Эксплуатация асинхронного двигателя
Правильная эксплуатация асинхронного двигателя — это добиться бесперебойной, надежной и качественной работы электрических машин, обеспечивающих их наилучшие технико-экономические показатели, повышать надежность их работы. Главная задача эксплуатации — поддерживать электрические машины в исправном состоянии в течение всего времени эксплуатации, обеспечивая их бесперебойную и экономичную работу. Для осуществления этой задачи необходимо проводить плановое техническое обслуживание электрических машин, включающее проведение планово-предупредительных ремонтов (ППР) и профилактических испытаний.
- Техническое обслуживание электродвигателей
- Ремонт асинхронных электродвигателей
Асинхронные двигатели предназначены для работы в определенных режимах. Номинальные данные двигателей, указанные в паспорте или на заводском щитке машины (мощность, ток, напряжение, частота вращения и др.), характеризуют номинальный режим работы, причем термин «номинальный» применяется ко всем величинам, относящимся к номинальному режиму.
Однако на практике двигатели работают не только в номинальном режиме: допустимые отклонения от номинального режима работы регламентируются ГОСТ 183—74 *.
Отклонения напряжения питающей сети от номинального допускаются при длительной работе с номинальной нагрузкой в пределах от +10 до —5%.
При понижении напряжения в пределах 5% и номинальной нагрузке на валу двигателя соответственно возрастает ток статора электродвигателя выше номинального. Увеличиваются тепловые потери в меди статора. Однако одновременно понижается магнитная индукция за счет уменьшения напряжения. Это приводит к снижению потерь в активной стали статора. Суммарные потери в статоре (в меди и стали) мало изменяются по сравнению с режимом при номинальном напряжении. Благодаря этому температура обмотки статора сохраняется в допустимых пределах.
При снижении напряжения питающей сети более чем на 5% потери в меди обмотки статора уже не могут быть скомпенсированы, возрастают ток и потери в роторе. В связи с этим возможно превышение температуры обмотки статора сверх допустимых значений. Для того чтобы этого не произошло, необходимо снизить нагрузку на валу двигателя ниже номинальной в соответствии с характеристиками машины при изменении напряжения питания.
Кроме того, необходимо иметь в виду, что вращающий момент двигателя пропорционален квадрату напряжения. При значительных снижениях напряжения сети вращающий момент может стать меньше момента сопротивления на валу электродвигателя, что приведет к его торможению.
При превышении напряжения питания над номинальным в пределах до 10% наблюдается некоторое допустимое увеличение температуры активной стали за счет роста магнитной индукции. Однако в результате уменьшения тока статора снижается нагрев обмотки. Такое повышение напряжения не опасно и для изоляции обмотки. Повышение напряжения более чем на 10% не рекомендуется из-за возможностей повышенного нагрева активной стали статора.
Отклонения частоты питающей сети от номинальной допускаются длительно в пределах ±5%. При увеличении частоты будет возрастать ток статора, и тем больше, чем меньше ток XX данного типа асинхронного электродвигателя.
При снижении частоты у нагруженного двигателя при небольшом токе XX ток статора уменьшается за счет снижения нагрузки на валу. В дальнейшем ток статора возрастает, несмотря на продолжающееся снижение нагрузки. При большом токе холостого хода рост тока статора наблюдается с начала снижения частоты.
Практически допускается кратковременное (не более 2 мин) повышение частоты на 20% сверх наибольшей, указанной на щитке электродвигателя. Это не приводит к повреждениям или остаточным деформациям в двигателях.
При одновременном отклонении напряжения и частоты в питающей сети от номинальных значений асинхронный двигатель должен обеспечивать номинальную мощность, если сумма абсолютных значений этих отклонений не превосходит 10%.
Предельно допустимая температура подшипников скольжения не должна превышать 80 °С (температура масла— не более 65 °С), а для подшипников качения— 100° С. Более высокие температуры допустимы для специальных подшипников или сортов масла и указываются в технических условиях для конкретных типов двигателей.
Необходимо отметить, что в большинстве случаев температура подшипников качения значительно ниже предельно допустимой. Поэтому, если электродвигатель в течение длительного времени работал в одних и тех же условиях, с одной и той же температурой подшипников, а затем она внезапно увеличилась, это указывает на появление дефектов в подшипниках.
Вибрация двигателя не должна превышать значений, приведенных в разделе «Выбор электродвигателя по уровню вибрации и шума«.
Повышение вибрации сверх допустимой отрицательно сказывается на подшипниках и обмотках двигателя, увеличивает его износ и расшатывает крепления. В ряде случаев при сильной вибрации возможны задевание ротора за статор, поломка вала, обрывы в обмотках и др.
Асинхронные двигатели мощностью более 0,6 кВт допускают кратковременные перегрузки по току в пределах 50%, в течение 2 мин, кроме машин с непосредственным охлаждением, которые допускают такую перегрузку в течение 1 мин. Эти перегрузки допускаются при работе двигателей в нагретом состоянии.
Указанные перегрузки по току двигателя должны выдерживать без остаточных деформаций и повреждений, включая распайку соединений обмоток статора и ротора.
Начальный пусковой ток асинхронного короткозамкнутого двигателя может превышать номинальный ток в 5,5—7 раз для мощностей от 0,6 до 400 кВт. Пусковой ток возникает в обмотке статора двигателя в момент подачи на нее напряжения и практически мало снижается, пока происходит разгон до частоты вращения, равной 85—90 % номинальной. При частоте вращения, близкой к номинальной, значение тока снижается до номинального, а при неполной нагрузке на валу — меньше номинального.
Наиболее быстро, за время примерно 2—4 с, запускаются насосы, кроме мощных питательных насосов, время разбега которых составляет 7—8 с. Механизмы с большими маховыми массами (дымососы, дробилки и др.) запускаются за время примерно 15—20 с.
Минимальный вращающий момент в процессе пуска имеет важное значение, так как от его величины зависит возможность запуска двигателя, особенно при больших моментах сопротивления на валу. Кратность минимального вращающего момента оговорена в ГОСТ 183—74 * и должна быть не менее 0,5 номинального (но не менее 0,5 пускового) для односкоростных трехфазных двигателей мощностью до 100 кВт, 0,3 номинального (но не менее 0,5 пускового) для односкоростных асинхронных двигателей мощностью 100 кВт и выше, 0,3 номинального для однофазных и многоскоростных трехфазных двигателей.
Начальный пусковой вращающий момент развивается трехфазным асинхронным короткозамкнутый двигателем при неподвижном роторе, установившемся токе, номинальном напряжении и номинальной частоте. Значения номинальной кратности этого момента оговариваются в стандартах на отдельные типы двигателей.
Максимальный вращающий момент, развиваемый трехфазными асинхронными двигателями, в установившемся режиме должен быть не менее 1,6 номинального для двигателей общего назначения, а также для двигателей с пусковым током не более 4,5 номинального.
Выше были приведены значения ряда наиболее важных параметров двигателей, знание которых необходимо при эксплуатации.
Техника безопасноти при эксплуатации асинхронных электродвигателей
При эксплуатации асинхронных электродвигателей существует целый ряд правил и требований, предъявляемых к ним с точки зрения техники безопасности.
Прежде всего необходимо отметить наиболее характерные ситуации, при которых требуется немедленное (аварийное) отключение электродвигателя от сети: угроза несчастного случая или несчастный случай с человеком, требующие немедленной остановки двигателя; наличие дыма или огня из двигателя или его пускорегулирующей аппаратуры; вибрации сверх допустимых норм, угрожающие целости двигателя; поломка приводимого механизма; нагрев подшипников сверх допустимой температуры, указанной в инструкции завода—изготовителя двигателя; существенное снижение частоты вращения, сопровождающееся быстрым нагревом двигателя.
В зависимости от особенностей конкретного производства в инструкции по эксплуатации асинхронных двигателей могут быть указаны и другие случаи, при которых требуется аварийное отключение двигателей, а также указан порядок устранения аварийной ситуации и последующего пуска двигателя.
Для предотвращения поражения электрическим током обслуживающего персонала выводы статорной и роторной обмоток должны быть закрыты ограждениями, снятие которых требует отвертывания гаек или вывинчивания винтов, а корпус двигателя должен быть надежно заземлен.
Вращающиеся части машин также должны быть закрыты ограждениями, снятие которых во время работы двигателей строго воспрещается.
В тех производствах, где возможна систематическая перегрузка электродвигателей по технологическим причинам, необходима установка защиты от перегрузки. Эта защита должна воздействовать на аварийную сигнализацию, на управляющие органы с целью разгрузки механизма или на пусковую аппаратуру для отключения двигателя.
Асинхронные двигатели должны иметь защиту от коротких замыканий с помощью автоматического выключателя либо предохранителей с плавкими вставками. Уставки автоматов и номинальный ток плавких вставок выбираются так, чтобы не допускать ложного срабатывания защиты при пусковых токах.
Для короткозамкнутых двигателей с легкими условиями пуска ток плавкой вставки должен быть равным 0,4 пускового тока двигателя. Для тяжелых условий пуска ток плавкой вставки выбирается равным 0,5—0,6 пускового тока двигателя. Для электродвигателей с фазным ротором ток плавкой вставки составляет 1—2 номинального тока двигателя.
Перед пуском двигателя необходимо своевременное предупреждение рабочих, обслуживающих его, о запуске.
Как изменится момент асинхронного двигателя при понижении напряжения питающей сети?
Тима, я гляжу с электротехникой у тебя совсем. Может специальность поменять стоит?
Резко падает.
Момент на валу АД прямо пропорционален квадрату приложенного напряжения.
Похожие вопросы
Ваш браузер устарел
Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.
Пусковой момент электродвигателя
В процессе перехода механизма из состояния статики в состояние активности, на обмотки мотора начинает поступать номинальное напряжение, имеющее стандартную частоту. Именно тогда асинхронник может потребить наибольший объем энергии.
Под пусковым крутящим моментом мотора понимается момент его вращения в то время, как ротор остается статичным, а частота и напряжение переменного тока остаются номинальными. ПМ электромотора называется процесс развития повышенного вращающего момента.
Чтобы выявить показатель пускового момента, существует формула, которая предполагает использование кратности пм. Эта величина указывается в паспорте устройства. Чтобы определить величину пм асинхронника, нужно применить формулу:
Повышенных цифр на индикаторах пускового тока лучше не допускать в процессе запуска мотора, поскольку это может способствовать недостатку энергии, требующейся для корректной работы всех прочих систем и механизмов. Чтобы свести к минимуму значение тока пуска рационально применять пм по типу звезда и треугольник. Такие схемы более всего распространены при подключении электрических моторов.
Пусковой момент АЭД с фазным ротором обусловлен показателями по активному сопротивлению регулируемых резисторов, оказавшихся выведенными в роторную цепь. У асинхронников с короткозамкнутым ротором пусковой момент характеризуется наибольшим показателем. Но при этом существенно снижается показатель пускового тока.
Проверка электродвигателя по пусковому моменту проводится, учитывая динамическую нагрузку от маховых масс конструкции и дополнительного момента, который создается при помощи силы трения.
Короткозамкнутые асинхронные двигатели с повышенным пм имеют особенную конструкцию ротора. Эти свойства характерны для двигателей, имеющих двухклеточные и глубокопазные роторы.
Пусковой момент АЭД при уменьшении напряжения в 2 раза тоже уменьшается. Это подходит для конструкций, где произвести запуск можно с минимальной нагрузкой.
Что считать пусковым моментом
Многие задаются вопросом о том, как понимать кратность пускового момента АЭД. Ничего сложного здесь нет, поскольку сведения указываются в сертификате, паспорте или другом сопроводительном документе на электронный мотор. Под пусковым моментом понимается вращающий момент, который инициируется механическим способом. Его развивает мотор на валу непосредственно при запуске аккурат в то время, когда ток проходит через двигатель.
Иными словами, ПМ – вращающий момент, проявляющийся на валу, когда ток имеет устоявшееся значение, а скорость вращения нулевая, а обмотки электродвигателя имеют номинальное по частоте и напряжению значение.
Способы определения пускового момента
Чтобы узнать, как определить максимальный пусковой момент АЭД, потребуется воспользоваться специальной формулой:
Она помогает понять, за счет чего удастся повысить показатель. Стоит сказать о том, что пусковой момент обусловлен напряжением, которое подводится к обмотке статора. Чем оно ниже, тем дольше запускается двигатель и, соответственно, пусковой ток увеличивается, как и рабочий.
Расчет пускового момента
Он определяется по определенной формуле. Величина кратности может варьироваться в промежутке от 1.5 до 6. Важно соблюдать правило, в соответствии с которым статический момент всегда должен оказываться меньше пускового. Без этого невозможно добиться корректной работы мотора.
Чтобы понять, как определяется кратность ПМ асинхронника, нужно разобраться в самом механизме работы устройства. Непосредственно при запуске электрический мотор будет потреблять пусковой ток, показатель его существенно выше, чем у рабочего. Именно величина, которая обозначает разницу между указанными токами, обозначается как кратность, ее принято учитывать, как коэффициент. Но номинальный и рабочий токи – это разные обозначения, которые не стоит путать. Кратность тока обусловлена мощностью мотора. Если мощность невелика, то пусковой ток высокий.
Как определить пусковой момент электродвигателя и как определить пусковой момент асинхронного двигателя? Существует формула пусковой момент АЭД для расчета. Можно воспользоваться методом электрических измерений или воспользоваться специальными таблицами.
Увеличение пускового момента
Пусковой момент удастся увеличить за счет частотного преобразователя. Если сменить показатель сопротивления пускового реостата, удастся достичь большего пускового момента.
Но что произойдет, если уменьшить напряжение пускового момента вдвое? Он резко упадет. Изменение первичного тока определяется загрузкой электрического двигателя. При большой нагрузке асинхронного двигателя уменьшение напряжения на его зажимах приводит к перегрузке обмоток двигателя токами со всеми вытекающими отсюда последствиями. Наоборот, пусковой момент асинхронного двигателя при введении реостата в фазный ротор увеличивается.
Существуют правила, в соответствии с которыми должен проводиться запуск асинхронного электродвигателя. При каком способе пуска увеличивается пусковой момент асинхронного двигателя? Соединение ротора с реостатом во время включения подойдет для включения в работу моторов с разным ротором. Если в цепь входит реостат, то уровень сопротивления увеличивается. Это обеспечивает увеличение пускового момента.
Асинхронные моторы, обладающие повышенным пусковым моментом созданы специально для приводов механизмов, характеризующихся высокими нагрузками на момент запуска. А вот моторы с повышенным показателем скольжения используют для оборудования, имеющего неравномерные ударные характеристики нагрузки и высокую частоту запусков и реверсов.
Как повысить пусковой момент? Нужно использовать АЭД с высоким ПМ. Его дальнейшее увеличение можно произвести, если использовать двигатели с обмоткой ротора по типу двойной «беличьей клетки», паз обязательно должен быть глубоким. У такого АЭД на роторе будет присутствовать пара короткозамкнутых обмоток. Одна из них пусковая, а другая рабочая. Чтобы повысить ПМ обмотка для запуска должна обладать большим активным сопротивлением, нежели рабочая.
Вычисление пускового момента однофазного АЭД при включенной и отключенной обмотке
ПМ для ротора однофазного мотора соответствует нулю, потому что одна обмотка создает два одинаковых по амплитуде магнитных поля только противоположных по направлению, и сумма их векторов будет равна 0.
Пусковым моментом однофазного АЭД называется вращающий момент, развивающийся на валу АЭД, когда ротор статичен, а статор тока закреплен на обмотках.
Ключевыми элементами каждого асинхронника можно по праву считать ротор (вращающийся элемент) и статор (неподвижная часть). За счет статора обеспечивается магнитное поле для вращения ротора.
ПМ однофазного АЭД без пусковой обмотки соответствует 1/2 максимального момента.
Почему возрастает мощность при снижении напряжения
Качество электроэнергии – основное требование, предъявляемое энергосбытовым компаниям. Регулируемое ГОСТ 32144-2013, оно предусматривает различные аспекты, включая допустимые установленные рамки при отклонениях напряжения, требования к отклонениям частоты или нелинейности самого напряжения.
Безусловно, завышенное напряжение питания, в случае превышения допустимой нормы опасно для любого электрического прибора. Оно приводит к росту энергопотребления, особенно в случае активных нагрузок, снижению ресурса бытовых электроприборов. Однако в ряде случаев потребляемая мощность возрастает и в результате понижения напряжения. Обычно такое возникает при использовании реактивных нагрузок, например асинхронных электрических двигателей. Как это происходит и почему возрастает мощность потребляемая электродвигателем, попробуем разобраться.
Причины увеличения потребляемой мощности
При оценке изменений активных мощностей (P) для нагрузок потребителей электроэнергии с коэффициентом мощности близким к единице наоборот происходит снижение этой характеристики. С основными параметрами, характеризующими цепь: напряжением (U), током (I) и сопротивлением (R), активная мощность связана выражениями:
С учетом основного закона электротехники – закона Ома для участка цепи, это выражение можно отразить следующим образом:
Из первого варианта видно, что при неизменном сопротивлении снижение напряжения питания на активной нагрузке ведет к снижению потребляемой мощности. Так, например, снижение напряжения от нормы равной 220 вольтам на допустимые 10% при питании лампы накаливания, ее светоотдача падает на 20%.
Иначе обстоит с мощностью, потребляемой электродвигателями. Вращательный момент асинхронного двигателя пропорционален квадрату прикладываемого напряжения. При снижении последнего на 10% вращательный момент теряет 19% своей величины. Дальнейшее снижение питающего напряжения приводит к тому, что работоспособность двигателя уменьшается вплоть до полной остановки либо невозможности запуска. При этом токи через обмотки электродвигателя могут достигать пусковых значений, на порядок выше рабочих токов.
Направленная на решение задач электродвигателя электроэнергия выделяется в виде потерь активной мощности. Кроме того в случае если невозможен пуск электромотора электроэнергия тратится на его многократные попытки. Все это приводит к перегреву электродвигателя с высокой вероятностью выхода его из строя, спасти в таком случае может только специальная тепловая защита. Снижение напряжения питания приводит к уменьшению реактивной мощности, хотя в общей сумме, потребляемая реактивная составляющая значительных изменений в общую картину не превозносит.
Резюмируя сказанное, не трудно прийти к выводу, что если для активных нагрузок понижение напряжения больших опасностей не представляет, то для бытовой техники, имеющей в своем составе электродвигатели, оно может оказаться губительным.
Причин, приводящих к понижению сетевого напряжения, бывает достаточно много, начиная от некачественной услуги поставщика электроэнергии и заканчивая виной самого пользователя. Одно понятно, чтобы спасти свой холодильник, стиральную машину или посудомойку, следует прибегнуть к различным мерам.
В случае вины энергосбыта, можно попытаться решить проблему вплоть до судебного разбирательства. Другим, наиболее эффективным способом привести значение входного напряжения в норму считается установка стабилизатора напряжения. Этот вариант имеет один существенный недостаток – достаточно высокую стоимость, но сопоставляя ее со стоимостью сложнобытовой техники, оказавшейся в «группе риска» есть повод принять взвешенное решение.
Остались вопросы?
Заполните форму обратно связи ниже, наши специалисты свяжутся с Вами, проконсультируют, расскажут про возможные способы решения Вашей задачи.