Чему равна емкость уединенного проводника в каких единицах измеряется емкость
Перейти к содержимому

Чему равна емкость уединенного проводника в каких единицах измеряется емкость

  • автор:

Чему равна емкость уединенного проводника в каких единицах измеряется емкость

Рассмотрим уединенный проводник, т. е. проводник, находящийся в однородной изотропной среде вдали от других проводников и заряженных тел. При сообщении такому проводнику избыточного заряда q последний распределяется по поверхности проводника с поверхностной плотностью , которая зависит от размеров и формы проводника.

Выделим на поверхности проводника малый элемент площади dS, полагая, что заряд этого элемента является точечным. В другой точке поверхности этого же проводника, отстоящей от элемента dS на расстояние r, этот заряд создает электрическое поле, потенциал которого равен

,где — относительная диэлектрическая проницаемость среды, в которой находится проводник. Интегрируя это выражение по всей поверхности проводника S, найдем потенциал, создаваемый в рассматриваемой точке всем проводником:

Так как в различных точках на поверхности проводника поверхностная плотность заряда имеет разные значения, то будем полагать, что , где k — некоторая функция координат выбранного элемента поверхности dS. Тогда выражение для потенциала проводника имеет вид

. (3.1)

В полученном выражении интеграл зависит от размеров и формы поверхности проводника, а также от расположения точки, для которой определяется потенциал.

Значения этого интеграла не зависят от величины заряда, сообщенного проводнику, т. е. одинаковы при различных значениях заряда q.

Из формулы (3.1) следует, что потенциал уединенного проводника прямо пропорционален его заряду и отношение заряда q к потенциалу для данного проводника есть величина постоянная. Это отношение называется электрической емкостью, или электроемкостью, проводника:

Электрическая емкость уединенного проводника зависит от его формы и размеров, а также от величины относительной диэлектрической проницаемости среды, в которой он находится. Электроемкость не зависит от материала проводника, его агрегатного состояния, от формы и размеров возможных полостей внутри проводника. Электроемкость не зависит также ни от заряда проводника, ни от его потенциала.

В качестве примера найдем электроемкость уединенного проводящего шара радиуса R, покрытого слоем диэлектрика с относительной проницаемостью и толщиной d. Пусть шар имеет заряд q. Тогда напряженность поля, создаваемого шаром внутри диэлектрического слоя,

За пределами слоя напряженность поля определяется выражением:

Потенциал поверхности шара:

Таким образом, электроемкость шара, покрытого слоем диэлектрика, есть

В случае, если толщина диэлектрического слоя , емкость шара равна . При d=0 она равна .

Из приведенных соотношений следует, что потенциалы одинаково заряженных и геометрически подобных проводников должны быть обратно пропорциональны их линейным размерам, а их электрические емкости прямо пропорциональны этим размерам.

Электроемкость проводника численно равна заряду, который нужно сообщить этому проводнику для изменения его потенциала на единицу. В СИ единица измерения электрической емкости 1 фарада (Ф). Это емкость такого проводника, потенциал которого изменяется на 1 В при сообщении ему заряда в 1 Кл: 1 Ф = 1 Кл / 1 В.

Если вблизи проводника есть другие проводящие незаряженные тела, то при сообщении проводнику некоторого электрического заряда его потенциал будет меньше, чем потенциал уединенного проводника таких же формы и размеров. Это обусловлено тем, что на поверхностях тел, обращенных к заряженному проводнику, будут индуцироваться электрические заряды противоположного знака.

Для наглядности поясним это явление на примере. Пусть на некотором расстоянии от проводящего шара радиуса R расположен незаряженный металлический стержень длиной l так, что его ближний конец находится на расстоянии r от центра шара, а дальний — на расстоянии (r + l). Если шару сообщить положительный электрический заряд Q, то создаваемое шаром поле будет индуцировать на ближнем конце стержня заряд -q, а на дальнем заряд +q. Потенциал шара при этом будет равен

Следовательно, электроемкость проводника возрастает, если недалеко от него находятся другие проводящие тела. В этом случае принято говорить о взаимной электроемкости проводников.

