Скольжение асинхронного двигателя
Скольжение асинхронного двигателя — относительная разность скоростей вращения ротора и магнитного потока, создаваемого обмотками статора двигателя переменного тока. Скольжение может измеряться в относительных единицах и в процентах.
,
где — скорость вращения ротора асинхронного двигателя
— скорость вращения магнитного потока, называется синхронной скоростью двигателя.
,
где f — частота сети переменного тока
p — число пар полюсов обмотки статора (число пар катушек на фазу).
Из последней формулы видно, что скорость вращения двигателя n практически определяется значением его синхронной скорости, а последняя при стандартной частоте 50 Гц зависит от числа пар полюсов: при одной паре полюсов — 3000 об/мин, при двух парах — 1500 об/мин, при трёх парах — 1000 об/мин и т. д.
Литература
- Хомяков Н. М., Денисов В. В., Панов В. А. Электротехника и электрооборудование судов. — Ленинград: Издательство «Судостроение», 1971. — 368 с.
Особенности определение скольжения асинхронного двигателя классическим методом
Ключевые слова: асинхронный двигатель , короткозамкнутый ротор , механизм , насос , вентилятор , компрессор , собственные нужды электростанции и подстанции , механическая характеристика , кратность пускового тока , момент , скольжение , идентификация параметров
Скольжение — это одна из основных характеристик асинхронных двигателей, иными словами скольжение асинхронного двигателя — это относительная разность скоростей вращения ротора и магнитного потока, создаваемого обмотками статора двигателя переменного тока. Скольжение может измеряться в относительных единицах и в процентах. Она изменяется в зависимости от режима работы, нагрузки на валу и питающего напряжения. Учитывая важность вышесказанного в данной работе рассмотрена подробность о скольжение асинхронных двигателей и от чего оно зависит и как определяется совершенно простым путем.
1. Маджидов А.Ш. Уравнения асинхронного электродвигателя при переходном процессе / А.Ш. Маджидов // Информационные технологии, энергетика и экономика (электроэнергетика, электротехника и теплоэнергетика, математическое моделирование и информационные технологии в производстве): сборник трудов XVII Международной научно-технической конференции студентов и аспирантов, Смоленск, 16–17 апреля 2020 г. / ФГБОУ ВО «НИУ «МЭИ», филиал в г. Смоленске. – Смоленск: Универсум, 2020. – С. 44–49.
2. Abdullo M. Features of the mathematical equations of asynchronous motors in the transient process / M. Abdullo, K. Nurzat. – April 22–23, 2021. – P. 116–121.
3. Маджидо А.Ш. Учет асинхронного электродвигателя с неизменным скольжением при внезапном трехфазном коротком замыкании / А.Ш. Маджидов, Г.М. Султаналиева, Э.М. Султаналиева // Актуальные проблемы современной науки: взгляд молодых ученых: Материалы Международной научно-практической конференции. Материалы круглого стола, Грозный, 29–30 мая 2020 г. – Грозный: Чеченский государственный педагогический университет, 2020. – С. 651–657.
4. Majidov A. Investigation of the Self-Starting Process of a Low-Power Asynchronous Motor / A. Majidov, A.G. Kayumov, S. Hafizov //Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2021, Moscow, January 26–28, 2021. – Moscow, 2021. – P. 1462–1468. – DOI: 10.1109/ElConRus51938.2021.9396181.
5. Маджидов А.Ш. Сравнение методов определения энергоэффективности асинхронных двигателей / А.Ш. Маджидов, А.З. Джавахян // XI Международная интернет-конференция молодых ученых, аспирантов и студентов «Инновационные технологии: теория, инструменты, практика» (InnoTech-2019). – Пермь, 2019. – С. 163–167.
6. Маджидов А.Ш. Особенности выбора асинхронных двигателей с короткозамкнутым ротором по пусковым характеристикам / А.Ш. Маджидов, Н.К. Каныбекова // Информационные технологи, энергетика и экономика (электроэнергетика, электротехника и теплоэнергетика, математическое моделирование и информационные технологии в производстве): сборник трудов XVIII Международной научно-технической конференции студентов и аспирантов: в 3 т., Смоленск, 22–23 апреля 2021 г. – Смоленск: Универсум, 2021. – С. 206–212.
7. Маджидов А.Ш. Анализ пусковых характеристик асинхронного двигателя с учетом изменения скорости вращения / А.Ш. Маджидов // Научная инициатива иностранных студентов и аспирантов: сборник докладов I Международной научно-практической конференции. В 2 т., Томск, 27–29 апреля 2021 г. – Томск: Национальный исследовательский Томский политехнический университет, 2021. – С. 178–187.
8. Маджидов А.Ш. Моделирование асинхронного двигателя на основе схемы замещения в программе ETAP / А.Ш. Маджидов // Энергетика, информатика, инновации – 2020: Сборник трудов X Национальной научно-технической конференции с международным участием. В 3 т., Смоленск, 3–4 декабря 2020 г. – Смоленск: Универсум, 2020. – С. 301–306.
9. Majidov A. Comparative Study of Calculation Methods for Short-Circuit Currents in Low-Voltage Networks with Asynchronous Motors / A. Majidov, A.G. Kayumov, N. Kholov // Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2021, Moscow, January 26–28, 2021. – Moscow, 2021. – P. 1469–1475. – DOI 10.1109/ElConRus51938.2021.9396624.
10. Mathematical modeling of asynchronous motors for calculating short-circuit currents / A. Majidov, S. Hafizov, T. Isaev [et al.] // Proceedings of the 3rd 2021 International Youth Conference on Radio Electronics, Electrical and Power Engineering, REEPE 2021: 3, Moscow, March 11–13, 2021. – Moscow, 2021. – P. 9388065. – DOI: 10.1109/REEPE51337.2021.9388065.
Вращение большинства механизмов собственных нужд (СН) электростанций и подстанций (ЭС и ПС) осуществляется с помощью электрических приводов, а именно – асинхронными двигателями (АД) с короткозамкнутым ротором, т. к. эти АД считаются самыми распространенными, которые дают возможность пуска от полного напряжения сети без специальных пусковых устройств. Другое преимущество этих АД – восстанавливать нормальный режим работы после глубоких понижений питающего напряжения, которые считаются самозапуском АД [1, 3, 5].
Для механизмов СН ЭС и ПС важно рассчитать токи и напряжение на выводах АД при различных механических нагрузках. Расчет статического режима разветвленной электрической цепи решается методами теории цепей [2, 4] и путем определения расчетного сопротивления АД в цепи. Эти АД в схеме представлены Т-образными или Г-образными схемами замещения [6, 7, 9], которая показана на рис. 1.
Уравнениям ЭДС и токов соответствует эквивалентная схема замещения, как показано на рис. 1. Таким образом, сложную магнитную цепь АД можно заменить электрической схемой. Сопротивление r’2 /s можно рассматривать как внешнее сопротивление, включенное в обмотку ротора. Оно является единственным переменным параметром схемы. Изменение этого сопротивления эквивалентно изменению нагрузки на валу АД и приводит к изменению s. Тогда не сложно угадать, что скольжение АД в зависимости от нагрузки меняется незначительно (1–6%) [8]. Чем больше мощность АД, тем меньше его s.
Определение эквивалентного сопротивления этих цепей в основном поддерживается необходимостью определения расчетного скольжения АД, которое в простейшем случае представляет собой функцию механической нагрузки (момент сопротивления вращению рабочей машины), амплитуду, частоту и напряжение на обмотке статора [10]. На скольжение могут влиять несимметричность трехфазного напряжения, несинусоидальное напряжение, случайные изменения механической нагрузки [2, 6, 9]. Погрешность определения скольжения 0,001 отн. ед. приводит к значительному увеличению погрешности конечных результатов расчета электрических цепей из-за накопления ошибок в многодвигательном приводе, а также к итерационным расчетам при использовании совместно с методами численных расчетов, при которых накапливается ошибка вычислений.
Для Цитирования:
Маджидов А. Ш., Особенности определение скольжения асинхронного двигателя классическим методом. Электрооборудование: эксплуатация и ремонт. 2022;1.
Об особенностях электродвигателей с повышенным скольжением
Скольжение —это важная характеристика асинхронного электродвигателя, которая определяется как относительная разность скоростей вращения ротора и изменения переменного магнитного потока, создаваемого обмотками статора двигателя переменного тока. Измеряется в относительных единицах и в процентах.
Асинхронные трехфазные двигатели с повышенным скольжением
Двигатели специального назначения с повышенным скольжением строятся на базе унифицированных общепромышленных двигателей, а в маркировку добавляется буква «С» после названия серии (АИРС, АС, 5АС, АДМС, 4АС.). Габаритно-присоединительные размеры двигателей с повышенным скольжением соответствуют аналогичным размерам общепромышленных. Скольжение при номинальной нагрузке у этих электродвигателей выше, чем у базовых, а критическое скольжение составляет около 40%.
Повышенное скольжение достигается двумя способами: занижением индукции путём увеличения витков в обмотке статора или (чаще всего) применением роторной обмотки, усиленной специальным сплавом, имеющим повышенное сопротивление. Если объяснять очень упрощенно, то чем больше сопротивление обмотки ротора, тем ток в роторе меньше и магнитное поле, создаваемое током в этой обмотке, тоже становится меньше. Это и обуславливает повышенное скольжение, магнитное поле статора как бы слабее «цепляет» ротор с ослабленным магнитным полем.
Применение двигателей с повышенным скольжением
Главным достоинством агрегатов повышенного скольжения является возможность работать с большими нагрузками, с неравномерной пульсирующей (ударной) нагрузкой, а также в повторно-кратковременном режиме с частыми пусками и остановками (режимы S2, S3, S4, S6). В таких условиях обычных стандартный двигатель может перегореть, т.к. он предназначен для работы с редкими остановками и пусками. В остальном подобные электродвигатели имеют практически полное сходство со стандартными моделями общепромышленных двигателей.
Электродвигатели с повышенным скольжением используются для привода механизмов с пульсирующей нагрузкой (например, поршневые компрессоры малой мощности) и с ударной нагрузкой (молоты, прессовое оборудование), а также для привода подъемно-транспортных машин.
Что нужно знать о скольжении асинхронного двигателя
Одним из основных электромоторов в мире является асинхронный двигатель. Чтобы его использовать в качестве привода, надо понимать, как поведет себя одна из главных переменных характеристик при пуске, изменении нагрузки на валу, колебании электронапряжения и частоты. Этот параметр называется скольжением электродвигателя.
Устройство и принцип работы
Двигатель переменного электротока, в котором скорость вращения ротора меньше скорости вращающегося электромагнитного поля статора, называется асинхронным.
Обмотки статора подключаются к сети синусоидального трехфазного электротока, после чего электромагнитный поток начинает вращаться и пересекает замкнутые токопроводящие витки подвижной части мотора. Под действием наведенной в них ЭДС возникает переменный электроток. Он создает свое магнитное поле, которое заставляет вращаться ротор с асинхронной скоростью следом за полем статора.
Статор представляет собой набранный из изолированных листов электротехнической стали корпус, в который различным способом уложены обмотки возбуждения. Ротор тоже шихтуется из изолированных листов. Они имеют пазы, в которых закрепляются штыри короткозамкнутого ротора или укладывается фазная обмотка. На концах вала ротора расположены подшипники, вставленные в торцевые крышки статора.
Короткозамкнутый ротор (его также называют «беличьей клеткой») состоит из набора стержней из алюминия или меди. По торцам они закольцованы вместе. Это наиболее простая и распространенная конструкция АД.
Мотор, ротор которого содержит 3-х фазную обмотку, называется фазным. Полноценные изолированные витки трех обмоток концами соединены вместе, а их начала выведены на контактные кольца. При помощи щеточного скользящего контакта катушки выведены на внешнее управление.
Что такое скольжение АД
Создание вращающегося магнитного поля (МП) в неподвижной части электрической машины происходит за счет разнесенных на 120 градусов по окружности корпуса витков 3-х катушек. Они образуют одну пару полюсов (p), на практике их может быть больше. Обмотки соединяются «треугольником» или «звездой». Запитываются они от трехфазной сети переменного электротока.
Электроток, сдвинутый по фазе на 120 градусов, протекая по размещенным по окружности виткам 3-х катушек, создает вращающееся МП с синхронной частотой:
Вращающееся МП, пересекая набор замкнутых токопроводящих витков подвижной части машины, создает в них ЭДС. Образовавшаяся в замкнутых рамках ротора электродвижущая сила способствует возникновению переменного электротока, воспроизводящего свое вращающееся электромагнитное поле.
Подвижная часть машины начинает вращаться вслед за вращающимся полем со скоростью n2 (об/мин), стремясь засинхронизировать свое электромагнитное поле с вращающимся полем неподвижной части, то есть, достичь скорости n1 (об/мин). Величина разницы скоростей в относительных единицах или процентах называется коэффициентом скольжения (S):
Асинхронная скорость n2 при нормальной эксплуатации электродвигателя всегда меньше синхронной скорости n1, поэтому скольжение асинхронного двигателя меньше единицы и ста процентов.
Зависимость режимов работы мотора от скольжения
Для АД скольжение рассматривается:
- В режиме холостого хода (ХХ);
- при номинальном значении нагрузки;
- генераторном применении;
- критической нагрузке;
- во время пуска.
Асинхронная скорость n2 в режиме ХХ при отсутствии нагрузки на валу практически равна синхронной скорости вращения электромагнитного поля статора n1. Скольжение в этом случае будет не более 3% и даже в режиме идеального ХХ (если пренебречь трением в подшипниках), оно не будет нулевым.
При номинальном напряжении и нагрузке скольжение S находится в диапазоне 2–8% для большинства моторов. Номинальная скорость или скольжение указываются на шильдике асинхронного двигателя. По ним строится график механической характеристики.
В генераторном режиме скольжение может быть отрицательным, то есть, меньше 0. Ротор в этом случае вращается под действием механической силы навстречу вращающемуся электромагнитному полю статора.
С увеличением нагрузки на валу мотора увеличивается момент торможения, вследствие чего увеличивается и скольжение. При этом растет электроток, наводимый в роторе, наряду с моментом вращения. При небольших нагрузках между моментом и скольжением наблюдается прямо пропорциональная зависимость. Но рост скольжения способствует возрастанию активных потерь в роторе, снижающих наводимый электроток. По этой причине момент увеличивается с меньшей скоростью, чем скольжение, а при определенном значении последнего момент становится максимальным и начинает снижаться. Скольжение, соответствующее максимальному моменту, называется критическим.
При пуске мотора асинхронная скорость равняется нулю, скольжение — единице, электроток в двигателе максимальный, а значение момента вращения вала выше значения момента торможения нагрузки. С увеличением скорости вращения МП ротора скольжение уменьшается, а когда скорость достигает своего номинального значения, устанавливается нормальный режим.
Из графика видно, что скольжение мотора меняется от 0 до 1. До того момента, пока не возникнет критическое скольжение, мотор работает устойчиво, а в промежутке от Sкр до 1 возникает неустойчивый режим, который зависит от характера и величины нагрузки на валу. Для управления в этом диапазоне применяют либо переключение «звезда-треугольник», либо фазный ротор, либо частотное регулирование.
Способы измерения
Измерение скольжения в двигателе должно осуществляться согласно требованиям ГОСТ 7217–89 с помощью амперметра постоянного тока, катушки индуктивности или стробоскопического эффекта.
Основная задача — подсчитать количество полных N отклонений стрелки от 0 за период времени T. После того, как нашли данный параметр, можно определить частоту электротока ротора:
Затем по соотношению частоты электротока статора и ротора следует найти скольжение:
Косвенными методами при использовании электромагнитной катушки или стробоскопического эффекта определяют количество оборотов ротора К за период времени Т (сек). Затем вычисляется скольжение. Для этого используется формула:
При больших значениях скольжения для измерения применяются тахогенераторы или тахометры, установленные на валу двигателя.