5.10. КПД и коэффициент мощности асинхронного двигателя
где p ∑ – суммарные потери мощности; P 1 – потребляемая асинхронным двигателем (его статорной обмоткой) активная электрическая мощность; P 2 – полезная механическая мощность (снимаемая с вала двигателя). КПД современных асинхронных двигателей при номинальной нагрузке для машин мощностью свыше 100 кВт составляет 0,92 − 0,96, мощностью 1 − 100 кВт – 0,7 − 0,9, а микромашин – 0,4 − 0,6 (большие значения относятся к машинам большей мощности). Так же, как в трансформаторе, потери мощности асинхронного двигателя следует разделить на потери постоянные и переменные (или потери холостого хода и короткого замыкания). Постоянные потери не зависят от нагрузки. Это потери магнитные, механические, электрические холостого хода. Магнитные потери определяются аналогично магнитным потерям трансформатора с помощью формулы Штейнметца:
р | = k | p | B | 2 | f | 1,3 | G , | (5.116) |
мг | d 1,0 / 50 | 50 | с |
где p 1,0/50 – удельные потери в стали на единицу массы при частоте 50 Гц и индукции 1,0 Тл; B – индукция на участке магнитопровода; G c – масса сердечника (магнитопровода) или его участка. Частота перемагничивания в роторе f 2 = f 1 s в рабочем режиме двигателя существенно меньше частоты магнитной индукции в статоре; масса магнитопровода ротора также меньше аналогичной массы статора. Обычно в практических расчетах асинхронных двигателей общепромышленного применения пренебрегают магнитными потерями в роторе. Механические потери p мх состоят из потерь в подшипниках p подш , потерь на трение щеток о кольца p тр.щ (только для фазного ротора), вентиля-
5. Асинхронные машины ционных потерь p вент , включающих в себя потери на трение частей машины о воздух и потери в крыльчатке вентилятора, установленной на валу машины:
р мх = р подш + р вент + р тр.щ . | (5.117) |
Механические потери зависят только от частоты вращения и составляют не более 2 % от номинальной мощности машины. Поскольку частота вращения асинхронного двигателя при изменении нагрузки от нуля до номинальной изменяется мало, то механические потери считают постоянными. В отличие от трансформатора в асинхронном двигателе учитывают электрические потери холостого хода, поскольку ток холостого хода в нем существенно больше, чем в трансформаторе, и составляет от 20 до 50 % от номинального тока (причины такого значения I 0 объяснены в п. 5.1):
р | эл0 | = m r I 2 . | (5.118) |
1 1 0 |
Таким образом, потери холостого хода
р 0 = р мх + р мг + р эл0 . | (5.119) |
К потерям переменным (короткого замыкания) относят электрические потери в обмотках статора и ротора:
р эл 1 = m 1 r 1 I 1 2 ; р эл 2 = m 1 r 2 ′ ( I 2 ′ ) 2 . | (5.120) |
К переменным потерям относят и добавочные потери, вызванные различными причинами: неравномерностью зазора, технологическими погрешностями, вытеснением тока в проводниках обмотки, пульсациями магнитного потока и т. д. Обычно эти потери рассчитывают как определенный процент от номинальной мощности по формуле (5.73). Итак, переменные потери, как следует из формул (5.120), (5.73), зависят от второй степени тока или второй степени коэффициента нагрузки k нг = I / I н (отношения тока текущей нагрузки к номинальному его значению):
p к = p эл2 + p д = m 1 r к ( I 2 ′ ) 2 + ( I I н ) 2 p д = k нг 2 р кн , | (5.121) |
где p кн – потери короткого замыкания при номинальном токе. Таким образом, суммарные потери мощности можно представить в следующем виде:
p Σ = p 0 + p к = p 0 + k нг 2 p кн . | (5.122) |
5. Асинхронные машины
р ,% | η ,% | η | |||||
12 | 80 | η max | р Σ | ||||
8 | 60 | ||||||
р к | |||||||
6 | 40 | ||||||
р 0 | |||||||
4 | |||||||
20 | k нг | ||||||
0 | |||||||
0,2 | 0,4 | 0,6 | 0,8 | 1,0 | |||
I кр |
Рис. 5.23. Зависимость КПД двигателя и его потерь от коэффициента нагрузки Формулу (5.115) запишем с учетом выражения (5.122):
р | + k 2 | р | |||
η = 1 − | 0 | нг | кн | . | (5.123) |
k | нг | Р + р + k 2 | р | ||
2 | 0 | нг | кн |
Характер зависимости КПД от коэффициента нагрузки такой же, как и у трансформатора. При увеличении нагрузки КПД возрастает за счет уве- личения Р 2 , но одновременно быстрее, чем Р 2 , возрастают переменные потери р к , поэтому при некотором токе I кр рост КПД прекращается и в дальнейшем начинает уменьшаться (рис. 5.23). Если исследовать функцию (5.123) на экстремум (взять производную dη/d k нг и приравнять ее к нулю), то получим условие максимума КПД: он наступает при равенстве переменных и постоянных потерь р к = р 0 . При проектировании электрической машины стремятся так распределить потери мощности, чтобы указанное условие выполнялось при наиболее вероятной нагрузке машины, несколько мень- шей номинальной. Во вращающихся электрических машинах средней и большой мощности это условие выполняется при нагрузках 60 − 80 % от номинальной (коэффициент нагрузки k нг = 0,6 − 0,8). На рис. 5.23 приведены зависимости изменения КПД и потерь мощности от коэффициента нагрузки. Коэффициент мощности асинхронной машины определяют как отношение активного тока к полному току или активной потребляемой мощности к полной мощности по выражению
I | P 1 | P 1 | |||
cos ϕ = | 1 а | = | = | . | (4.53) |
1 | I 1 | S | m 1 U 1 I 1 |
5. Асинхронные машины | |||||||
cos ϕ | I 2 ′ | cos ψ 2 | |||||
1,0 | cos ϕ | ||||||
1,0 | I 2 ′ | ||||||
0,8 | |||||||
0,6 | 0,5 | ||||||
0,4 | I 2 ′ а | cos ψ 2 | |||||
0,2 | |||||||
k нг | s | ||||||
0 | |||||||
0 | |||||||
0,5 | 1,0 | ||||||
0,5 | 1,0 | ||||||
Рис. 5.24. Характеристика | Рис. 5.25. Зависимости тока | ||||||
коэффициента мощности | роторной обмотки и cos ψ 2 |
от скольжения Асинхронный двигатель, так же как и трансформатор, независимо от нагрузки потребляет из сети отстающий ток, поэтому его cos φ 1 всегда меньше единицы. При холостом ходе асинхронного двигателя коэффициент мощности мал и составляет cos φ 0 = 0,08 − 0,15 (рис. 5.24). Это объясняется малой величиной активной составляющей тока, идущего на покрытие лишь достаточно небольших потерь активной мощности. В то же время реактивная составляющая тока холостого хода сравнительно велика, поскольку потребляется двигателем для создания основного магнитного потока, практически не зависящего от нагрузки. При увеличении нагрузки cos φ 1 сначала довольно быстро растет при увеличении момента на валу, затем рост его замедляется и достигает максимума при мощности, близкой к номинальной (рис. 5.24). Но при увеличении момента уменьшается частота вращения и растет скольжение. При этом увеличивается частота тока в роторе f 2 = f 1 s , его индуктивное сопротивление. Снижается и cos φ 1 , как правило, при нагрузках, выше номинальных. Вследствие массового использования асинхронных двигателей для рационального электроснабжения предприятий следует так организовывать технологический процесс, чтобы асинхронные двигатели были загружены в соответствии сихноминальной мощностью инеработали нахолостомходу. Величина коэффициента мощности для двигателей с короткозамкнутым ротором мощностью до 100 кВт достигает 0,7 − 0,9, а для двигателей свыше 100 кВт cos φ 1 = 0,9 − 0,95. В двигателях с фазным ротором cos φ 1 и КПД несколько ниже, что объясняется дополнительными потерями на трение щеток, худшим использованием объема ротора из-за наличия изоляции в его пазах и увеличением намагничивающего тока в результате уменьшения сечения зубцов ротора.
Cos фи асинхронного двигателя формула
- Работа в компании
- Закупки
- Библиотека
- Охрана труда
- Рус / Eng
- О заводе
- Каталог
- Установки компенсации реактивной мощности
- Регулируемые конденсаторные установки КРМ (АУКРМ) — 0,4 кВ
- Нерегулируемые конденсаторные установки КРМ (УКРМ ) — 0,4 кВ
- Тиристорные конденсаторные установки КРМТ (АУКРМТ) — 0,4 кВ
- Комплектующие для конденсаторных установок
- Серия PSPE1 (однофазные конденсаторы)
- Серия PSPE3 (трехфазные конденсаторы)
- Конденсаторы серии AFC3
- Конденсаторы серии FA2
- Конденсаторы серии FA3
- Конденсаторы серии FB3
- Конденсаторы серии FO1
- Конденсаторы серии PO1
- Конденсаторы серии SPC
- Серия K78-99 (пластиковый корпус)
- Серия К78-99 A (алюминиевый корпус)
- Серия К78-99 AP2 (взрывозащищенный)
- Серия К78-98 (пластиковый корпус)
- Серия К78-98 A (алюминиевый корпус)
- Серия К78-98 АР2 (взрывозащищенный)
• офис: с 9 00 до 17 30
• склад: с 9 00 до 17 00+7 (925) 517-34-27 (отдел продаж);
+7 (495) 744-31-71 (отдел продаж);
+7 (926) 673-77-58 (отдел персонала).- Охрана труда
- Установки компенсации реактивной мощности
- Регулируемые конденсаторные установки КРМ (АУКРМ) — 0,4 кВ
- Нерегулируемые конденсаторные установки КРМ (УКРМ ) — 0,4 кВ
- Тиристорные конденсаторные установки КРМТ (АУКРМТ) — 0,4 кВ
- Комплектующие для конденсаторных установок
- Серия PSPE1 (однофазные конденсаторы)
- Серия PSPE3 (трехфазные конденсаторы)
- Конденсаторы серии AFC3
- Конденсаторы серии FA2
- Конденсаторы серии FA3
- Конденсаторы серии FB3
- Конденсаторы серии FO1
- Конденсаторы серии PO1
- Конденсаторы серии SPC
- Серия K78-99 (пластиковый корпус)
- Серия К78-99 A (алюминиевый корпус)
- Серия К78-99 AP2 (взрывозащищенный)
- Серия К78-98 (пластиковый корпус)
- Серия К78-98 A (алюминиевый корпус)
- Серия К78-98 АР2 (взрывозащищенный)
Сертификаты
ЗАДАТЬ ВОПРОС
ЗАДАЙТЕ ВОПРОС ONLINE
на Ваши вопросы ответят профильные специалисты
ЗАДАТЬ ВОПРОС
Спасибо за интерес, проявленный к нашей Компании- Словарь терминов
- Коэффициент мощности
Коэффициент мощности
Отправить другуКоэффициентом мощности или cos φ электрической сети называется отношение активной мощности к полной мощности нагрузки расчетного участка.
cos φ = P/S, где:
- cos φ – коэффициент мощности;
- Р — активная мощность Вт;
- S — полная мощность ВА;
Коэффициент мощности можно определить как расчетным путем, так и измерить специальными приборами. Только в том случае, когда нагрузка имеет исключительно активный характер, cos φ равен единице. В основном же, активная мощность меньше полной и поэтому коэффициент мощности меньше единицы.
Следует учитывать, что низкий коэффициент мощности потребителя приводит:
- к необходимости увеличения полной мощности трансформаторов и электрических станций, а также к увеличению сечения питающих линий электропередач;
- к понижению коэффициента полезного действия вырабатывающих и трансформирующих элементов цепи;
- к увеличению потерь мощности и напряжения в проводах. При одних и тех же значениях мощности и напряжения уменьшение коэффициента мощности сопровождается увеличением тока в проводах, вследствие чего возрастают потери на нагрев, что, в свою очередь, приводит к падению напряжения в сети;
Чем меньше коэффициент мощности сети, тем менее загружена сеть активной мощностью и тем меньше коэффициент полезного действия использования сети. В связи с этим необходимо, чтобы как можно большую часть в полной мощности составляла именно активная мощность, а не реактивная, в этом случае коэффициент мощности будет ближе к единице.
НЕОБХОДИМА КОНСУЛЬТАЦИЯ?
или заполните простую формуЧтобы лучше понять данный вопрос, давайте рассмотрим причины низкого коэффициента мощности:
- Недогрузка асинхронных электродвигателей. Потребляемая активная мощность уменьшается пропорционально нагрузке, а реактивная мощность изменяется меньше;
- Неправильный выбор типа электродвигателя. Двигатели быстроходные и большой мощности имеют более высокий коэффициент мощности, чем тихоходные и маломощные;
- Повышение напряжения в сети. Ведет к увеличению намагничивающего тока индуктивных потребителей реактивной составляющей полного тока;
Для увеличения коэффициента мощности можно:
- изменить мощность и тип устанавливаемых электродвигателей;
- увеличить загрузку электродвигателей в процессе работы;
- уменьшить время работы в холостом режиме оборудования потребляющего индуктивную мощность;
- установить установку компенсации реактивной мощности с конденсаторами производства «Нюкон»;
Преимущества использования конденсаторных установок «Нюкон» для компенсации реактивной мощности
- малые удельные потери активной мощности установками КРМ (собственные потери косинусных конденсаторов напряжением 0,4 кВ не превышают 0,5 Вт на 1000 ВАр);
- отсутствие вращающихся частей;
- удобный монтаж и надежные эксплуатационные характеристики;
- возможность выбора любого необходимого шага компенсации реактивной мощности;
- возможность установки и подключения в необходимой точке электросети;
- отсутствие шума во время работы;
- малые эксплуатационные затраты;
- хорошая цена.
Если Вы желаете купить конденсаторную установку или узнать цену на установки компенсации реактивной мощности, позвоните по телефону указанному ниже или заполните приведенную форму. В этом случае, в ближайшее время мы с Вами свяжемся для уточнения особенностей Вашего проекта, необходимых для расчета стоимости КРМ
Реактивная мощность и cos фи
Рассмотрим такие понятия, как: реактивная мощность, коэффициент мощности ( cos фи), низкое значение Cos FI и способы его повышения.
Что такое реактивная мощность?
Коэффициент мощности cos фи (φ) определяется как отношение полезной мощности к полной. Математически это определение часто записывают в виде кВт/кВА, где числитель – активная (действительная) мощность, а знаменатель – кажущаяся (активная + реактивная, полная) мощность. И хотя определение выглядит весьма простым, само понятие реактивной мощности весьма зачастую туманно и запутанно даже для людей с неплохой технической подготовкой.
Объяснение понятия реактивной мощности основывается на том, что в системе переменного тока в случае, когда напряжение и ток возрастают и уменьшаются одновременно, передается только активная мощность, а когда между током и напряжением есть сдвиг во времени (сдвиг по фазе), передается как активная, так и реактивная мощность. Однако, при расчете среднего за период значения, присутствует только среднее значение активной мощности, которое приводит к «чистой» передаче энергии из одной точки в другую, тогда как среднее значение реактивной мощности равно нулю, независимо от структуры и режима работы системы.
В случае реактивной мощности количество энергии, протекающее в одном направлении равно количеству энергии, протекающему в противоположном направлении (иначе говоря, реактивные элементы сети – конденсаторы, индуктивности и др. – обмениваются реактивной энергией). Это означает, что реактивная мощность не производится и не потребляется.
Но, в действительности, мы наблюдаем потери реактивной мощности и внедряем много различного оборудования для ее компенсации, чтобы уменьшить потребление электроэнергии и затраты.
Заблуждения о законе сохранения энергии
Закон сохранения энергии, не подвергаемый сомнению, гласит: «энергия ни откуда не возникает и никуда не исчезает», а мы все еще продолжаем говорить о «сбережении энергии»!! Заблуждения возникают тогда, когда мы рассуждаем о законе сохранения, игнорируя другие законы термодинамики, в частности закон, гласящий, что энтропия («низкосортная» энергия) постоянно увеличивается. В математическом смысле «полная» энергия не имеет значения для потребителя энергии, следовательно, он должен заботиться об эффективности ее преобразования и сохранения. Точно так же, несмотря на то, что мы можем доказать математически, что потери реактивной мощности не являются реальными потерями и реактивная энергия вообще не тратится, у нас есть целый ряд причин для коррекции реактивной мощности. Это проще объяснить на основе физических аналогий.
Физические аналогии
Предположим, нам надо заполнить водой резервуар, выливая по одному ведру за раз. Единственный способ сделать это – подняться по лестнице с ведром воды и вылить ведро в емкость. Вылив ведро, мы должны спуститься по лестнице за следующим ведром. За этот цикл (подъем по лестнице и спуск) мы проделали определенную работу, причем энергия, затраченная на подъем, больше энергии, требуемой для спуска.
Если бы мы поднялись по лестнице с пустым ведром и с ним же спустились, то мы не совершили бы никакой работы. Но энергия для подъема и спуска осталась бы такой же. И хотя мы не совершали никакой полезной работы, мы затратили некоторое количество энергии.
Таким образом, энергия, необходимая на подъем и спуск по лестнице с пустыми руками, требует реактивной мощности, но не полезной. А энергия, затраченная на подъем с ведром воды и спуск с пустым ведром, требует как активной мощности, так и реактивной.
Аналогия может быть распространена и на трехфазные системы, если поставить три лестницы к резервуару и заставить трех человек подниматься по ним в такой последовательности, чтобы наполнение резервуара было непрерывным.
Что вызывает низкий коэффициент мощности cos φ (cos фи) в электрической системе?
Перечислим некоторые причины, которые способствуют возникновению в системе низкого коэффициента мощности:
- индуктивные нагрузки, особенно недогруженные асинхронные двигатели и трансформаторы;
- индукционные печи и дуговые печи с реакторами;
- дуговые лампы;
- токоограничивающие реакторы;
- повышенное напряжение.
Реактивная мощность, потребляемая этими нагрузками, увеличивает значение полной мощности в распределительной сети, и такое увеличение реактивной и полной мощности вызывает снижение коэффициента мощности.
Как повысить коэффициент мощности cos φ?
Коэффициент мощности можно повысить путем дополнительного подключения в сеть потребителей реактивной мощности, таких как конденсаторы или асинхронные двигатели.
Также его можно увеличить за счет полного использования по нагрузке асинхронных двигателей и трансформаторов и за счет применения высокоскоростных двигателей. Применение автоматической системы переключения отводов обмоток трансформаторов также способствует повышению коэффициента мощности.
При каких обстоятельствах коррекция коэффициента мощности способна:
а) снизить потребление электроэнергии на предприятии?
Повышение коэффициента мощности cos фи (cos φ) на предприятии за счет внедрения любого из вышеупомянутых способов компенсирует потери и уменьшает токовые нагрузки на оборудование электросети, т.е. кабели, распределительные коммутационные устройства, трансформаторы, генерирующие установки и т.д. Это означает, что коррекция коэффициента мощности cos фи там, где она возможна, уменьшит потребление электроэнергии на предприятии и, в свою очередь, снизит стоимость электроэнергии.Повышение коэффициента мощности cos φ приводит к снижению энергопотребления, когда коррекция реализована на уровне отдельных потребителей (т.е. оборудования) или на уровне распределительного устройства. Но это не приведет к снижению энергопотребления, если предприятие, получающее энергию из общей сети, вынесет коррекцию на уровень питающего/входного напряжения только для того, чтобы скомпенсировать реактивную энергию, потребляемую из сети. Если предприятие осуществляет такую коррекцию для своей собственной системы генерации электроэнергии, то в этом случае экономия на стоимости (либо электроэнергии, либо стоимости топлива) будет иметь место за счет снижения потерь в генераторе.
б) сократить только затраты на электроэнергию?
Коррекция коэффициента мощности cos φ (cos фи) приведет только к уменьшению стоимости электроэнергии в случае, если предприятие, получающее энергию из общей сети, вынесет коррекцию на уровень питающего/входного напряжения только для того, чтобы скомпенсировать реактивную энергию, потребляемую из сети.Как правило, cos фи повышают до значения 0.95-0.98, а дальнейшее его повышение до единицы может привести к увеличению срока окупаемости мероприятий по коррекции.
в) снизить затраты и потребление электроэнергии?
Во всех остальных случаях, кроме вышеописанных исключений, повышение коэффициента мощности в конечном итоге приводит к снижению потребления энергии и, следовательно, к снижению стоимости электроэнергии. Однако окупаемость инвестиций за счет повышения коэффициента мощности зависит от типа предприятия и многих других факторов, таких как тариф на электроэнергию, схемы загрузки оборудования, метода производства и использования мощности и т.д.Коррекция коэффициента мощности cos фи осуществляется за счет индивидуальной или групповой коррекции.
увеличение нагрузочной способности распределительной сети
удельная стоимость (на квар) конденсаторов малых габаритов выше, чем стоимость больших конденсаторов
возможность аппаратного отключения, не требуется дополнительных коммутаций
экономическая целесообразность обычно до 10 л.с.
лучше стабилизация напряжения
затрудненная установка в местах с особыми требованиями (пожаробезопасные и защищенные исполнения)
простота определения типоразмера конденсатора
необходимость в дополнительном оборудовании для обслуживания
конденсаторы, встроенные в оборудование,
могут быть перемещены во время реконструкцииесли номинал конденсатора слишком велик – больше, чем мощность намагничивания двигателя, возможно повредить двигатель и другое подключенное оборудование
увеличение нагрузочной способности системы энергоснабжения
необходимость в коммутирующих устройствах для управления величиной емкости
снижение материальных затрат по сравнению с индивидуальной коррекцией
необходимость в индивидуальных коммутирующих устройствах
сокращение количества оборудования для обслуживания / простота доступа для контроля
отсутствие снижения потерь в кабелях ниже
точки коррекцииисключение самовозбуждения асинхронных двигателей из-за высокого значения емкости
высокий срок окупаемости
уменьшение удельной цены на квар для устройств больших типоразмеров
отсутствие вклада в увеличение срока службы/эффективности оборудования
простота регулирования нагрузки энергосистемы; коэффициент мощности cos φ может быть приближен к единице
опережающий коэффициент мощности на предприятиях с собственной генерацией электроэнергии при неправильной коммутации
возможность установки на подстанциях и, следовательно, возможность применения на опасных объектах
вероятность непосредственной коммутации емкостной нагрузки при отключении электроэнергии
Cos фи асинхронного двигателя формула
Коэффициент мощности (cos φ, косинус фи ), Полная (кажущаяся), активная и реактивная мощность электродвигателя=электромотора и не только его. Коэффициент мощности для трехфазного электродвигателя.
На шильдиках многих электромоторов (электродвигателей и др. устройств) указывают активную мощность в Вт и cosφ / или λ /или PF. Что тут к чему см. ниже.
Подразумеваем,что переменное напряжение в сети синусоидальное — обычное, хотя все рассуждения ниже верны и для всех гармоник по отдельности других периодических напряжений.
Полная, или кажущаяся мощность S (apparent power) измеряется в вольт-амперах (ВА или VA) и определяется произведением переменных напряжения и тока системы. Удобно считать, что полная мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой.
- угол φ -это угол между фазой напряжения и фазой тока, называемый еще сдвигом фаз, при этом, если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает его, то отрицательным
- величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до -90° является отрицательной величиной
- если sin φ>0, то нагрузка имеет активно-индуктивный характер (электромоторы, трансформаторы, катушки. ) — ток отстает от напряжения
- если sin φ
- Все соотношения между P, S и Q определяются теоремой Пифагора и элементарными тригонометрическими тождествами для прямоугольного треугольника
Активная мощность P (active power = real power =true power) измеряется в ваттах (Вт, W) и это та мощность, которая потребляется электрическим сопротивлением системы на тепло и полезную работу. Для сетей переменного тока:
- P=U*I*cosφ, где U и I — действующие=эффективные=среднеквадратичные значения напряжения и тока, а φ- сдвиг фаз между ними
Реактивная мощность Q (reactive power) измеряется в вольт-амперах реактивных (вар, var) и это электромагнитная мощность, которая запасается и отдается обратно в сеть колебательным контуром системы. Реактивная мощность в идеале не выполняет работы, т.е. название вводит в заблуждение. Легко догадаться глядя на рисунок, что:
- P=U*I*sinφ, где U и I — действующие=эффективные=среднеквадратичные значения напряжения и тока, а φ- сдвиг фаз между ними
Сама концепция активной и реактивной мощности актуальна для устройств (приемников) переменного тока. Она малоактуальна=никогда не упоминатеся для приемников постоянного тока в силу малости (мизерности) соответствующих эффектов, связанных только с переходными процессами при включении/выключении.
Любая система, как известно, имеет емкость и индуктивность = является неким колебательным контуром. Переменный ток в одной фазе накачивает электромагнитное поле этого контура энергией а в противоположной фазе эта энергия уходит обратно в генератор ( в сеть). Это вызывает в РФ 3 проблемы (для поставщика энергии!)
-
- Хотя теоретически, при нулевых сопротивлениях передачи, на выработку реактивной мощности не тратится мощность генератора, но практически для передачи реактивной мощности по сети требуется дополнительная, активная мощность генератора (потери передачи).
- Сеть должна пропускать и активные и реактивные токи, т.е иметь запас по пропускным характеристикам.
- Генератор мог бы, выдавая те же ток и напряжение, поставлять потребителю электроэнергии больше активной мощности.
попробуем догадаться, что делает поставщик электроэнергии? Правильно, пытается навязать Вам различные тарифы для разлиных значений cos φ. Что можно сделать: можно заказать компенсацию реактивной мощности ( т.е. установку неких блоков конденсаторов или катушек), которые заставят реактивную нагрузку колебаться внутри Вашего предприятия/устройства. Стоит ли это делать? Зависит от стоимости установки, наценок за коэффициент мощности и очень даже часто не имеет экономического смысла. В некоторых странах качество питающего напряжения тоже может пострадать от избытка реактивной мощности, но в РФ проблема неактуальна в силу изначально очень низкго качества в питающей сети.
Естественно, хотелось бы ввести величину, которая характеризовала бы степень линейности нагрузки. И такая величина вводится под названием коэффициент мощности («косинус фи», power factor, PF), как отношение активной мощности к полной, естественно сразу в 2-х видах, в РФ это:
Коэффициент мощности для трехфазного асинхронного (обычного) электродвигателя.
cosφ = P / (√3*U*I)
cosφ = косинус фи
P = активная мощность (Вт)
U = Напряжение (В)
I = Ток (А)
- Установки компенсации реактивной мощности