Наибольший интерес представляет взаимная электроемкость системы из двух проводников с равными по величине и противоположными по знаку электрическими зарядами: |+q| = |- q| = q. Их взаимная электрическая емкость определяется как отношение заряда к разности потенциалов ,где разность потенциалов между проводниками.

1) От чего зависит электроемкость проводника
2) Изобразите качественно изменения Е и в плоском, цилиндрическом и сферическом конденсаторах с изменением расстояния от центра симметрии указанных систем
3) Как изменяется емкость проводника, если недалеко от него находятся другие проводящие тела.

Чему равна емкость уединенного проводника в каких единицах измеряется емкость

Наличие единого (в электростатике!) потенциала во всём проводнике — одно из важнейших его свойств, и именно оно позволяет строго ввести определение электрической ёмкости уединённого проводника по формуле

где `Q` — заряд на проводнике, `varphi` — его потенциал, и ёмкость конденсатора (пары проводников) – по формуле

где `varphi_1` и `varphi_2` — потенциалы отдельных проводников с зарядами `Q` и `-Q`. Не будь этого свойства, было бы непонятно, что именно понимать под `varphi`, `varphi_1` и `varphi_2`. Почему мы, например, не спрашиваем себя, какова ёмкость двух деревяшек? Да потому, что мы не можем говорить о едином потенциале даже одной деревяшки (в разных точках её потенциал будет, вообще говоря, разным).

Электроёмкость измеряется в фарадах: `1` фарад `=1` Ф `=1` Кл/`1`В.

В определение ёмкости конденсатора, т. е. пары проводников, входит один заряд. Дело в том, что наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: `Q_1=-Q_2=Q`.

Хотя в определение электроёмкости входят заряд и потенциал `C=Q//varphi` (или разность потенциалов — для конденсатора `C=Q//(varphi_1-varphi_2)`) фактически ни от заряда, ни от потенциала (разности потенциалов) ёмкость не зависит, а определяется только геометрией проводника (да ещё диэлектрической проницаемостью среды, см. раздел, посвящённый диэлектрикам). Например, ёмкость уединённого проводящего шара радиуса `R` в вакууме равна

`C_»шара»=4pi epsilon_0R` (2.2.3)

(последняя формула получается непосредственно из формулы для потенциала уединённого шара `varphi=Q/(4pi epsilon_0)`), а ёмкость плоского конденсатора (Пример 24)

Последнее связано с тем, что потенциал уединённого проводника всегда пропорционален его заряду (а в конденсаторе разность потенциалов пропорциональна заряду); ёмкость же есть как раз коэффициент пропорциональности `Q=Cvarphi` (или `Q=C(varphi_1-varphi_2)`).

Нетрудно вычислить (воспользовавшись результатом Примера 18) ёмкость сферического конденсатора

`C=4pi epsilon_0(R_1R_2)/(R_2-R_1)`, (2.2.5)

где `R_1` и `R_2` — радиусы внутренней и внешней сфер.

Определить ёмкость шара размером с Землю. Радиус Земли `R=6370` км. Каким должен быть радиус металлического шара, чтобы его электроёмкость была равна `1` фараду?

По формуле (2.2.3) `C=4pi epsilon_0R~~0,71` мФ. Чтобы ответить на 2-ой вопрос, снова воспользуемся формулой (2.2.3), выразив из неё `R=1//4pi epsilon_0C=9*10^6` км, что почти в `13` раз больше радиуса Солнца.

Оценить, какого размера должны быть пластины плоского воздушного конденсатора в форме квадратов, расстояние между которыми `d=1` мм, чтобы его электроёмкость равнялась `1` фараду?

По формуле (2.2.4) имеем `C=epsilon_0L^2//d`, откуда `L~~10,6` км.

Как изменится электроёмкость плоского конденсатора с воздушным зазором между пластинами площади `S` каждая и с расстоянием между пластинами `d`, если между обкладками конденсатора вставить параллельно обкладкам металлическую пластину толщиной `delta

Внутри металлической пластинки напряжённость электрического поля равна нулю, поэтому эта область не вносит вклада в разность потенциалов между обкладками конденсатора. Напряжённость в воздушном промежутке между обкладками конденсатора останется такой же, какой была до внесения пластинки (в целом электрически не заряженная пластинка не изменяет напряжённости поля вне её). Ёмкость конденсатора без пластинки вычислялась бы так:

После внесения пластинки уменьшится ширина области пространства между обкладками конденсатора, занятая полем (от `d` до `d-delta`); в итоге

Результат не зависит от месторасположения пластинки.

В каких единицах измеряется электроёмкость?

Электрическая ёмкость — характеристика проводника, мера его способности накапливать электрический заряд. В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками; параметр ёмкостного элемента электрической схемы, представленного в виде двухполюсника. Такая ёмкость определяется как отношение величины электрического заряда к разности потенциалов между этими проводниками.

В системе СИ ёмкость измеряется в фарадах. В системе СГС в сантиметрах.

Для одиночного проводника ёмкость равна отношению заряда проводника к его потенциалу в предположении, что все другие проводники бесконечно удалены и что потенциал бесконечно удалённой точки принят равным нулю. В математической форме данное определение имеет вид

где Q — заряд, U — потенциал проводника.

Ёмкость определяется геометрическими размерами и формой проводника и электрическими свойствами окружающей среды (её диэлектрической проницаемостью) и не зависит от материала проводника. К примеру, ёмкость проводящего шара радиуса R равна (в системе СИ) :
C = 4πε0εR.

Понятие ёмкости также относится к системе проводников, в частности, к системе двух проводников, разделённых диэлектриком — конденсатору. В этом случае взаимная ёмкость этих проводников (обкладок конденсатора) будет равна отношению заряда, накопленного конденсатором, к разности потенциалов между обкладками. Для плоского конденсатора ёмкость равна:

где S — площадь одной обкладки (подразумевается, что они равны) , d — расстояние между обкладками, ε — относительная диэлектрическая проницаемость среды между обкладками, ε0 = 8.854×10−12 Ф/м — электрическая постоянная.

Электрическая ёмкость
C
Размерность L-2M-1T4I2
Единицы измерения
СИ Фарад
СГС сантиметр

Чему равна емкость уединенного проводника в каких единицах измеряется емкость

Руководитель и главный редактор сайта, автор статей.
Опыт работы 5 лет.

В электротехнике часто встречается понятие ёмкости. При этом речь идёт не о ведре или другом сосуде, а об электрической ёмкости проводника, аккумулятора и конденсатора. Путать эти понятия нельзя. В этой статье мы разберемся, что такое электрическая ёмкость, от чего она зависит и в каких единицах измеряется.

Определение

Для проводников электрической ёмкостью называется величина, которая характеризует способность тела накапливать электрический заряд. Это и есть её физический смысл. Обозначается латинской буквой C. Она равна отношению заряда к потенциалу, если это записать в виде формулы, то получается следующее:

C=q/Ф

Электроемкость любого предмета зависит от его формы и геометрических размеров. Если рассмотреть проводник в форме шара, в качестве примера, то формула для расчета её величины будет иметь вид:

Электроемкость шара

Эта формула справедлива для уединенного проводника. Если расположить рядом два проводника и разделить их диэлектриком, тогда получится конденсатор. Об этом немного позже, сейчас давайте разберемся, в чем измеряется электроемкость.

Единица измерения электрической ёмкости — фарад. Если разложить её на составляющие согласно формуле то:

1 фарад =1 Кл/1 В

Исторически сложилось так, что размерность этой единицы выбрана не совсем верно. Дело в том, что на практике приходится работать с величинами электроемкости: мили-, микро-, нано- и пикофарад. Что равняется долям фарада, а именно:

1 мФ = 10^(-3) Ф

1 мкФ = 10^(-6) Ф

1 нФ = 10^(-9) Ф

1 пФ = 10^(-12) Ф

Конденсаторы

Конденсатор — это две пластины из проводящего материала, расположенные друг напротив друга, между которым находится слой диэлектрика. В заряженном состоянии обкладки имеют разные потенциалы: одна из них будет положительной, а вторая отрицательной. Электроемкость конденсатора зависит от величины заряда на его обкладках и разности потенциалов, напряжения между ними. Между пластинами возникает электростатическое поле, которое удерживает заряды на обкладках. Формула электрической емкости конденсатора в общем случае:

C=q/U

Если сказать простыми словами, то емкость конденсатора зависит от площади пластин и расстояния между ними, а также относительной диэлектрической проницаемости материала, расположенного между ними. Их различают по используемому диэлектрику:

  • керамические;
  • плёночные;
  • слюдяные;
  • металлобумажные;
  • электролитические;
  • танталовые и пр.

По форме обкладок:

  • плоские;
  • цилиндрические;
  • сферические и пр.

Так как формула площади фигуры зависит от её формы, то и формула ёмкости будет разной для каждого случая.

Для плоского конденсатора:

Емкость плоского конденсатора

Для двух концентрических сфер с общим центром:

Емкость двух концентрических сфер с общим центром

Для цилиндрического конденсатора:

Электроемкость цилиндрического конденсатора

Как и у других элементов электрической цепи и в этом случае есть два основных способа соединения конденсаторов: параллельное и последовательное.

От этого зависит итоговая электрическая емкость полученной цепи. Расчёты ёмкости нескольких конденсаторов напоминают расчёты сопротивления резисторов в разном включении, только формулы для способов соединения расположены наоборот, то есть:

  1. При параллельном соединении общая электроемкость цепи является суммой емкостей каждого из элементов. Каждый следующий подключенный увеличивает итоговую емкость

Cобщ=C1+C2+C3

  1. При последовательном подключении электроемкость цепи снижается, подобно снижение сопротивления в цепи параллельно включённых резисторов. То есть:

Cобщ=(1/С1)+ (1/С2)+ (1/С3)

Важно! В параллельной схеме соединения напряжения на обкладках каждого элемента одинаковы. Это используют для получения больших значений электроемкости. В последовательном включении двух элементов напряжения на обкладках каждого из конденсаторов составляют по половине общего напряжения. Для трёх – трети и так далее.

Аккумуляторы и электроемкость

Основными характеристиками аккумуляторных батарей является:

  • Номинальное напряжение.
  • Емкость.
  • Максимальный ток разряда.

В данном случае для определения количественной характеристики времени работы или, говоря простым языком, чтобы рассчитать, на какое время работы прибора хватит аккумулятора, используют величину ёмкости.

В аккумуляторных батареях для описания электрической ёмкости используют следующие размерности:

  • А*ч — ампер-часы для больших аккумуляторов, например автомобильных.
  • мА*ч — милиампер-часы, для аккумуляторов для носимых устройств, например смартфонов, квадрокопетров и электронных сигарет.
  • Вт*часы — ватт-часы.

Эти характеристики позволяют определить, сколько времени работы выдержит аккумулятор при конкретной нагрузке. Для определения электрическую емкость аккумулятора измеряют в кулонах (Кл). В свою очередь кулон равен количеству электричества, переданному аккумулятору при силе тока 1А за 1с. Тогда если перевести в часы, то при токе в 1А за 1 час передается 3600 Кл.

Одним из способов измерения емкости аккумулятора является его разряд заведомо известным током, при этом вы должны замерить время разряда. Допустим, если аккумулятор разрядился до минимального уровня напряжения за 10 часов током в 5А – значит его емкость 50 А*ч

Электроемкость – это важная величина в электронике и электротехнике. На практике конденсаторы применяются практически в каждой схеме электронного устройства. Например, в блоках питания – для сглаживания пульсаций, уменьшения влияния высоковольтных всплесков на силовые ключи. Во времязадающих цепях различных схем, а также в ШИМ-контроллерах для того, чтобы задать рабочую частоту. Аккумуляторы также применяются повсеместно. Вообще задачи накапливания энергии и сдвига фаз встречаются очень часто.

Более подробно изучить вопрос поможет предоставленное видео:

Кратко объяснение изложено в этом видео уроке:

Теперь вы знаете, что такое электрическая емкость, в каких единицах происходит ее измерение и от чего зависит данная величина. Надеемся, предоставленная информация была для вас полезной и понятной!

Материалы по теме:

  • Как определить емкость конденсатора
  • Что такое электрический заряд
  • Закон Кулона простыми словами

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *