Что такое установленная мощность
Установленной мощностью называется суммарная номинальная электрическая мощность всех однотипных электрических машин, установленных например на каком-нибудь объекте.
Под установленной мощностью может пониматься как генерируемая, так и потребляемая мощность, применительно к генерирующим или потребляющим предприятиям и организациям, а также к целым географическим регионам или просто к отдельным отраслям. За номинал может быть принята номинальная активная мощность, либо полная мощность.
В частности, в сфере энергетики установленной мощностью электроустановки также называют максимальную активную мощность, с которой электроустановка в состоянии работать на протяжении длительного времени и при этом не перегружаясь, в соответствии с технической документацией на нее.
При проектировании электроустановок определяют расчетную полную мощность каждого из потребителей, то есть мощность, потребляемую различными нагрузками. Данный этап является необходимым при проектировании низковольтной установки. Это позволяет согласовать потребление, определяемое договором на поставку электроэнергии для конкретного объекта, а также определить номинальную мощность трансформатора высокого/низкого напряжения с учетом требуемой нагрузки. Определяются уровни токовых нагрузок для распределительных устройств.
Данная статья призвана помочь читателю сориентироваться, обратить его внимание на связь полной мощности и активной мощности, на возможности улучшения параметров питания при помощи КРМ, на различные варианты организации освещения, а также указать способы расчетов установленной мощности. Коснемся здесь и темы пусковых токов.
Так, номинальная мощность Pn, указанная на шильдике двигателя, обозначает механическую мощность на валу, полная же мощность Pа отличается от этого значения, поскольку связана с КПД и с коэффициентом мощности конкретного устройства.
Для определения полного тока Iа трехфазного асинхронного двигателя, используют следующую формулу:
Здесь: Iа — полный ток в амперах; Pn – номинальная мощность в киловаттах; Pа – полная мощность в кило-вольт-амперах; U – напряжение между фазами трехфазного двигателя; η — КПД, то есть отношение выходной механической мощности к входной мощности; cosφ — отношение активной входной мощности к полной мощности.
Пиковые значения сверхпереходных токов могут быть крайне высокими, обычно в 12-15 раз выше среднеквадратичного номинала Imn, а иногда и до 25 раз. Контакторы, автоматические выключатели и термореле обязательно выбираются с учетом высоких значений пусковых токов.
Защита не должна срабатывать внезапно при пуске из-за сверхтока, но в результате переходных процессов достигаются предельные режимы для распределительных устройств, из-за этого они могут выйти из строя, или прослужат недолго. Чтобы избежать подобных неприятностей, номинальные параметры распределительных устройств подбирают несколько более высокими.
Сегодня на рынке можно встретить двигатели с высоким КПД, но пусковые токи так или иначе остаются значительными. Для снижения пусковых токов применяют пускатели с соединением треугольником, устройства плавного пуска, а также регулируемые приводы. Так пусковой ток может быть уменьшен вдвое, скажем, вместо 8 ампер 4 ампера.
Довольно часто, с целью экономии электроэнергии, подаваемый на асинхронный двигатель ток снижают при помощи конденсаторов, путем компенсации реактивной мощности КРМ. Выходная мощность сохраняется, а нагрузка на распределительные устройства снижается. Коэффициент мощности двигателя (cosφ) повышается благодаря КРМ.
Полная входная мощность снижается, снижается и входной ток, напряжение остается неизменным. Для двигателей, длительно работающих при пониженной нагрузке, компенсация реактивной мощности особенно актуальна.
Ток, подаваемый на двигатель, оснащенный установкой КРМ, рассчитывается по формуле:
I = I а · ( cos φ/cos φ’ )
cos φ — коэффициент мощности до компенсации; cos φ’ — коэффициент мощности после компенсации; Ia — исходный ток; I – ток после компенсации.
Для резистивных нагрузок, нагревательных приборов, ламп накаливания, ток рассчитывается следующим образом:
для трехфазной цепи:
Для однофазной цепи:
U – напряжение между зажимами прибора.
Применение инертных газов в лампах накаливания дает более направленный свет, повышается светоотдача, срок службы возрастает. В момент включения ток кратковременно превышает номинальный.
У люминесцентных ламп номинальная мощность Pn, указанная на колбе, не включает в себя мощность, которая рассеивается балластом. Ток следует рассчитывать по следующей формуле:
I а = (Pn + P баласта ) / (U · cosφ)
U – напряжение подаваемое на лампу вместе с балластом (дросселем).
Когда на балластном дросселе не указана рассеиваемая мощность, то примерно ее можно считать как 25% от номинала. Значение cos φ, без конденсатора КРМ, принимают равным примерно 0,6; с конденсатором — 0,86; для ламп с электронным балластом — 0,96.
Компактные люминесцентные лампы, очень популярные в последние годы, весьма экономичны, их можно встретить в общественных помещениях, в барах, в коридорах, в цехах. Они заменяют собой лампы накаливания. Также как и у люминесцентных ламп, здесь важно учесть коэффициент мощности. Балласт у них электронный, поэтому cos φ приблизительно 0,96.
Для газоразрядных ламп, в которых работает электрический разряд в газе или паре металлического соединения, характерно значительное время розжига, в это время ток превышает номинальный приблизительно двукратно, но точное значение пускового тока зависит от мощности лампы и от производителя. Важно помнить, что газоразрядные лампы чувствительны к напряжению питания, и если оно упадет ниже 70%, лампа может погаснуть, а после остывания потребуется более минуты для розжига. Лучшая светоотдача у натриевых ламп.
Надеемся, что эта краткая статья поможет вам сориентироваться при расчете установленной мощности, вы обратите внимание на значения коэффициентов мощности ваших приборов и агрегатов, задумаетесь о КРМ, и подберете оборудование оптимальное для ваших целей, при этом максимально эффективное и экономичное.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Установленная мощность (КВт)
Установленная мощность является суммой номинальных мощностей всех устройств- потребителей мощности в электроустановке.
Это не является мощностью, которая подается в действительности.
Большинство электрических приборов и оборудования имеют маркировку, указывающую их номинальную мощность.
Установленная мощность является суммой номинальных мощностей всех устройств- потребителей в цепи электроустановки. Она не является мощностью, которая подается в действительности. Это в особенности относится к электродвигателям, где номинальное значение мощности относится к выходной мощности на приводном валу. Потребление входной мощности будет явно больше.
Лампы дневного света и газоразрядные лампы, использующие стабилизирующие балластные сопротивления, являются еще одним примером, где номинальная мощность,
указанная на лампе, меньше мощности, которая реально потребляется лампой и ее балластным сопротивлением.
Методы оценки реального потребления мощности двигателями и осветительными приборами, описаны в разделе 3 данной главы .
Значение потребляемой мощности (кВт) необходимо знать, чтобы правильно выбрать номинальную мощность генератора или батареи, и для тех случаев, где нужно
принимать во внимание требования приводного двигателя.
Для питания от генератора сети низкого напряжения, или через трансформатор высокого/низкого напряжения, важным значением является полная мощность в кВА.
Мощность
Мощность – одна из самых распространенных физических величин. Она показывает количество работы механизма, выполненной в единицу времени. Определение мощности простыми и научными словами, а также формулы и примеры задач с подробным решением – в материале КП
Мощность – это физическая величина, которой можно охарактеризовать любой механизм или физическую (материальную) систему вообще. Например, мощность есть у двигателя, бытового прибора, лошади и даже человека. Во всех случаях речь идет о вычислении количества полезной работы, которая произведена за определенное время (как правило, в секунду).
Определение мощности простыми словами
Что такое мощность, интуитивно понятно. Например, очевидно, что электрический самокат мощнее обычного, а автомобиль в этом ряду является самым «сильным». Есть и другие наглядные примеры. Допустим, человек уберет гораздо меньше урожая с поля, чем комбайн за то же время.
Исходя из этого, можно упрощенно сказать, что мощность представляет собой количество работы, которая выполняется в единицу времени. Причем это именно полезная работа системы (механизма), которая выполнена за час, минуту, день или другой отрезок времени.
Есть и научное определение: мощность – это скалярная физическая величина, которая равна мгновенной скорости, переданной от одной физической системы другой в процессе использования энергии. Для наглядного объяснения это определение можно разобрать на составляющие.
- Под скалярной имеется в виду величина, которая не имеет направления (в отличие от той же силы, которая его имеет и поэтому является векторной).
- Физическая система – можно сказать, что это механизм, например тот же автомобиль, бытовой прибор или комбайн для уборки урожая.
- Использование энергии – в большинстве случаев имеется в виду определенный искусственный процесс, который выполняется для пользы человека, семьи, общества.
Обычно понятие «мощность» не используют для описания природных объектов и процессов. Нельзя, например, сказать, что град мощнее дождя. Мощность почти всегда связана с определенными механизмами, созданными человеком. Этот показатель характеризует самые разные виды агрегатов и устройств: электроники, механизмов, транспортных средств и многих других. Хотя данное правило нестрогое, потому что можно, например, говорить о мощности излучения солнца.
это интересно
Кинетическая энергия
Какой энергией обладает летящий самолет и можно ли этой энергией зарядить телефон
Полезная информация о мощности
Определения мощности в разных разделах физики, соответствующие формулы, а также распространенные единицы измерения представлены в таблице.
Обозначения мощности | W, P, N |
Мощность в механике | Механическая работа, совершенная в единицу времени: N = A/t |
Мощность в электродинамике | Работа тока, совершенная в единицу времени: P = A/t |
Мощность в термодинамике | Скорость выделившейся теплоты в единицу времени: N = Q/t |
Единица измерения мощности в системе СИ | Вт (ватт) = 1 Дж/с |
Единица измерения мощности в астрофизике | эрг/с |
Единица измерения мощности двигателей | 1 лошадиная сила (л.с.) |
Как обозначается мощность
Есть три варианта обозначения мощности:
- W – в международной системе СИ;
- P – в формулах механики и электродинамики (от англ. power – сила);
- N – в формулах гидродинамики и механики, чаще в русскоязычной литературе (от французского французского nombre — количество [работы за единицу времени]).
Все формулы мощности
Понятие мощности применяется в разных разделах физики, например в механике, термо- и электродинамике. В зависимости от рассматриваемой области мощность можно выразить через разные величины, поэтому формулы будут иметь разный вид.
Например, электрическая мощность определенного участка цепи определяется как произведение силы тока и напряжения на нем:
\(\mathrm P(\mathrm t)\;=\;\mathrm I(\mathrm t)\;\cdot\;\mathrm U(\mathrm t)\)
Буква (t) означает, что речь идет о мгновенной величине, то есть силе, которая проявляется за бесконечно малый промежуток времени (буквально доли секунды).
В термодинамике нередко рассматривают тепловую мощность N. Ее можно определить как скорость выделения тепла (количество теплоты Q) в единицу времени t:
\(\mathrm N\;=\;\frac<\mathrm Q><\mathrm t>\)
С этим тесно связано понятие коэффициента полезного действия (КПД), которое определяется как процент полезной энергии механизма от общего количества затраченной энергии:
\(\mathrm<КПД>\;=\frac<\mathrm><\mathrm
>\;\cdot\;100\%\)КПД>
Формулы механической мощности
Можно отдельно выделить формулы механической мощности. В самом простом случае это количество работы в единицу времени, то есть:
\(\mathrm N\;=\;\frac<\mathrm A><\mathrm t>\)
Рассматривая мощность как силовую величину, получим, формулу произведения силы, приложенной к телу, на скорость его перемещения под воздействием этой силы:
\(\mathrm N\;=\;\mathrm F\;\cdot\;\mathrm v\)
Мощность можно представить и как произведение вектора силы на вектор скорости, то есть значений этих величин на косинус угла между ними:
\(\mathrm N\;=\;\mathrm F\;\cdot\;\mathrm v\;=\;\mathrm F\;\cdot\;\mathrm v\;\cdot\mathrm
Если рассматривать чисто вращательное движение (например, волчок), формула определяется через момент силы М (Н*м), угловую скорость w (рад/с) и количество полных оборотов в минуту (об/мин):
\(\mathrm N\;=\;\mathrm M\;\cdot\;\mathrm w\;=\;\frac<2\mathrm\pi\;\cdot\;\mathrm M\;\cdot\;\mathrm n>\)
Единица измерения
Мощность измеряется в разных единицах:
- система СИ – Вт (ватт), то есть один джоуль работы в секунду (Дж/с);
- астрофизика, теоретическая физика – эрг в секунду (эрг/с);
- в характеристиках двигателей транспортных средств (в том числе авто, локомотивы, корабли) – лошадиная сила (л.с.).
Причем наряду с метрической лошадиной силой, распространенной в большинстве стран, есть также старинная мера английской лошадиной силы. Обычная лошадиная сила соответствует 735,5 Вт, в то время как английская – 745,7 Вт.
В школьном курсе физики и на практике мощность зачастую измеряют по системе СИ, то есть в ваттах (Вт). Именно к Вт применяют производные, например киловатт (кВт). Это обозначение, например, используют для определения расхода электричества бытовых приборов. Так, расход бытового холодильника в зависимости от модели соответствует 200-500 кВт*ч.
это интересно
Закон Кулона
Что это такое и как применяется на практике один из фундаментальных законов физики
Формулы электрической мощности
Есть понятие и электрической мощности. Оно означает скорость передачи электроэнергии либо скорость ее преобразования, например, в тепло. Величина прямо пропорционально зависит от силы тока и напряжения на участке цепи, поэтому формула следующая:
\(\mathrm P\;=\;\mathrm I\;\cdot\;\mathrm U\)
С другой стороны, электрическую мощность можно выразить и через работу электрического поля в единицу времени. Тогда формула будет такой:
\(\mathrm P\;=\;\frac<\mathrm A><\mathrm t>\)
Единица измерения
В системе СИ электрическая мощность измеряется в Вт (ватт), международное обозначение W. Как известно, работу измеряют в джоулях, а время – в секундах. Поэтому один ватт соответствует работе в один джоуль, выполненной за одну секунду, то есть:
\(1\;\mathrm<Вт>\;=\frac<1\;\mathrm<Дж>><1\;\mathrm с>\)Вт>
Такую единицу измерения иногда упрощенно называют «джоуль-секунда». Хотя нужно понимать, что речь идет не о произведении, а именно об отношении работы к единице времени.
С другой стороны, электрическую мощность можно определить как произведение силы тока на напряжение. Исходя из этого единицей измерения является вольт-ампер:
\(1\;\mathrm<Вт>\;=\;1\;\mathrm В\;\cdot\;1\;\mathrm А\)Вт>
Такую единицу упрощенно называют «вольт-ампер». Причем речь идет именно о произведении величин, а не об их отношении.
Задачи на мощность с решением
Можно привести несколько примеров задач на мощность из разных разделов физики.
Задача 1
Человек поднимает ведро с водой из скважины колодца, прикладывая для этого силу 60 Н. Глубина колодца составляет 10 м, а общее время для поднятия на поверхность – 30 секунд. Какова мощность, которую развивает человек для поднятия одного ведра с водой?
Решение
В данном случае речь идет о механической мощности, которая определяется по простейшей формуле N = A/t. Работу можно рассчитать, зная приложенную силу и перемещение ведра воды (в данном случае в вертикальном направлении): A = F • S = 60 • 10 = 600 Дж. Теперь осталось посчитать N = 600 /30 = 20 Вт.
Ответ: Для поднятия одного ведра воды человек развивает мощность 20 Вт.
Задача 2
Комнату освещает лампа, мощность которой составляет 110 Вт. Напряжение в электрической сети квартиры стандартное и соответствует 220 Вт. Какова сила тока, проходящего через лампу?
Решение
По условиям задачи мощность P = 100 Вт, а напряжение U = 220 В. Известно, что P = I • U, откуда следует, что I = P /U. Поэтому I = 100 /220 = 0,45 А.
Ответ: Сила тока, проходящего через лампу, составляет 0,45 А.
Задача 3
Какой должна быть мощность источника тепла, чтобы полностью восполнить теплопотери через кирпичную стену, если ее толщина L = 0,5 м, а общая площадь S = 50 м 2 ? Наружная температура стены составляет T2 = -30 о С, внутренняя температура T1 = +20 о C.
Решение
Через кирпичную стену проходит тепловой поток q, который определяется по формуле q = λ • S • (T1 – T2) /L, где λ – это коэффициент теплопроводности кирпича (табличное значение) 0,56 Вт/(м* о С). Подставляя значения в формулу, получаем: q = 56 • 50 • (20+30) /0,5 = 2800 Дж = 2,8 кДж.
Чтобы компенсировать эту тепловую потерю, необходим источник тепла не меньшей мощности, то есть минимум 2,8 кДж/с.
Ответ: W = 2.8 кДж/с.
Популярные вопросы и ответы
Отвечает Юлия Крутова, учитель физики средней общеобразовательной школы №16 (Московская область, Орехово-Зуевский городской округ):
Как из формулы нахождения мощности получить работу?
Одна из формул определяет мощность как отношение работы ко времени, в течение которого она была выполнена, то есть: N=A/t. Из этого легко выразить: A=N*t.
Пригодятся ли формулы вычисления мощности на ЕГЭ?
Однозначно пригодятся, так как мощность – это универсальное понятие и может встретиться в задаче на любую тему.
Почему в 7 классе на физике начинают изучать мощность?
Потому что энергия – это базовое понятие, на котором строятся все законы физики и описание окружающего мира. А мощность характеризует скорость изменения энергии системы (скорость совершения работы), поэтому понятие мощности вводится в школе одним из первых.
Что такое установленная мощность
При подключении объекта к электросетям следует учитывать его объем потребления электрической энергии. Ведь мощности генерирующих станций являются ограниченными, и при их превышении может возникнуть внештатная ситуация, например, авария. Поэтому при вводе в эксплуатацию любого электрооборудования необходимо принимать во внимание значения таких параметров, как установленная, номинальная и расчетная мощность.
Что такое электроэнергия
Что называют установленной мощностью
Определение, что такое установленная мощность РУ объекта, потребляющего или генерирующего электроэнергию, содержится в статье 3 Федерального законодательства об электроэнергетике. Этот термин используется для обозначения суммарной номинальной мощности всех однотипных электроприемников (ЭП), установленных на каком-либо объекте. Понятие установленной мощности применимо как к генерируемой, так и потребляемой мощности.
Этот параметр рассчитывается не только для отдельного ЭП, но и для экономических отраслей, и даже для географических регионов. За номинал при этом принимают либо активную, либо полную мощность. В частности установленная мощность в энергетике — это максимальная активная мощность, необходимая для корректной работы электроустановки на протяжении длительного времени. Измеряется этот параметр в единицах активной мощности — ваттах или в единицах полной мощности — вольт-амперах.
Значение параметра
Установленная мощность имеет большое значение для безопасного и эффективного использования электроэнергии. Ее расчет выполняется на этапе ввода электроустановки в эксплуатацию. Это позволяет определить возможности электросетей относительно присоединения к ним новых электроприемников.
Установленная мощность является ограничением для ЭП. Она зависит от конструкции устройства, его назначения и технических характеристик. Обычно величину установочной мощности производитель указывает на корпусе приемника или в его технической документации.
УМ некоторых устройств
Исходя из установленной мощности, можно узнать, сколько электроэнергии способно потреблять электроустройство за единицу времени. Это важно знать, чтобы правильно выбрать источник питания и рассчитать сечения проводов. Если установленная мощность превышает возможности сети, то это может стать причиной перегрузки и повреждения проводов.
Насколько эффективно будет работать электрическая установка, также зависит от установленной мощности. Если параметр, указанный в технических характеристиках, существенно превышает потребляемую мощность, то электрический прибор работает неэффективно или не на полную мощность, а наличие противной ситуации приводит к излишним затратам электроэнергии. Поэтому следует выбирать электроустройства с соответствующей установленной мощностью и правильно их эксплуатировать.
Как рассчитывается
Так как установленную мощность можно представить как сумму номинальных активных мощностей, то для ее расчета используется формула:
Вычисление номинальной активной мощности
Номинальная реактивная мощность будет равна:
Вычисление реактивной составляющей
Расчет полной номинальной мощности группы ЭП выполняется по формуле:
Формула полной мощности
Номинальную мощность обычно указывают на шильдике электроустройства. Она отличается от полной мощности, поскольку зависит от КПД и коэффициента мощности приемника.
Вычисление полной мощности
Чем установленная мощность отличается от расчетной
Расчетную мощность РР называют еще мощностью одновременного включения. На основании данного параметра можно вычислить количество возможных потребителей. То есть, расчетная мощность позволяет определить максимальный показатель поставляемого электричества, а также параметры защитного устройства, которое автоматически сработает при превышении определённого показателя.
Величину расчетной мощности определяют исходя из установленной мощности, применяя при этом соответствующие коэффициенты. В этом их основное отличие. Разница еще и в том, что расчетная мощность отражает не показатели производителя, а те, которые имеются по факту и могут быть больше или меньше, указанных в документации.
Если в помещении не имеется силовых установок, то РМ можно определить по формуле:
Формула расчетной мощности
Расчет кабеля электропитания многоквартирного дома осуществляется с учётом числа квартир:
Вычисление РМ кабеля электропитания
Таким образом, различия между двумя параметрами заключаются в том, что установленная мощность определяется производителем, а расчетная — это результат расчётов, учитывающих различные условия эксплуатации (температура, методы охлаждения, требования к надёжности и безопасности). Оба параметра играют важную роль при проектировании и эксплуатации электротехнических систем, поскольку гарантируют правильное и безопасное функционирование оборудования.