Как найти длину пружины формула
Перейти к содержимому

Как найти длину пружины формула

  • автор:

Жесткость пружины

Справочник

Пружиной называют объект, способный с помощью деформации, вызванной внешними силами, накапливать и сохранять упругую потенциальную энергию, а после прекращения их воздействия восстанавливаться до прежнего состояния. Реально существующие пружины абсолютно точно восстановить свою прежнюю форму не в состоянии т.к. при внешнем воздействии в той или иной степени нарушается структура их материала, в результате чего возникают так называемые пластичные деформации. Чем они меньшее, тем более качественным считается изделие.

Пружина

Какие бывают типы пружин

В первую очередь их принято делить на предназначенные для работы в режиме растягивания и предназначенные для работы в режиме сжатия.

Пружины растяжения при действии на них полезной нагрузки растягиваются. Они не нуждаются в жёстком захвате и, как правило, имеют нулевой шаг, т. е. витки у них прилегают вплотную друг к другу. В обычной жизни подобные изделия большинство людей может заметить, проходя через двери с механическим механизмом закрытия или при пользовании пружинными весами. В технике пружины растяжения используются для соединения элементов, положение которых меняется при их работе. В качестве примера можно привести завес рычагов.

Пружины сжатия под нагрузкой по длине уменьшаются. Для правильной работы их концы должны быть жёстко зафиксированы. Витки проволоки в свободном состоянии не касаются друг друга, т.к. им необходим некоторый промежуток, чтобы под внешней нагрузкой было куда перемещаться. В качестве примера использования таких изделий можно привести пружину в шариковой ручке или автомобильную подвеску.

В технике широкое применение находят и другие типы пружин: пружины кручения (в точных весах), плоские спиральные (как заводные в часах), плоские (в автомобильных рессорах), тарельчатые (в грузовых весах). В некотором роде пружинами можно назвать некоторые изделия из резины и из других полимерных эластичных материалов. Все они работают по одной и той же схеме – запасают кинетическую энергию в виде энергии упругости, а затем, когда нагрузка ослабнет или вовсе перестанет действовать, её возвращают.

Основные характеристики пружин

Зная материал и диаметр проволоки, форму её сечения, длину и диаметр пружины, как единого целого, можно с очень высокой достоверностью судить, насколько пружина может сопротивляться попыткам деформировать себя. Существуют также другие характеристики, от которых работоспособность пружины может зависеть очень серьёзно. К таковым относятся усталость материала проволоки, шаг витка, индекс пружины и т. д.

Материал и сила жесткости пружины

Зависимость между этими характеристиками пружин индивидуальная и вычисляется опытным путём. Чаще всего для изготовления металлических пружин используют высокоуглеродистые стали, легированные ванадием, кремнием и марганцем. Для изделий, предназначенных для длительной работы в агрессивных средах используют нержавеющую сталь, оловянносвинцовую, бериллиевую и кремнемарганцевую бронзу, различные чугуны, а также некоторые из титановых сплавов.

Небольшие пружины изготавливают из уже закалённой проволоки. Крупные изделия делают из отожжённой стали, а закалку проводят уже после формовки.

Как связана жесткость пружины с диаметром и формой сечения проволоки, из которой она сделана

Чем он меньше, тем пружина более эластична. Способность запасать энергию с уменьшением диаметра тоже становится меньше. Пружины сжатия, как правило, делают из более толстой проволоки.

Следует отметить, что не всегда сечение проволоки для пружин бывает круглым, в пружинах сжатия оно иногда бывает уплощённым. Это обеспечивает лучшую посадку одного витка на другой и делает конструкцию более устойчивой.

Длина и диаметр

Определение

Под длиной пружины понимают её длину в свободном, недеформированном состоянии.

Также следует различать длину собственно изделия и длину проволоки, из которой оно сделано. Это две совершенно разные величины. Не малое значение имеет число витков. В пружинах сжатия, чем их больше, тем выше вероятность соскальзывания изделия с опоры и, как следствие, выхода детали из строя.

О понятии жесткости. Жесткость пружины: формула

Формула жесткости пружины

Определение

Жёсткостью пружины называют коэффициент, который связывает силу прилагаемую к ней с удлинением или сжатием.

Посмотрите на закон Гука.

Fупр = –kx

Зако́н Гу́ка — утверждение, согласно которому, деформация, возникающая в упругом теле (пружине, стержне, консоли, балке и т. д.), пропорциональна приложенной к этому телу силе.

k – это и есть жёсткость пружины.

Fупр — сила жесткости или упругости пружины.

x — расстояние, на которое изменилась длина изделия после того как та была уравновешена.

Минус в формуле свидетельствует о том, что сила F имеет по сравнению с нагрузкой противоположное направление.

Закон Гука является одним из основных законов физики.

Как найти жесткость пружины? Формулу из выше приведённого уравнения понять достаточно легко:

Формула нахождения коэффициента жесткости

Коэффициент жесткости пружины можно вычислить и экспериментальным путём. Для этого нужно подвесить на вертикально закреплённую пружину груз с известной массой.

Формула коэффициента жесткости пружины

Имеем два уравнения:

Формула нахождения коэффициента жесткости Формула нахождения коэффициента жесткости

Т. к. Fупр =Fтяж, получаем

Формула нахождения коэффициента жесткости

Отсюда разделив обе части уравнения на x, найдём, что жёсткость равна

Формула нахождения коэффициента жесткости

Массу самой пружины считаем равной нулю. Для исключения случайных ошибок проводим несколько измерений с грузами разной массы.

Нет времени решать самому?

Что такое жесткость пружины и как ее рассчитать

Для определения устойчивости и сопротивления к внешним нагрузкам используется такой параметр, как жесткость пружины. Также он называется коэффициентом Гука или упругости. По сути, характеристика жесткости пружины определяет степень ее надежности и зависит от используемого материала при производстве.

Измерению коэффициента жесткости подлежат следующие типы пружин:

  • Сжатия;
  • Растяжения;
  • Изгиба;
  • Кручения.

Изготовление пружин любого типа вы можете заказать здесь.

Какую жесткость имеет пружина

При выборе готовых пружин, например для подвески автомобиля, определить, какую жесткость она имеет, можно по коду продукта либо по маркировке, которая наносится краской. В остальных случаях расчет жесткости производится исключительно экспериментальными методами.

Жесткость пружины по отношению к деформации бывает величиной переменной или постоянной. Изделия, жесткость которых при деформации остается неизменной называются линейными. А те, у которых есть зависимость коэффициента жесткости от изменения положения витков, получили название «прогрессивные».

В автомобилестроении в отношении подвески существует следующая классификация жесткости пружин:

  • Возрастающая (прогрессирующая). Характерна для более жесткого хода автомобиля.
  • Уменьшающаяся (регрессирующая) жесткость. Напротив, обеспечивает, «мягкость» подвески.

Определение величины жесткости зависит от следующих исходных данных:

  • Тип сырья, используемый при изготовлении;
  • Диаметр витков металлической проволоки (Dw);
  • Диаметр пружины (в расчет берется средняя величина) (Dm);
  • Число витков пружины (Na).

Как рассчитать жесткость пружины

Для расчета коэффициента жесткости применяется формула:

k = G * (Dw)^4 / 8 * Na * (Dm)^3,

где G – модуль сдвига. Данную величину можно не рассчитывать, так как она приведена в таблицах к различным материалам. Например, для обыкновенной стали она равна 80 ГПа, для пружинной – 78,5 ГПа. Из формулы понятно, что наибольшее влияние на коэффициент жесткости пружины оказывают оставшиеся три величины: диаметр и число витков, а также диаметр самой пружины. Для достижения необходимых показателей жесткости изменению подлежат именно эти характеристики.

Вычислить коэффициент жесткости экспериментальным путем можно при помощи простейших инструментов: самой пружины, линейки и груза, который будет воздействовать на опытный образец.

Определение коэффициента жесткости растяжения

Для определения коэффициента жесткости растяжения производятся следующие расчеты.

  • Измеряется длина пружины в вертикальном подвесе с одной свободной стороной изделия – L1;
  • Измеряется длина пружины с подвешенным грузом – L2.Если взять груз массой 100гр., то он будет воздействовать силой в 1Н (Ньютон) – величина F;
  • Вычисляется разница между последним и первым показателем длины – L;
  • Рассчитывается коэффициент упругости по формуле: k = F/L.

Определение коэффициента жесткости сжатия производится по этой же формуле. Только вместо подвешивания груз устанавливается на верхнюю часть вертикально установленной пружины.

Подводя итог, делаем вывод, что показатель жесткости пружины является одной из существенных характеристик изделия, которая указывает на качество исходного материала и определяет долговечность использования конечного изделия.

5. Примеры определения размеров пружин и формулы для провероч­ных расчетов жесткости и напря­жений

Дано: F1 = 20Н; F2 = 80Н; h = 30мм; D1 = 10. 12мм; vmax = 5м/с; NF≥ 1 · 10 7 .

По табл. 1 убеждаемся, что при заданной выносливости NF пружину следует отнеcти к классу 1.

По формуле (2), пользуясь интервалом зна­чений δ от 0,05 до 0,25 (см. п. 7 табл. 10), находим граничные значения силы F3, а именно:

формула

В интервале от 84 до 107Н (ГОСТ 13766-86) пружин класса I, разряда 1 имеются сле­дующие силы F3: 85; 90; 95; 100 и 106Н (табл. 11).

Исходя из заданных размеров диаметра и стремления обеспечить наибольшую крити­ческую скорость, останавливаемся на витке со следующими данными (номер позиции 355):

Учитывая, что для пружин класса I норма напряжений τ = 0,3Rm (см. табл. 2), находим, что для найденного диаметра проволоки из углеродистой холоднотянутой стали расчетное напряжение τ3 = 0,3·2100 = 630Н/мм 2 .

Принадлежность к классу I проверяем оп­ределением отношения vmax/vK, для чего предварительно определяем критическую ско­рость по формуле (5) при δ = 0,25:

формула

Полученная величина свидетельствует о наличии соударения витков в данной пружине, и, следовательно, требуемая выносливость может быть не обеспечена. Легко убедиться, что при меньших значениях силы F3 отноше­ние vmax /vк будет еще больше отличаться от единицы и указывать на еще большую интен­сивность соударения витков.

Используем пружины класса II. Заданному наружному диаметру и найденным выше си­лам F3 соответствует виток с данными по ГОСТ 13770-86 (см. табл. 14, позиция 303): F3=95,0H; d=1,4мм; D1=11,5мм; с1=36,58Н/мм; s’3=2,597мм.

Учитывая норму напряжений для пружин класса IIτ3 = 0,5Rm, находим τ3 = 0,5×2300= 1150Н/мм 2 .

По формуле (2) вычисляем δ = 1-F2/F3 = 1 – 80/95 = 0,16 и находим vKи vmax /vK, с помощью которых определяем принадлеж­ность пружин ко II классу:

формулы

Полученная величина указывает на отсут­ствие соударения витков. Следовательно, вы­бранная пружина удовлетворяет заданным условиям. Пружины класса II относятся к разряду ограниченной выносливости, поэтому следует учитывать комплектацию машины запасными пружинами с учетом опытных данных.

Определение остальных размеров произво­дим по формулам табл. 10.

По формуле (6) находим жесткость пружины:

формула

Число рабочих витков пружины определя­ем по формуле (7):

n= c1/c = 36,58/2,0 = 18,29 ≈ 18,5.

Уточняем жесткость пружины:

c = c1/n= 36,68/18,5 = 1,977 ≈ 2,0Н/мм.

При полутора нерабочих витках полное число витков находим по формуле (8):

По формуле (9) определяем средний диа­метр пружины:

D = 11,5 — 1,4 = 10,1мм.

Деформации, длины и шаг пружины вы­числяем по формулам (11)-(18):

формулы

На этом определение размеров пружины и габарита узла (размер li) заканчивается.

Следует отметить, что некоторое увеличе­ние выносливости может быть достигнуто при использовании пружины с большей величиной силы F3, чем найденная в настоящем примере. С целью выяснения габаритов, занимаемых такой пружиной, проведем анализ:

остановимся, например, на витке со сле­дующими данными по ГОСТ 13770-86 (см. табл. 14, позиция 313): F3 = 106Н; d = 1,4мм; D1 = 10,5мм; с1 = 50,01Н/мм; s3‘ = 2,119мм.

Находим τ3 = 1150Н/мм 2 и производим расчет в той же последовательности:

формулы

Очевидно, что у этой пружины создается большой запас на несоударяемость витков.

Далее в рассмотренном ранее порядке на­ходим

n= 50,01/2,0 = 25,01 ≈ 25,0.

Уточненная жесткость с =50,01/25,0 ≈ 2,0Н/мм;

формулы

Таким образом, устанавливаем, что приме­нение пружины с более высокой силой F3 хотя и привело к большему запасу на несоударяе­мость витков, но оно сопровождается увеличе­нием габарита узла (размер l1) на 15,3мм. Можно показать, что если выбрать виток с большим диаметром, например D1=16мм (см. табл. 14, номер позиции 314), то тогда потребуется расширить узел по диаметру, но при этом соответственно уменьшится размер l1.

Пример2. Пружина сжатия.

Дано: F1 = 100Н; F2 = 250Н; h = 100мм; D1 = 15. 25мм; vmax = 10м/с.

Независимо от заданной выносливости на основании формулы (5) можно убедиться, что при значениях 8, меньших 0,25 [формула (1)], все одножильные пружины, нагружаемые со скоростью vmax более 9,4м/с, относятся к III классу.

По формуле (2) с учетом диапазона значе­ний δ для пружин класса III от 0,1 до 0,4 [формула (1)] находим границы сил F3:

формула

Верхние значения силы F3, как видно из табл. 2, не могут быть получены из числа од­ножильных конструкций, поэтому с учетом коэффициентов δ = 0,15. 0,40 [формула (1)] для трехжильных пружин устанавливаем но­вые пределы F3, по формуле (2):

Для указанного интервала в ГОСТ 13774-86 имеются витки со следующими силами F3: 300; 315; 335; 375 и 400Н (табл. 16а).

Исходя из заданных размеров диаметра и наименьших габаритов узла, предварительно останавливаемся на витке со следующими данными (номер позиции 252): F3 = 300Н; d=1,4мм; d1=3,10мм; D1 = 17мм; с1 = 50,93Н/мм; s’3 = 5,890мм.

Согласно ГОСТ 13764-86 для пружин класса IIIτ3 = 0,6Rm. Используя ГОСТ 9389-75, определяем напряжение для найденного диаметра проволоки:

τ3 = 0,6 · 2300 = 1380Н/мм 3 .

Принадлежность к классу проверяем путем определения величины отношения vmax/vK, для чего предварительно находим 8 и крити­ческую скорость по формулам (1), (2) и (5а):

формулы

Полученное неравенство свидетельствует о наличии соударения витков и о принадлежно­сти пружины к классу III.

Определение остальных параметров произ­водится по формулам табл. 10.

По формуле (6) находим жесткость:

формула

Число рабочих витков пружины вычисля­ют по формуле (7):

формула

формула

Полное число витков находят по формуле (8):

n1 = n + 1,5 = 34,0 + 1,5 = 35,5.

По формуле (9а) определяют средний диа­метр пружины:

Деформации, длины и шаг пружины нахо­дят по формулам табл. 10:

формулы

Проанализируем пружины, соответствую­щие трем ближайшим значениям F3, взятым изГОСТ 13774-86 (пружины класса III, разряда 1) для рассмотренного случая (табл. 16а).

Вычисления, проделанные в аналогичном порядке, показывают, что для трех соседних сил F3 образуется шесть размеров пружин, удовлетворяющих требованиям по величине наружного диаметра. Сведения о таких пружинах приведены ниже.

Формула жесткости пружины

Силу, которая возникает в результате деформации тела и пытающаяся вернуть его в исходное состояние, называют силой упругости.

Чаще всего ее обозначают $<\overline>_$. Сила упругости появляется только при деформации тела и исчезает, если пропадает деформация. Если после снятия внешней нагрузки тело восстанавливает свои размеры и форму полностью, то такая деформация называется упругой.

Современник И. Ньютона Р. Гук установил зависимость силы упругости от величины деформации. Гук долго сомневался в справедливости своих выводов. В одной из своих книг он привел зашифрованную формулировку своего закона. Которая означала: «Ut tensio, sic vis» в переводе с латыни: каково растяжение, такова сила.

Рассмотрим пружину, на которую действует растягивающая сила ($\overline$), которая направлена вертикально вниз (рис.1).

Формула жесткости пружины, рисунок 1

Силу $\overline$ назовем деформирующей силой. От воздействия деформирующей силы длина пружины увеличивается. В результате в пружине появляется сила упругости ($<\overline>_u$), уравновешивающая силу $\overline$. Если деформация является небольшой и упругой, то удлинение пружины ($\Delta l$) прямо пропорционально деформирующей силе:

где в коэффициент пропорциональности называется жесткостью пружины (коэффициентом упругости) $k$.

Жесткость (как свойство) — это характеристика упругих свойств тела, которое деформируют. Жесткость считают возможностью тела оказать противодействие внешней силе, способность сохранять свои геометрические параметры. Чем больше жесткость пружины, тем меньше она изменяет свою длину под воздействием заданной силы. Коэффициент жесткости — это основная характеристика жесткости (как свойства тела).

Коэффициент жесткости пружины зависит от материала, из которого сделана пружина и ее геометрических характеристик. Например, коэффициент жесткости витой цилиндрической пружины, которая намотана из проволоки круглого сечения, подвергаемая упругой деформации вдоль своей оси может быть вычислена как:

где $G$ — модуль сдвига (величина, зависящая от материала); $d$ — диаметр проволоки; $d_p$ — диаметр витка пружины; $n$ — количество витков пружины.

Единицей измерения коэффициента жесткости в Международной системе единиц (Си) является ньютон, деленный на метр:

Коэффициент жесткости равен величине силы, которую следует приложить к пружине для изменения ее длины на единицу расстояния.

Формула жесткости соединений пружин

Пусть $N$ пружин соединены последовательно. Тогда жесткость всего соединения равна:

где $k_i$ — жесткость $i-ой$ пружины.

При последовательном соединении пружин жесткость системы определяют как:

Примеры задач с решением

Задание. Пружина в отсутствии нагрузки имеет длину $l=0,01$ м и жесткость равную 10 $\frac.\ $Чему будет равна жесткость пружины и ее длина, если на пружину действовать силой $F$= 2 Н? Считайте деформацию пружины малой и упругой.

Формула жесткости пружины, пример 1

Решение. Жесткость пружины при упругих деформациях является постоянной величиной, значит, в нашей задаче:

При упругих деформациях выполняется закон Гука:

\[F=k\Delta l\ \left(1.2\right).\]

Из (1.2) найдем удлинение пружины:

Длина растянутой пружины равна:

Вычислим новую длину пружины:

Ответ. 1) $k’=10\ \frac$; 2) $l’=0,21$ м

Задание. Две пружины, имеющие жесткости $k_1$ и $k_2$ соединили последовательно. Какой будет удлинение первой пружины (рис.3), если длина второй пружины увеличилась на величину $\Delta l_2$?

Формула жесткости пружины, пример 2

Решение. Если пружины соединены последовательно, то деформирующая сила ($\overline$), действующая на каждую из пружин одинакова, то есть можно записать для первой пружины:

Для второй пружины запишем:

Если равны левые части выражений (2.1) и (2.2), то можно приравнять и правые части:

\[k_1\Delta l_1=k_2\Delta l_2\left(2.3\right).\]

Из равенства (2.3) получим удлинение первой пружины:

Ответ. $\Delta l_1=\frac$

Warning: file_put_contents(./students_count.txt): failed to open stream: Permission denied in /var/www/webmath-q2ws/data/www/webmath.ru/poleznoe/guide_content_banner.php on line 20

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 445 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Остались вопросы?

Здесь вы найдете ответы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *