Водородный транспорт — хорошая идея только в теории
Я очень хочу потыкать острой палкой в идею об электрических автомобилях на водородных топливных элементах (ТЭ). Некоторые люди совершенно очарованы этой идеей. Как можно не очароваться? На вход подается водород, абсолютно «чистое» топливо, а на выходе получается только вода или пар, и никакого углекислого газа, оксидов азота, сажи, и т. д. Водородный двигатель — тихий и компактный. Это не тепловой двигатель, и поэтому на него не распространяются жесткие ограничения цикла Карно. Заправка очень быстрая и не сильно сложнее чем обычная бензиновая заправка.
Кроме того, если вы — нефтяная компания, и спрос на бензин и дизель начнет уменьшаться, вы только что обнаружили новое топливо, которое можно продавать! Вы спасены!
Если вы живете в частном доме и хотите потреблять меньше энергии, вы думаете что можете делать водород из воды используя электричество от солнечных панелей на крыше, убивая сразу двух зайцев: вы получаете топливо для вашей машины и запасаете излишки энергии от солнечной генерации, с помощью единственной магической технологии. Звучит потрясающе!
К сожалению, дьявол кроется в деталях, и он не то чтобы сильно прячется, если вы будете смотреть внимательно.
В моей предыдущей статье я обсуждал эффективность в энергетических циклах двигателей внутреннего сгорания и электрических автомобилей. Я буду ссылаться на результаты из этой статьи когда буду делать предположения об электрических автомобилях на топливных элементах (fuel cell electric vehicle, FCEV). Я буду делать аналогичные допущения и использовать похожие источники.
Дисклеймер: я упомянут в нескольких патентах компании Texaco о получении водорода из природного газа для подачи на протонообменную мембрану (ПОМ, ПЭМ) топливных элементов (теперь патенты принадлежат Chevron, которая поглотила Texaco). Я занимался водородом еще с институтских времен, и примерно каждый второй проект на протяжении десятилетий, которые я провел в компании Zeton, включал в себя водород или синтез-газ.
Однако, еще раз хочу четко сказать: водород это прекрасная идея — в теории. Но большая проблема с водородом заключается. в самой молекуле водорода. Никакие изобретения или технологии не решат эту проблему.
Давайте разбирать цепочку эффективности электрического транспорта на водородных топливных элементах этап за этапом, также как мы делали с двигателем внутреннего сгорания и электрическими машинами на аккумуляторах (battery electric vehicle, BEV).
Производство водорода
КПД самого производства водорода — примерно 70%, в лучшем случае, к сожалению. Я недавно [статья 2017 года — прим. перев.] разговаривал с Hydrogenics, большим производителем щелочных и ПЭМ-электролизеров. Эффективность их более дешевых щелочных электролизеров — примерно 60%, а эффективность ПЭМ-электролизеров — 70%, когда он работает на минимальном токе. (Вы можете делать гораздо больше водорода на этом же приборе просто увеличив ток, но жертвуя эффективностью.) Это достаточно близко к теоретическому пределу эффективности электролиза — ~83%, которая получается, если поделить низшую теплоту сгорания (HTC) получаемого водорода на энергию затрачиваемую на электролиз. Мы не вернем эту потерю в топливном элементе потому что мы не используем теплоту конденсации водяного пара.
Большинство производителей электролизеров указывают КПД в расчете на высшую теплоту сгорания (ВТС), то есть включая теплоту конденсации пара. В этом случае 70% (НТС) КПД электролизеров превращаются в примерно 83% (ВТС).
Проблема электролиза в том, что часть энергии очевидно идет на создание молекул кислорода. Это может быть полезно в больших системах, которые могут собирать и сжимать чистый кислород (который затем можно продавать), либо если водород используется не как топливо, а как сырье в технологическом процессе, и этот процесс также использует кислород. К сожалению, водородная заправка не будет использовать кислород, она будет просто выпускать его в воздух.
Поэтому давайте остановимся на 70% (НТС) КПД конвертации электричества в водород, предположительно, электричества от возобновляемых источников (ВИЭ). Если совсем строго, мы еще должны учесть 6% потерь в электросети от источника электричества до электролизера.
70% КПД электролиза почти совпадает с наивысшей доступной на данный момент эффективностью технологии получения водорода из природного газа, парового риформинга (паровой конверсии) метана (steam methane reforming, SMR). Большие установки повышают эффективность, утилизируя теплоту продуктов процесса и сжигая побочные газы после очистки водорода.
Максимально чистый водород нужен, чтобы увеличить эффективность и долговечность топливных элементов. Они очень чувствительны к угарному газу, который уменьшает эффективность платинового катализатора в топливном элементе (то есть, является каталитическим ядом). К сожалению, невозможно конвертировать углеводороды в водород, не получив на выходе также какое-то количество угарного газа. Более того, сам катализатор может преобразовать углекислый газ в угарный газ, поэтому водородное топливо должно быть полностью очищено от обоих газов. Даже инертные газы, такие как аргон и азот, уменьшают эффективность ПЭМ-топливного элемента, потому что надо позаботиться об их выводе на аноде. Поэтому реальные топливные элементы требуют очень чистый водород: посмотрите на спецификации ПЭМ-топливных элементов производства Ballard, Plug Power, и других.
К сожалению, эффективность паровой конверсии метана стремительно падает с уменьшением установки. Тепловые потери увеличиваются, что имеет особенно большое значение в таком высокотемпературном процессе как паровая конверсия. Вы быстро обнаружите это когда попробуете спроектировать процесс для относительно небольшой водородной заправки.
Доставка природного газа по трубопроводам к установке по паровой конверсии в водород и последующая доставка водорода от централизованной установки к заправкам скорее всего будет стоить больше чем 6% от энергии конечного водорода, но давайте будем щедрыми и примем эти потери тоже за 6% чтобы делать меньше подсчетов (хотя, в конечном счете, это все равно будет неважно). Таким образом, вне зависимости от того, начинаем мы с электричества или с метана, мы приходим к 70%*94% ~= 66% КПД производства водорода, без существенных возможностей для улучшения потому что мы уже близки к термодинамическим пределам.
Стоит отметить что КПД электролиза горячего пара может казаться очень высоким (даже выше 100%), например, при использовании твердооксидного топливного элемента в реверсе. Естественно, при этом не учитывается работа по испарению воды и нагреву пара. Никто не использует электролиз пара если у него нет а) источника «бесплатного» пара и б) процесса в котором используется горячий водород или горячий кислород или желательно оба газа. Кроме того, как всякие высокотемпературные устройства, паровые электролизеры «не любят» работать с перерывами, поэтому вам также нужен стабильный круглосуточный источник электричества, а возобновляемые источники — не стабильные.
