
- В том случае, когда входное напряжение оказывается выше установленной величины, происходит его сравнение с величиной равной ¾ от опорного напряжения, в противном случае сравнение происходит с величиной равной ¼ от опорного напряжения.
- Данная последовательность повторяется n-е количество раз. Данное число порождает n бит результата
АЦП данного типа состоят из ряда узлов (рис.2):
- Компаратора, предназначенного для сравнения входного напряжения с опорным
- Цифро-аналогового преобразователя, который формирует опорное напряжение, основываясь на поступающий, на вход цифровой код (DAC – digital-to-analogconverter)
- Регистра последовательного приближения. Его задачей является последовательное приближение по средствам генерации значения кода, подающегося на вход ЦАП (SAR – Structure activity relationship)
- Схемы выборки-хранения, которая «запоминает» значение аналогового сигнала и сохраняет его таковым на протяжении всего цикла (S/H – sample and hold circuit)
Рис. 2. Структурная схема АЦП последовательного приближения
Основным достоинством АЦП данного типа является высокая скорость работы. Однако точность таких преобразователей ограничена точностью внутреннего ЦАП и составляет 16-18 бит.
Принцип действия дельта-сигма АЦП немного сложнее и отличается от типов АЦП, рассмотренных выше. Он заключается в сравнении напряжения, полученного с входа со значением, которое накопил интегратор (рис.3).
Рис. 3. Сигма-дельта АЦП как следящая система
Интегратор получает сигналы положительной или отрицательной полярности, которая зависит от результата сравнения. Простыми словами данный тип АЦП представляет собой систему слежения напряжение на выходе интегратора «отслеживает» входное напряжение (рис.4).
Рис. 4. Структурная схема сигма-дельта АЦП
По окончанию работы мы получаем на выходе компаратора ряд нулей и единиц. Затем данный ряд проходит через цифровой ФНЧ, в результате получается N-битный результат.
На рис. 5 мы можем видеть сигналы в АЦП при нулевом уровне на выходе (сверху) и при уровне равном половине опорного напряжения (снизу).
Рис. 5. Сигналы в АЦП при разных уровнях сигнала на входе
Главной особенностью сигма-дельта АЦП является высокая точность, причиной тому является крайне низкий уровень собственного шума.
Сравнительная таблица для различных АЦП
Наименование
Разрядность, бит
Частота преобразования, Выб/с