Хранение водорода
Теперь нам надо хранить водород, и загвоздка опять в самой молекуле. Хотя плотность энергии водорода на единицу массы очень большая, даже в форме криогенной жидкости (при температуре 24 выше абсолютного нуля) водород имеет плотность всего 71 кг/м3. Поэтому единственная практичная на данный момент форма хранения водорода для небольших машин — это газ высокого давления. Любые способы увеличения объемной плотности хранения водорода или уменьшения давления (например, гидриды металлов, абсорбенты, органические носители, и т. д.) или сильно увеличивают массу бака, или увеличивают потери водорода во время хранения, или требуют энергии для извлечения водорода. Я бы не рассчитывал на некий магический прорыв в этой области: у нас было тридцать лет на исследования с того момента, как водород стал всерьез рассматриваться как топливо.
Про опасность водорода хорошо известно, и в моей статье не будет картинки с дирижаблем «Гинденбург»! На самом деле, уже достаточно давно научились безопасно обращаться с водородом в промышленности если использовать разные меры предосторожности. Но я не хочу, чтобы мои соседи даже думали о производстве водорода под давлением 400 или 600 атмосфер с помощью своих домашних солнечных панелей. Это кажется мне кошмарной идеей по многим причинам.
Чтобы сжать водород с давления ~20 атмосфер на выходе с установки по паровой конверсии из метана или с примерно атмосферного давления (на выходе из некоторых электролизеров) до 400 атмосфер надо потратить энергию, обычно электричество. К сожалению, мы вынуждены рассеивать тепло от сжатия водорода на достаточно низкой температуре чтобы сберечь элементы компрессора, и поэтому это тепло трудно как-то использовать. Более того, давление в баке на заправке может снизиться с 400 атмосфер только до 395 во время заправки одной машины, поэтому вся работа по сжатию делается при самом высоком коэффициенте сжатия [я не понимаю, что тут сказано — прим. перев.]. Бак на заправке должен быть очень большим. В противном случае, требования заправляющего компрессора или ограничения по переносу тепла могут уменьшить скорость заправки (ведь мы помним, что скорость заправки — чуть ли не главная причина, по которой нам интересен водород в качестве топлива для транспорта!).
На большом масштабе, с гигантскими компрессорными агрегатами, можно хранить водород под большим давлением теряя не больше 10% от теплоты сгорания (НТС) хранимого водорода на работу компрессоров, что, на самом деле, удивительно хорошо, учитывая вышесказанное. (Заметим, что политропный КПД самих компрессоров — это лишь малая часть этих потерь. Мы смотрим на другую меру эффективности.) К сожалению, когда мы уменьшаем размер компрессоров, эффективность улетает вниз. Многоступенчатый диафрагменный компрессор для автомобиля может потреблять до половины энергии сжимаемого водорода или даже больше. При уменьшении масштаба также растут капитальные расходы в расчете на единицу энергии проходящей через установку на протяжении ее жизненного цикла. Прискорбно, что транспортировка водорода на большие расстояния нереалистична по той же причине, по которой его тяжело хранить — свойства молекулы. [Тут автор не развивает мысль почему транспортировка водорода на большие расстояния нереалистична, но в другой статье он пишет, что доставка водорода по трубопроводам требует в три раза больше энергии, чем доставка природного газа, на единицу переносимой энергии — прим. перев.] Все мечты о «водородной экономике» предполагают малые и распределенные системы производства водорода, так что мы не должны гонять водород с места на место, что оставляет нам только один реалистичный вариант: электролиз.
Таким образом, у нас остается 70% (производство) * 94% (потери в электросети или на работу трубопровода) * 90% (хранение под высоким давлением) = 59% КПД от исходной энергии до бака автомобиля. Для сравнения, для бензина этот показатель — 80%. Конечно, мы не будем использовать водород в неэффективном двигателе внутреннего сгорания как замену бензину, особенно если водород получен из углеводородов: мы бы лучше просто сжигали эти углеводороды в ДВС напрямую.
Если нас заботят выхлопы парниковых газов, производство водорода из метана точно не решает проблему [см. недавнюю статью «Насколько чист «голубой» водород?» на эту тему — прим. перев.]. Мы бы лучше просто ездили на Приусах. Электролиз с использованием электричества из возобновляемых источников — это единственный возможный вариант.
Топливный элемент с протонообменной мембраной
Печально, но мы все еще не закончили терять энергию — далее идут потери в топливном элементе. Хотя это и не тепловой двигатель, топливный элемент все равно имеет собственные термодинамические пределы. Топливные элементы достигают эффективности в 50–60%, и это недалеко от теоретического предела в 83% для идеального топливного элемента.
Давайте будем щедрыми и возьмем 60% как КПД топливного элемента. Реальные ТЭ которые можно купить имеют эффективность около 50% — лучше, чем у небольшого двигателя, примерно так же, как у судовых двигателей или стационарных скоростных двигателей, или у газовых турбин.
Вся цепочка, от источника энергии до колес
Учитывая эффективность электрического инвертора и мотора (90%), общая эффективность «от электростанции до колес» — 94%*70%*90%*60%*90% = 32%. Напомню, что по показателю «от скважины до колес», Приус достиг эффективности 30% на бензине, то есть мы «сделали» Приус, и это без вредных выхлопов. И с быстрой заправкой. Ура! Ура.
Мой самодельный электрический автомобиль, «E-Fire», имеет эффективность 76.5%. и тоже не дает никаких выхлопов. [Источник этой оценки неясен: если автор берет такие же потери в инверторе, моторе, и электросети, его батарея должна иметь КПД 90%. — прим. перев.] несмотря на очень маленькую батарею по нынешним стандартам, всего 18.5 кВч, этого хватает на мою дорогу до работы и обратно. Я уже проехал на этой машине 20 тыс. км. без парниковых выхлопов, и я никогда не ждал ее зарядки: я заряжаю ее один раз ночью, и один раз утром на работе. Эта машина не делает всего того, что делает машина с ДВС, не пытается, и не должна этого делать.
Капитальные затраты на водородный стек
Таким образом, электромобили на топливных элементах (FCEV) в лучшем случае примерно в 2.4 раза хуже чем лучшая доступная сейчас альтернативная технология, электромобили на аккумуляторах (BEV). Взамен мы получаем более быструю заправку и, возможно, немного большую дальность хода на одной заправке, и это все. Не слишком ли высока цена за немного большее удобство? Хотя, подождите, мы ведь даже не начали говорить о цене.
Водород это очень дорогое топливо, с любой точки зрения.
В 2.4 раза худшая эффективность транспорта на топливных элементах означает что мы должны установить в 2.4 раза больше генерирующих мощностей из возобновляемых источников. Сам по себе этот факт должен заставить сторонников водорода задуматься.
Мы также должны построить инфраструктуру по распределению водорода. Вы не будете заправляться водородом дома, это слишком огнеопасно. Это значит что кто-то должен заняться этой инфраструктурой как бизнесом, но никто не захочет это делать потому что на этом не получится заработать.
Наконец, давайте посмотрим на сам электромобиль на ТЭ. В нем, конечно, должен быть бак для водорода и топливные элементы. А также все остальные части обычных электромобилей, включая аккумулятор! Аккумулятор будет меньше, ближе по размеру к аккумуляторам в гибридах, но он все равно нужен чтобы было куда девать энергию от рекуперативного торможения, чтобы управлять потребностями в системе топливных элементов чтобы уменьшить ее стоимость. Батарея также нужна во время старта и выключения топливных элементов. Таким образом, электромобиль на ТЭ — это гибрид.
В дополнение ко всему вышесказанному, сами топливные элементы по-прежнему очень дороги. Хотя цены однозначно снизятся с началом массового использования и производства, также как сейчас снижаются цены на литий-ионные аккумуляторы, металлы платиновой группы (МПГ), такие как платина и палладий, используемые в катализаторах топливных элементов, не позволят ценам упасть слишком сильно. Уменьшите долю МПГ, и топливные элементы станут еще более чувствительными к примесям в водороде, и, я подозреваю, эффективность упадет. Замените МПГ на более дешевые металлы, такие как никель, и большая часть преимуществ топливных элементов пропадет: они должны будут работать при более высоких температурах, и т. д.
Означает ли это, что водород — это мертвая идея для персональных электромобилей? Одним словом, на мой взгляд, ДА. Я полностью согласен с Илоном Маском в этом вопросе. Разве что, уточнив, что мы говорим не о мире в котором электричество ничего не стоит, или его цена даже становится отрицательной потому что генерация из возобновляемых источников становится такой дешевой что не требует вообще никаких денежных вложений. Но я готов поспорить, что а) этого никогда не произойдет, б) даже если мы приблизимся к этой странной экономической ситуации, капитальные затраты и другие практические проблемы с электролизерами, компрессорами, резервуарами для хранения и топливными элементами все равно полностью убьют идею.
Сравнение двух реальных автомобилей которые можно купить (по крайней мере, в Калифорнии) показывает, что мои оценки оптимистичны в пользу водорода. Для автомобилей с аналогичными характеристиками и дальностью хода, водородный автомобиль потребляет в 3.2 раза больше энергии и стоит в 5.4 раза больше в расчете на проеханный километр:
Конечно, обе технологии будут улучшены в будущем, но расчеты выше по тексту задают пределы. Невозможно преодолеть законы термодинамики неким хитрым изобретением или принимая желаемое за действительное.
Означает ли все это, что топливные элементы вообще не нужны? Вовсе нет! Существуют устоявшиеся области в которых ПЭМ-топливные элементы имеют смысл, но это лишь те ситуации, где энергоэффективность гораздо менее важна, чем, например, быстрая заправка. Таким образом, Plug Power находит свою нишу на рынке складских вилочных погрузчиков, особенно на охлаждаемых складах.
То же самое относится к так называемым «power to gas» (P2G) схемам. Это совсем другая модель: они используют «избыточную» возобновляемую электроэнергию для производства водорода, который затем под низким давлением подмешивается в газовую сеть, где в конечном итоге используется для производства тепла, часто в устройствах, которые в конечном итоге рекуперируют тепло конденсации водяного пара (продукта горения водорода). Как средство хранения электроэнергии схемы P2G настолько смехотворно неэффективны, что о них даже не стоит говорить, но зато они требуют лишь небольших капитальных вложений и сокращают выбросы парниковых газов, когда водород вытесняет метан. Это не так уж и плохо, если только вы не сделаете вывод, что однажды мы ПОЛНОСТЬЮ заменим природный газ водородом. Это будет очень глупо.
Другие применения водорода на транспорте
На данный момент, в некоторых видах транспорта: самолеты, поезда, суда, аккумуляторы практически или совсем неприменимы. Главный вопрос в этих случаях стоит так: насколько мы заботимся о токсичных выбросах? Если они волнуют нас больше всего, водород — единственные решение. Но если мы больше думаем о парниковом эффекте, мы также можем использовать биотопливо как альтернативу водороду. [При сжигании биотоплива в воздух попадает углекислый газ, но этот углерод был извлечен из атмосферы самими растениями в течение предыдущего года, поэтому общий атмосферный баланс не нарушается — прим. перев.] Для самолетов биотопливо, скорее всего, — это единственное практическое решение до тех пор пока мы не изобретем что-то с гораздо большей плотностью энергии, чем литий-ионные аккумуляторы, возможно, перезаряжаемые металл-воздушные аккумуляторы. И хотя мы не сможем полностью заменить бензин и дизель на биотопливо, даже если полностью забудем об экономике (цифры по этому поводу см. на сайте www.withouthotair.com), если мы покроем 90% перевозок (в километрах, или тоннокилометрах) электричеством, мы можем производить достаточно биотоплива чтобы покрыть оставшиеся 10%, ПЛЮС все те другие виды транспорта, в которых в сейчас невозможно использовать аккумуляторы. Гораздо важнее избавиться от токсичных выхлопов в городах, чем на трассах, в море, или высоко над землей.
Очевидно, что использование водорода или электрохимии для уменьшения выбросов CO2 с целью получения жидких углеводородов значительно менее эффективно, чем сам водород [я не понимаю, что тут сказано — прим. перев.]. То же самое и с аммиаком, который кажется кому-то способом преодолеть некоторые недостатки водорода. Аммиак — ядовитый газ, и, опять же, производить его менее эффективно, чем водород. Мысль о заправке автомобилей аммиаком повергает меня в ужас, учитывая количество смертей, связанных с аммиаком в результате его использования в качестве хладагента и в сельском хозяйстве.
Так называемое «e-топливо» (e-fuel, power-to-liquid) — это, на самом деле, производная водородного топлива. Оно делается из углекислого газа, воды (продукт горения водорода), и электричества. При реверсе термодинамического процесса неизбежны потери. С учетом того, что потом мы используем это топливо в неэффективном ДВС, вся схема получается очень очень неэффективной.
Е-топливо — это способ использовать еще больше излишков энергии в тщетных попытках превратить водород в более эффективное (удобное) топливо. К сожалению, если мы не сможем производить достаточно биотоплива для того транспорта, в котором мы не можем использовать аккумуляторы, нам, возможно, придется сначала использовать топливные элементы, и только в самом крайнем случае — е-топливо. И мы будем горько плакать, глядя на его стоимость.
Настоящее будущее «зеленого» водорода
Сейчас более 96% водорода производится из ископаемого топлива либо целенаправленно (паровая или автотермальная конверсия метана), либо как побочный продукт при производстве нефти. Мы должны научиться производить водород очень эффективно из возобновляемого электричества, но не тратить его как автомобильное топливо, а использовать при производстве удобрений: аммиака и мочевины. Нам придется избавиться от гигантской инфраструктуры по производству и доставке углеводородов.
Дисклеймер [от автора статьи, не переводчика]: все что я пишу в своих статьях — это мое личное мнение. Я пытаюсь всегда приводить ссылки на источники, когда могу. Скорее всего, в моих цифрах и рассуждениях есть ошибки. Я заранее извиняюсь за них. Если вы можете указать мне на них со ссылкой на хороший источник, я отвечу и исправлю текст. Мой работодатель, Zeton Inc., работает в совсем другой области, и не имеет ни интереса, ни даже позиции по поводу водорода. Мы проектируем и строим пилотные установки.
Жулики освоили «развод» водителей на деньги с помощью «генератора водорода» в машине
Как только в России наступают тяжелые экономические времена, немедленно активизируются всякого рода «бизнесмены», знающие «400 сравнительно честных способов отъема денег» у сограждан. Портал «АвтоВзгляд» рассказывает об очередном жульническом чудо-устройстве, которому приписывают способность мощно экономить топливо и создавать полнейший «феншуй» в двигателе машины.
Поделиться
В последнее время сайты объявлений и автомобильные интернет-ресурсы наполнились предложениями о переоборудовании любого автомобиля неким девайсом, работающим на обычной воде и вырабатывающем водород. Агрегат «проходит» под разными названиями: «гибридная система водородного питания (СВП)», Hydrogen Super Smart System, «генератор водорода для грузового транспорта», «генератор водорода на машину» и тому подобными. В рекламных объявлениях (как правило, написанных словно под копирку) дилеры «водородных» штуковин указывают своими локациями практически все крупные города европейской части России.
После установки «водорода на машину» они обещают, в частности, «гарантированное снижение расхода топлива в диапазоне от 20 до 50%». А еще, утверждают «изобретатели», «за счет стопроцентного КПД повышается мощность двигателя до 25%». И при этом его ресурс увеличивается в 1,5—2 раза.
Не удержусь и позволю себе привести целиком еще одну цитату из подобного рода завлекалок: этот бред неизбежно порвет на части разум любого, кто имеет хоть какое-то представление о работе ДВС.
Почему автопроизводители откладывают «взрыв водородной бомбы»
Машины будущего заехали в тупик
Читайте также
Итак, наслаждайтесь: «Ваше чисто сгорающее топливо будет отдавать в атмосферу только воду и кислород вместо загрязняющих выбросов. Это исключит загрязняющие выбросы, которые отравляют окружающую среду и приводят к глобальному потеплению». Как говорится — без комментариев.
При ближайшем рассмотрении «гибридная система водородного питания» представляет собой примитивный набор оборудования для электролиза воды. Его устанавливают в моторный отсек машины или на заднюю часть кабины тягача-бескапотника. И подключают к электросети авто. В процессе работы электричество разлагает воду на кислород и водород, которые отправляются во впускной коллектор мотора. И вот этот-то водород, согласно уверениям торговцев, снижает расход топлива, резко повышает мощность движка, убирает нагар со свечей и каким-то образом куда-то девает «загрязняющие выбросы, отравляющие окружающую среду».
На бессмысленность этой системы указывает хотя бы то, что для разложения воды на водород и кислород она потребляет электричество, выработанное штатным генератором ТС. Работу которого, в конечном счете, обеспечивает сгорание топлива в цилиндрах.
Почему чистка двигателя водородом — пустая трата денег
Не стоит доверять коммерсантам
Читайте также
Иными словами, тепловая энергия сначала превращается в электрическую (с потерями из-за КПД двигателя внутреннего сгорания), потом тратится на электролиз воды (с учетом еще одного этапа естественных потерь в электросистеме авто), а потом опять превращается в тепло при сгорании водорода и кислорода в цилиндрах. Где тут можно найти повышение мощности и «экономию» хоть чего-нибудь — ведомо лишь тем, кто впаривает эти «генераторы» доверчивым автовладельцам.
Характерно, что цены на эти чудо-устройства совсем не детские. В зависимости от региона и жадности конкретного продавца, комплект «системы водородного питания» может стоить от 20 000 до 80 000 рублей! Забавно, что одни продавцы этого товара предлагают выслать покупателю установочный набор устройства, уверяя, что с его монтажом справится любой рукастый мужик. А другие настойчиво предлагают еще и установку «водорода» на авто клиента, поскольку эта операция требует серьезной квалификации исполнителя. За работу которого просят 10 000 −12 000 рублей.
В любом случае, подобный бизнес — чистое мошенничество. Поскольку «экономия на водороде» — обман от начала и до конца. Хотя, к счастью, и безвредный для мотора: от него двигателю ни лучше и ни хуже не станет. Разве что криворукий установщик «генератора водорода» что-нибудь сломает под капотом в процессе своей «работы»…
На каких автомобилях ездят у себя на родине сами китайцы
Самые популярные машины в КНР
Читайте также
Подпишитесь на канал «Автовзгляд»
- #ТО
- #двигатель
- #безопасность дорожного движения
- #технология
- #ремонт
- #техническое обслуживание
- #мототехника
Водородные технологии для автомашин(экономия топлева)
Компания осуществляет возврат и обмен этого товара в соответствии с требованиями законодательства.
Сроки возврата
Возврат возможен в течение 14 дней после получения (для товаров надлежащего качества).
Обратная доставка товаров осуществляется по договоренности.
Согласно действующему законодательству вы можете вернуть товар надлежащего качества или обменять его, если:
- товар не был в употреблении и не имеет следов использования потребителем: царапин, сколов, потёртостей, пятен и т. п.;
- товар полностью укомплектован и сохранена фабричная упаковка;
- сохранены все ярлыки и заводская маркировка;
- товар сохраняет товарный вид и свои потребительские свойства.
Комплекты на все автомашины( Бензин,Дизель,Газ). Чип тюнинг на все автомашины не старше 1996 года выпуска.Приглашаем Диллеров по РегионамСокращает расход топлева 20-40%.Повышает КПД.Сгорания топлева до 100%.Программное обеспечение.Чип тюнинг(программа эконом)без потери мощности.Чип тюнинг(безопасно раскрываем весь потенциал двигателя). Сгорание топлива в двигателях внутреннего сгорания происходит не эффективно. В лучшем случае, в двигателе автомобиля сгорает лишь 66% топлива, остальные 34% – догорают в выхлопной трубе. Генератор газа Брауна (этот газ еще называют: гремучий газ, коричневый газ, HHO газ, водяной газ, гидроген, ди-гидроксид, гидроксид, зеленый газ, клейн газа, оксигидроген) предназначен для выработки газа, который используется для интенсификации процесса горения в двигателях внутреннего сгорания. За счет явлений интенсификации горения достигается существенная экономия топлива и прирост мощности двигателя. Еще одним преимуществом этой системы является снижение вредных выбросов двигателем, способствует улучшению экологии. Экономия топлива происходит из за лучшего сгорания. Дополнение газом Брауна приводит к 100% сгоранию топливной смеси в камере сгорания. Это позволяет извлечь доступную энергию из бензина (дизтоплива) и преобразовать ее в механическую энергию, что не нарушает законы термодинамики. Самый простой способ получить Газ Брауна состоит в том, чтобы использовать электролизер (HHO cell), который использует электричество, чтобы расщепить воду на ее элементы — водород и кислород. Именно этот принцип заложен в комплекты оборудования, которые затем устанавливаются в автомобили наших клиентов. Основной принцип работы: Когда водород попадает в цилиндр двигателя, он сжигается там, как и обыкновенное автономное топливо, тем самым дополняя и заменяя определенное количество бензина (дизельного топлива). Составляющие части: Устройство сухих водородных ячеек довольно простое: система состоит из самой сухой водородной ячейки (HHO Cell) и шлангов-трубопроводов. Сухая ячейка состоит из сгруппированных металлических пластин (каждая из которых последовательно подсоединена к положительному или отрицательному источнику батареи), погруженных в воду. Как только электричество начинает преодолевать небольшой разрыв между пластинами, оно начинает расщеплять молекулы воды на ее составляющие – кислород и водород, производя водородный газ (HHO). Этот физико-химический процесс называется электролизом и открыт еще в 19 веке. Затем полученный газ проходит через трубку, соединенную с впускным коллектором двигателя, где смешиваясь с атмосферным воздухом и топливом, далее втягивается в камеру сгорания цилиндра двигателя. Как водород работает в моей машине? Всё очень просто. Наши сухие водородные ячейки потребляют 12 вольт электроэнергии от двигателя и производят водородный газ (водород + кислород). Вам не нужно менять или глубоко модифицировать ваш двигатель. Более новые автомобили, имеющие электронный впрыск топлива, должны быть отрегулированы под установку водородного оборудования. Водород подается во всасывающий коллектор двигателя или карбюратора как показано на рисунке ниже. Система проста, эффективна, безопасна и занимает относительно немного времени для ее установки. Процесс преобразования водорода эффективен для любых видов органического топлива (дизельное топливо, бензин, пропан, природный газ) или биотоплива (биодизель, этанол). Среди прочих слабовыраженных эффектах, присутствие водорода изменяет начальные стадии разворачивающейся динамики сгорания, меняя кинетическую и химическую траекторию, которой следует процесс сгорания. Суммарное влияние состоит в изменении времени, в течении которого высвобождается тепловая энергия по отношению к энергетическому циклу. Конечным результатом является увеличение адиабатического КПД двигателя. С точки зрения непрофессионала, это означает повышение КПД топлива, снижение выбросов, повышение мощности в лошадиных силах и крутящего момента, а также снижение эксплуатационных расходов. Наши сухие водородные ячейки это «водород по требованию». Нет надобности в хранении легковоспламеняющегося газа в каких-либо емкостях и баллонах. Газ производится только в момент работы автомобиля. Как только выключено зажигание, газ перестает вырабатываться и система полностью отключается. Комплект сухих водородных ячеек может устанавливаться на бензиновых или дизельных двигателях. Согласно размера двигателя и его характеристик, комплект состоит из одной или двух сухих ячеек, резервуара, топливного шланга и амперметра для контроля электрической мощности, поступающей в сухие водородные ячейки. Как уже было отмечено выше, наши сухие водородные ячейки вырабатывают водород посредством электролиза. Конверсионный комплект сухих ячеек использует дистиллированную воду и растворенный в ней электролизный состав (электролит), который используется для ускорения процесса электролиза. Шланги, подсоединенные к днищу резервуара, доставляют электролит в каждую водородную ячейку (HHO Cell). Уже там, путем электролиза, происходит расщепление молекул воды на кислород и водород в газ Брауна (HHO Gas). Полученный газ подается из сухих водородных ячеек в резервуар. Молекула воды Молекула водорода Далее, газ Брауна, диффундирует из резервуара через шланг, подсоединенный к его крышке, и втягивается в воздухозаборную систему автомобиля. Смешавшись с топливом, кислород и водород поступают в камеру сгорания двигателя. Введение водорода в камеру сгорания создает более эффективное и полное сгорание топлива, тем самым повышая его КПД, в то же время снижает выбросы выхлопных газов и увеличивает мощность и эксплуатационные характеристики автомобиля. В среднем каждый автомобиль на дороге использует около 66% КПД топлива. Использование водорода в вашей воздухозаборной системе увеличивает КПД почти до 100%. Вот таким образом вы можете получить обратно ваши 30%. Особенности эксплуатации. Поскольку основным «топливом» для генератора является вода, существует незначительная проблема с эксплуатацией системы в зимний период времени при отрицательных температурах. Проблема решается приготовлением специального незамерзающего электролита на спиртовой основе. Мы с удовольствием приготовим его и научим вас делать это самостоятельно. Немного истории. Научные изыскания в пользу водородных установок хорошо задокументированы. В 1974 году Хаусман и Черини из Лаборатории реактивных приводов (JPL) Калифорнийского технологического института, подготовили доклад для общества инженеров автомобильного транспорта (SAE), озаглавленный «Бортовой генератор водорода для частичного водородного впрыска в двигатель внутреннего сгорания». Также в 1974 году Оуен и Доуви из той же лаборатории подготовили доклад для 9-й встречи Конференции по преобразованию энергии, под названием «Целесообразность использования автотранспортных средств работающих на бензине, обогащенным водородом». Исследования Оуена и Доуви включают бортовые резервуары для водорода. Начиная с ранних исследований 1974 года, исследования принципов работы водорода и его применения продолжаются до настоящего времени. Вы можете найти часто цитируемые труды на многих веб сайтах, посвященных водороду. Наиболее заметное место среди них занимает исследование Бирмингемского Университета, Великобритании (1995 г.) «Частичная присадка водорода к двигателям внутреннего сгорания путем крекинга выхлопных газов», где показаны преимущества в улучшении стабильности сгорания и снижении выбросов оксида азота и углеводорода. Калифорнийская лаборатория по моделированию эксплуатационных условий (California Environmental Engineering (CEE)) протестировала данную технологию, и обнаружила снижение уровня всех выхлопных газов. Впоследствии они заявили: «CEE считает, что результат этого теста подтверждает, что эта технология является жизнеспособным источником для сокращения выбросов выхлопных газов и расхода топлива.»
Информация для заказа
- Цена: 150 000 ₸ /комплект
Как сделать генератор водорода в домашних условиях
Удорожание энергоносителей стимулирует поиск более эффективных и дешевых видов топлива, в том числе на бытовом уровне. Более всего умельцев–энтузиастов привлекает водород, чья теплотворная способность втрое превышает показатели метана (38.8 кВт против 13.8 с 1 кг вещества). Способ добычи в домашних условиях, казалось бы, известен – расщепление воды путем электролиза. В действительности проблема гораздо сложнее. Наша статья преследует 2 цели:
- разобрать вопрос, как сделать водородный генератор с минимальными затратами;
- рассмотреть возможность применения генератора водорода для отопления частного дома, заправки авто и в качестве сварочного аппарата.
Краткая теоретическая часть
Водород, он же hydrogen, – первый элемент таблицы Менделеева – представляет собой легчайшее газообразное вещество, обладающее высокой химической активностью. При окислении (то бишь, горении) выделяет огромное количество теплоты, образуя обычную воду. Охарактеризуем свойства элемента, оформив их в виде тезисов:
- Горение водорода – процесс экологически чистый, никаких вредных веществ не выделяется.
- Благодаря химической активности газ в свободном виде на Земле не встречается. Зато в составе воды его запасы неиссякаемы.
- Элемент добывается в промышленном производстве химическим способом, например, в процессе газификации (пиролиза) каменного угля. Зачастую является побочным продуктом.
- Другой способ получения газообразного водорода – электролиз воды в присутствии катализаторов – платины и прочих дорогих сплавов.
- Простая смесь газов hydrogen + oxygen (кислород) взрывается от малейшей искры, моментально высвобождая большое количество энергии.
Для справки. Ученые, впервые разделившие молекулу воды на hydrogen и oxygen, назвали смесь гремучим газом из-за склонности к взрыву. Впоследствии она получила название газа Брауна (по фамилии изобретателя) и стала обозначаться гипотетической формулой ННО.
Из вышесказанного напрашивается следующий вывод: 2 атома водорода легко соединяются с 1 атомом кислорода, а вот расстаются весьма неохотно. Химическая реакция окисления протекает с прямым выделением тепловой энергии в соответствии с формулой:
Здесь кроется важный момент, который пригодится нам в дальнейшем разборе полетов: hydrogen вступает в реакцию самопроизвольно от возгорания, а теплота выделяется напрямую. Чтобы разделить молекулу воды, энергию придется затратить:
Это формула электролитической реакции, характеризующая процесс расщепления воды путем подведения электричества. Как это реализовать на практике и сделать генератор водорода своими руками, рассмотрим далее.
Создание опытного образца
Чтобы вы поняли, с чем имеете дело, для начала предлагаем собрать простейший генератор по производству водорода с минимальными затратами. Конструкция самодельной установки изображена на схеме.
Из чего состоит примитивный электролизер:
- реактор – стеклянная либо пластиковая емкость с толстыми стенками;
- металлические электроды, погружаемые в реактор с водой и подключенные к источнику электропитания;
- второй резервуар играет роль водяного затвора;
- трубки для отвода газа HHO.
Важный момент. Электролитическая водородная установка работает только от постоянного тока. Поэтому в качестве источника питания применяйте сетевой адаптер, автомобильное зарядное устройство или аккумулятор. Электрогенератор переменного тока не подойдет.
Принцип работы электролизера следующий:
- К двум электродам, погруженным в воду, подводится напряжение, желательно от регулируемого источника. Для улучшения реакции в емкость добавляется немного щелочи либо кислоты (в домашних условиях – обычной соли).
- В результате реакции электролиза со стороны катода, подключенного к «минусовой» клемме, станет выделяться водород, а возле анода – кислород.
- Смешиваясь, оба газа по трубке поступают в гидрозатвор, выполняющий 2 функции: отделение водяного пара и недопущение вспышки в реакторе.
- Из второй емкости гремучий газ ННО подается на горелку, где сжигается с образованием воды.
Чтобы своими руками сделать показанную на схеме конструкцию генератора, потребуется 2 стеклянных бутылки с широкими горлышками и крышками, медицинская капельница и 2 десятка саморезов. Полный набор материалов продемонстрирован на фото.
Из специальных инструментов потребуется клеевой пистолет для герметизации пластиковых крышек. Порядок изготовления простой:
- Плоские деревянные палочки скрутите саморезами, располагая их концами в разные стороны. Спаяйте головки шурупов между собой и подсоедините провода – получите будущие электроды.
- Проделайте отверстие в крышке, просуньте туда разрезанный корпус капельницы и провода, затем герметизируйте с 2 сторон клеевым пистолетом.
- Поместите электроды в бутылку и завинтите крышку.
- Во второй крышке просверлите 2 отверстия, вставьте трубки капельниц и накрутите на бутылку, заполненную обычной водой.
Для запуска генератора водорода налейте в реактор подсоленную воду и включите источник питания. Начало реакции ознаменуется появлением пузырьков газа в обеих емкостях. Отрегулируйте напряжение до оптимального значения и подожгите газ Брауна, выходящий из иглы капельницы.
Второй важный момент. Слишком высокое напряжение подавать нельзя — электролит, нагревшийся до 65 °С и более, начнет интенсивно испаряться. Из-за большого количества водяного пара разжечь горелку не удастся. Подробности сборки и запуска импровизированного водородного генератора смотрите на видео:
О водородной ячейке Мейера
Если вы сделали и испытали вышеописанную конструкцию, то по горению пламени на конце иглы наверняка заметили, что производительность установки чрезвычайно низкая. Чтобы получить больше гремучего газа, нужно изготовить более серьезное устройство, называемое ячейкой Стэнли Мейера в честь изобретателя.
Принцип действия ячейки тоже основан на электролизе, только анод и катод выполнены в виде трубок, вставляющихся одна в другую. Напряжение подается от генератора импульсов через две резонансные катушки, что позволяет снизить потребляемый ток и увеличить производительность водородного генератора. Электронная схема устройства представлена на рисунке:
Примечание. Подробно о работе схемы рассказывается на ресурсе http://www.meanders.ru/meiers8.shtml.
Для изготовления ячейки Мейера потребуется:
- цилиндрический корпус из пластмассы или оргстекла, умельцы нередко используют водопроводный фильтр с крышкой и патрубками;
- трубки из нержавеющей стали диаметром 15 и 20 мм длиной 97 мм;
- провода, изоляторы.
Нержавеющие трубки крепятся к основанию из диэлектрика, к ним припаиваются провода, подключаемые к генератору. Ячейка состоит из 9 или 11 трубок, помещенных в пластиковый либо плексигласовый корпус, как показано на фото.
Соединение элементов производится по всем известной в интернете схеме, куда входит электронный блок, ячейка Мейера и гидрозатвор (техническое название – бабблер). В целях безопасности система снабжена датчиками критического давления и уровня воды. По отзывам домашних умельцев, подобная водородная установка потребляет ток порядка 1 ампера при напряжении 12 В и обладает достаточной производительностью, хотя точные цифры отсутствуют.
Реактор из пластин
Высокопроизводительный генератор водорода, способный обеспечить работу газовой горелки, выполняется из нержавеющих пластин размером 15 х 10 см, количество – от 30 до 70 шт. В них просверливаются отверстия под стягивающие шпильки, а в углу выпиливается клемма для присоединения провода.
Кроме листовой нержавейки марки 316 понадобится купить:
- резина толщиной 4 мм, стойкая к воздействию щелочи;
- концевые пластины из оргстекла либо текстолита;
- шпильки стяжные М10—14;
- обратный клапан для газосварочного аппарата;
- фильтр водяной под гидрозатвор;
- трубы соединительные из гофрированной нержавейки;
- гидроокись калия в виде порошка.
Пластины нужно собрать в единый блок, изолировав друг от друга резиновыми прокладками с вырезанной серединой, как показано на чертеже. Получившийся реактор плотно стянуть шпильками и подключить к патрубкам с электролитом. Последний поступает из отдельной емкости, снабженной крышкой и запорной арматурой.
Примечание. Мы рассказываем, как сделать электролизер проточного (сухого) типа. Реактор с погружными пластинами изготовить проще – резиновые прокладки ставить не нужно, а собранный блок опускается в герметичную емкость с электролитом.
Последующая сборка генератора, производящего водород, выполняется по той же схеме, но с отличиями:
- На корпусе аппарата крепится резервуар для приготовления электролита. Последний представляет собой 7—15% раствор гидроокиси калия в воде.
- В «бабблер» вместо воды заливается так называемый раскислитель – ацетон либо неорганический растворитель.
- Перед горелкой обязательно ставится обратный клапан, иначе при плавном выключении водородной горелки обратный удар разорвет шланги и «бабблер».
Для питания реактора проще всего задействовать сварочный инвертор, электронные схемы собирать не нужно. Как устроен самодельный генератор газа Брауна, расскажет домашний мастер в своем видео:
Выгодно ли получать водород в домашних условиях
Ответ на данный вопрос зависит от сферы применения кислородно-водородной смеси. Все чертежи и схемы, публикуемые различными интернет-ресурсами, рассчитаны на выделение газа HHO для следующих целей:
- использовать hydrogen в качестве топлива для автомобилей;
- бездымно сжигать водород в отопительных котлах и печах;
- применять для газосварочных работ.
Главная проблема, перечеркивающая все преимущества водородного топлива: затраты электричества на выделение чистого вещества превышают количество энергии, получаемое от его сжигания. Что бы ни утверждали приверженцы утопичных теорий, максимальный КПД электролизера достигает 50%. Это значит, что на 1 кВт полученной теплоты затрачивается 2 кВт электроэнергии. Выгода – нулевая, даже отрицательная.
Вспомним, что мы писали в первом разделе. Hydrogen – весьма активный элемент и реагирует с кислородом самостоятельно, выделяя уйму тепла. Пытаясь разделить устойчивую молекулу воды, мы не можем подвести энергию непосредственно к атомам. Расщепление производится за счет электричества, половина которого рассеивается на подогрев электродов, воды, обмоток трансформаторов и так далее.
Важная справочная информация. Удельная теплота сгорания водорода втрое выше, чем у метана, но – по массе. Если сравнивать их по объему, то при сжигании 1 м³ гидрогена выделится всего 3.6 кВт тепловой энергии против 11 кВт у метана. Ведь водород – легчайший химический элемент.
Теперь рассмотрим гремучий газ, полученный электролизом в самодельном водородном генераторе, как топливо для вышеперечисленных нужд:
- Конечная цена установки, низкая производительность и КПД делает крайне невыгодным сжигание водорода для отопления частного дома. Чем «наматывать» счетчик электролизером, проще поставить любой из электрокотлов – ТЭНовый, индукционный либо электродный.
- Чтобы заменить 1 л бензина для автомобиля, потребуется 4766 литров чистого водорода или 7150 л гремучего газа, треть которого составляет кислород. Самый завравшийся изобретатель в интернете еще не сделал электролизер, способный обеспечить подобную производительность.
- Газосварочный аппарат, сжигающий hydrogen, компактнее и легче баллонов с ацетиленом, пропаном и кислородом. Плюс температура пламени до 3000 °С позволяет работать с любыми металлами, стоимость получения горючего здесь особой роли не играет.
Для справки. Чтобы сжигать гидроген в отопительном котле, придется основательно переработать конструкцию, поскольку водородная горелка способна расплавить любую сталь.
Заключение
Гидроген в составе газа ННО, полученный из самодельного водородного генератора, пригодится для двух целей: экспериментов и газосварки. Даже если отбросить низкий КПД электролизера и затраты на его сборку вместе с потребляемым электричеством, на обогрев здания попросту не хватит производительности. Это касается и бензинового двигателя легковой машины.
53 Replies to “Как сделать генератор водорода в домашних условиях”
» Ячейка состоит из 9 или 11 трубок, помещенных в пластиковый либо плексигласовый корпус, как показано на фото»
Вообще то на фото трубок 10, если что!
И вообще, это статья не о чем не доказывает, одни лишь утверждения. Нет выкладок, опытов и фактов. Известно лишь одно — если кто-то разработает выгодную технологию, которая будет отбирать хлеб у энергетических магнатов, то этого человека просто уберут. А технологии заберут себе, ибо нечего! Насчет закона сохранения массы и энергии уже не все определенно, но ученым невыгодно выставлять себя дураками.
Представитель
Спасибо за Ваше замечание по количеству трубок.
В статье не стоит задача что-то доказывать. Излагается ситуация на данный момент и общее руководство по изготовлению генератора — ежели кто захочет.
Мне нравились некоторые его ролики. Давайте начну с другого – а что из правды Вы учили в школе, наверно, как рассчитаться в магазине, банке!
Вы не знаете ничего, начиная с того, что газ, нефть, дрова – это не энергоносители, они не горят. А что тогда горит и почему углеводороды – это окислители, но никак не энергоносители? Вы слышали выражение «двигатель внутреннего сгорания», сгорает-то в двигателе, но смесь подается извне и уходит туда же, причем необходимая, иначе гореть не будет. На просторах нета можно услышать – Тесла хотел дать даром электричество. Да не хотел он ничего давать, разводят вас, как лохов. Приняли для коммерциализации переменный ток – так выгодно коммерсантам, а Вы в минусе! Вообще я давно занялся лично для себя вопросом «изучения людей в результате общения» и пришел к довольно плохим выводам. каким? Насколько Вы сами и Ваше окружение смахиваете на мальчика с ролика, досмотрите ролик до конца: youtube.com/watch?v=y-UGaKXl6Ys. Ну а если быть более конкретным с ответом, то бесплатного ничего не бывает (сыр в мышеловке). Но, как Вы думаете, неужели в нете мало людей, которые говорят – нас окружает море энергии, другие – не стоит пока об этом говорить, народ не готов и т.д. Это я к тому, что в мире десятки тысяч разработчиков, которые изобрели «генераторы энергии, работающие в автоматическом режиме и выдающие энергию на гора» и не обязательно, если он будет стоять у Вас в доме – Вы будете за нее платить. Все понимание наверно нужно начать с прослушивания людей, которые нами руководят, у кого фабрики, заводы, земля (наверно, как в конституции – у государства и принадлежит народу).
В статье постоянно приводится термин «электролиз», в то время, как топливная ячейка мейера расщепляет молекулы за счёт резонансных колебаний. В общем всё смешали в кучу…
Получать горючий газ HHO можно по методу (реакция) Марсоля, разлагая воду на цинке и сурьме, всё.
Архивариус Тт
Боюсь, этот метод ничем не лучше других. Если изучить скудную информацию по данной теме, то в глаза сходу бросается 3 нестыковки:
1. Вода в молекулярном двигателе Марсоля разлагается на кислород и водород, минуя паровую фазу. Нонсенс.
2. Насос и сопротивление затрачивает электричество, поршень совершает механическую работу. Каково соотношение затраченной и полученной энергии, неизвестно.
3. Потери теплоты в насосе и молекулярном двигателе неизбежны.
Сдается мне, разложение электролизом куда перспективнее.
Все очень даже работает, я езжу на 3-литровом моторе с расходом в 7-8 литров самого дешманского бензина. И что радует помимо экономии, что в конях прибавка около 15%,так что жизнь налаживается, да и ресурс мотора до 40% увеличивается, вот как-то так!
Да статья интересная,а еще интереснее как работают автомобильные газогенераторы. Ведь как уже слышно налаживается серийный выпуск автомобилей на водородном топливе заправляемые обычной водой,то есть там стоит газогенератор и как слышал и КПД намного выше.
Есть ещё один важный момент, который не рассмотрен в статье: это увеличение эффективности природных источников энергии с помощью электролиза. Как известно, для получения солнечной энергии можно использовать солнечные панели, либо коллекторы. Но эти решения трудно использовать для отопления, так как солнце наиболее интенсивно светит днём и летом, а топить нужно зимой и ночью. Потому напрямую греть ТЭН от солнечной панели не получится.
Чтобы запасать энергию, используются аккумуляторы, но у них низкий КПД и короткий срок службы в циклическом режиме.
И тут интересно рассмотреть возможность использования электролиза для запасания солнечной (или ветровой) энергии. Например летом на солнце использовать электричество солнечной панели, чтобы получить запас водорода, а ночью зимой этот водород сжигать в водородном котле. То что у системы низкий КПД — в этом случае не важно, солнца ведь и так много. Гораздо важнее насколько безопасно получится запасать водород в больших объёмах, чтобы потом использовать по мере необходимости.
Представитель
Ваша идея запасать водород на ночь, используя солнечную энергию днем, действительно интересна. В статье мы не рассматривали эту возможность, потому что никто не применял подобную схему на практике. Во всяком случае, нам неизвестны такие факты. Ну и конечно, надо считать выгоду – во сколько обойдется производство водорода днем (плюс стоимость оборудования) и обычное отопление по ночному тарифу.
Мной давно рассмотрена идея синтеза водорода при помощи гибрида ветряка и солнечными элементами, последующим электролизом и связыванием водорода в гидрид алюминия.
То что водородная установка работает это 100% правда , я сам ими занимался 25 лет назад. Вопрос только в том кто вам даст этим заниматься ? Нефтеные магнаты тоже хотят кушать и они вас съедят за эти установки. 2 вопрос , куда вы денете миллионы безработных которых уволят с нефтеперерабатывающих заводов?
Установка РАБОТАЕТ.
То, что установка работает известно давно. Ещё в СССР хотели запустить автобусы на водороде. Не дали, по причине причинения вреда экономике.
Привет, можешь скинуть схему водородной установки мне на почту kunakbaevboris@ gmail.com?
И мне тоже скиньте схему установки на ящик kholanex(собака)mail.ru Пожалуйста! Я вам точно говорю, приходит время и мысли у людей сходятся. Я уже давно замыслил продвигать бизнес в жарких странах по производству водорода при помощи солнечных электростанций. И ведь Майер каким то образом добился высокой производительности установки. Как он это сделал если многие утверждают, что представленная здесь схема не работает?
Для повышения КПД, наверно, надо генератор с частотой резонансной колебательной частоте молекулы воды.