47.Гальванический элемент. Анод и катод, анодный и катодный процессы. Уравнение электрохимического процесса в гальваническом элементе. Эдс и ее определение. Запись гальванического элемента.
Гальванический элемент — химический источник электрического тока. Принцип действия гальванического элемента основан на взаимодействии двух металлов через электролит, приводящем к возникновению в замкнутой цепи электрического тока. ЭДС гальванического элемента зависит от материала электродов и состава электролита.
Анод — положительный полюс источника тока ( гальванического элемента, электрической батареи и т. д.) или электрод некоторого прибора, присоединённый к отрицательному полюсу источника тока. Потенциал анода при работе источника всегда ниже потенциала катода. При процессах электролиза (получение элементов из их растворов и расплавов под действием постоянного электрического тока), анод — положительный полюс, на нем происходит окисление.
Катод — отрицательный полюс источника тока ( гальванического элемента, электрической батареи и т. д.) или электрод некоторого прибора, присоединенный к положительному полюсу источника тока. При процессах электролиза (получение элементов из их растворов и расплавов под действием постоянного электрического тока), катод — отрицательный полюс, на нем происходит восстановление металла.
Гальванический элемент можно определить как прибор для преобразования химической энергии окислительно-восстановительной реакции в электрическую за счет пространственного разделения процессов окисления и восстановления. Работа, которую может совершить электрический ток, вырабатываемый гальваническим элементом, определяется разностью электрических потенциалов между электродами.
Работа тока гальванического элемента (и, следовательно, разность потенциалов), будет максимальна при его обратимой работе, когда процессы на электродах протекают бесконечно медленно и сила тока в цепи бесконечно мала. Максимальная разность потенциалов, возникающая при обратимой работе гальванического элемента, есть электродвижущая сила (ЭДС) гальванического элемента. Действие гальванического элемента прекращается после полного или частичного израсходования какого-либо электрода (например, цинка). Так как протекающая в элементе химическая реакция необратима, его нельзя снова «зарядить». Электродвижущая сила элемента (ЭДС) не зависит от размеров и конструкции электродов, от количества электролита, но зависит от природы протекающей химической реакции, от состава и концентрации электролита. Если эти параметры известны, ЭДС можно рассчитать.
48. Электролиз расплавов. Характеристика электролиза. Уравнения электродных процессов и уравнение электролиза (на конкретном примере). Законы Фарадея. Практическое применение электролиза расплавов.
Электролиз — физико-химическое явление, состоящее в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, которое возникает при прохождении электрического тока через раствор электролита. Таким образом, электролиз — это окислительно-восстановительная реакция, которая протекает под действием и при участии электрического тока. Уравнения электрохимических реакций отражают те процессы, которые без помощи электрического тока протекать не могут.
Первый закон Фарадея: масса M вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду Q, прошедшему через электролит. M = k*I*t. если через электролит пропускается в течение времени t постоянный ток с силой тока I. Коэффициент пропорциональности k называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.
Второй закон Фарадея: электрохимические эквиваленты различных веществ относятся, как их химические эквиваленты. Химическим эквивалентом иона называется отношение молярной массы A иона к его валентности z. Поэтому электрохимический эквивалент k = (1/F )*( A/ z), де F — постоянная Фарадея.
Электролиз в гидрометаллургии является одной из стадий переработки металлсодержащего сырья, обеспечивающей получение товарных металлов. В цветной металлургии электролиз используется для извлечения металлов из руд и их очистки. Электролизом расплавленных сред получают алюминий, магний, титан, цирконий, уран, бериллий и др. Для рафинирования (очистки) металла электролизом из него отливают пластины и помещают их в качестве анодов в электролизер. При пропускании тока металл, подлежащий очистке, подвергается анодному растворению, т. е. переходит в раствор в виде катионов. Затем эти катионы металла разряжаются на катоде, благодаря чему образуется компактный осадок уже чистого металла. Примеси, находящиеся в аноде, либо остаются нерастворимыми, либо переходят в электролит и удаляются.
49.Электролиз водных растворов. Характеристика электролиза. Определение характера электродных процессов. Уравнения электродных процессов и уравнения электролиза (на конкретных примерах). Практическое применение электролиза водных растворов.
Для перевода различных ионов в нейтральные атомы или группы атомов требуется различное напряжение электрического тока. Одни ионы легче теряют свои заряды, другие труднее. Степень легкости, с которой разряжаются (присоединяют электроны) ионы металлов, определяется положением металлов в ряду напряжений. Чем левее стоит металл в ряду напряжений, чем больше его отрицательный потенциал (или меньше положительный потенциал), тем труднее при прочих равных условиях разряжаются его ионы (легче всего разряжаются ионы Аu3+, Ag+; труднее всего Li+, Rb+, K+).
Если в растворе одновременно находятся ионы нескольких металлов, то в первую очередь разряжаются ионы того металла, у которого отрицательный потенциал меньше (или положительный – больше). Например, из раствора, содержащего ионы Zn2+ и Cu2+, сперва выделяется металлическая медь. Но величина потенциала металла зависит также и от концентрации его ионов в растворе; точно также изменяется и легкость разряда ионов каждого металла в зависимости от их концентрации: увеличение концентрации облегчает разряд ионов, уменьшение – затрудняет. Поэтому при электролизе раствора, содержащего ионы нескольких металлов может случиться, что выделение более активного металла будет происходить раньше, чем выделение менее активного (если концентрация ионов первого металла значительна, а второго – очень мала).
В водных растворах солей, кроме ионов соли, всегда имеются еще и ионы воды (Н+ и ОН-). Из них ионы водорода будут разряжаться легче, чем ионы всех металлов, предшествующих водороду в ряду напряжений. Однако ввиду ничтожной концентрации водородных ионов при электролизе всех солей, кроме солей наиболее активных металлов, у катода происходит выделение металла, а не водорода. Только при электролизе солей натрия, кальция и других металлов до алюминия включительно разряжаются ионы водорода и выделяется водород.
Электрический ток, проходя через растворы, вызывает в них, так же как и в расплавах, химические изменения, выражающиеся в том, что из растворов выделяются продукты разложения растворенного вещества или растворителя. Вещества, растворы которые проводят электрический ток, получили названия электролитов. Электролитами являются кислоты, основания и соли.
Химический процесс, происходящий при пропускании тока через раствор электролита, называется электролизом. Исследуя продукта, выделяющиеся у электрода, при электролизе кислот, оснований и солей, установили, что у катодов всегда выделяются металлы и водород, а у анода кислотные остатки или гидроксильные группы, которые затем подвергаются дальнейшим изменениям. Таким образом, первичными продуктами электролиза оказываются те же части кислот, оснований и солей, которые при реакциях обмена, не изменяются, переходят из одного вещества в другое.
50.Электролиз водных растворов с растворимым анодом. Характеристика электролиза с нерастворимым и растворимым анодами. Уравнения электродных процессов и уравнение электролиза с растворимым анодом (на конкретном примере). Практическое применение электролиза с растворимым анодом.
Как определить катод и анод в гальваническом элементе
Гальванический элемент (химический источник тока) – устройство, которое позволяет превращать энергию химической реакции в электрическую работу. По принципу работы различают первичные (разовые), вторичные (аккумуляторы) и топливные элементы. Гальванический элемент состоит из ионпроводящего электролита и двух разнородных электродов (полуэлементов), процессы окисления и восстановления в гальваническом элементе пространственно разделены. Положительный полюс гальванического элемента называется катодом, отрицательный — анодом. Электроны выходят из элемента через анод и движутся во внешней цепи к катоду.
Правила записи: слева располагается электрод, имеющий более отрицательный потенциал (анод), справа — катод; растворы отделяются вертикальной пунктирной линией, если они контактируют друг с другом, и двумя вертикальными линиями, если между ними находится солевой мостик; одна вертикальная линия означает границу раздела фаз, вертикальная пунктирная линия — мембрана.
Медно-цинковый элемент.
Медно-цинковый элемент (элемент Даниэля) состоит из двух полуэлементов (или электродов): I — цинковая пластинка погружена в раствор ZnSO4, II — медная пластинка — в раствор CuSO4. Полуэлементы соединены ионным мостиком III.
При замыкании внешней цепи IV на аноде происходит окисление цинка:
Zn — 2е = Zn 2+
На катоде — восстановление ионов меди:
Cu 2+ + 2е = Cu
За счет окислительно-восстановительной реакции по внешней цепи течет поток электронов от цинкового электрода к медному, а по ионному мостику движутся сульфат-ионы. Цинковый электрод постепенно растворяется, на медном выделяется металлическая медь. Схеме элемента запишется так:
анод(-) Zn ZnSO4 CuSO4 Cu катод(+)
Электродвижущая сила гальванического элемента
Полная схема гальванического элемента с учетом внешней цепи, состоящей, например, из медного провдника, будет:
анод(-) CuZn ZnSO4 CuSO4 Cu катод(+)
На каждой межфазной границе существует скачок электрического потенциала. Это контактный потенциал в месте сопрокосновения меди и цинка к, абсолютные электродные потенциалы Zn и Cu на границе металл-раствор, диффузионный потенциал Д на границе, разделяющей растворы. Применение ионного мостика делает диффузионный потенциал пренебрежимо малым и его можно считать равным нулю. Если отсчитывать абсолютный электродный потенциал, полагая положительным переход от раствора к металлу, то для электродвижущей силы ЭДС данного гальванического элемента можно написать равенство:
Е = Cu — Zn + к
а для гальванического элемента, сожержащего металлы 1 и 2:
Е = 1 — 2 + 12
Электродные потенциалы
Абсолютные электродные потенциалы определить очень трудно. Но, т.к. абсолютные электродные потенциалы входят в выражение для ЭДС с разными знаками, то их можно заменить величинами, отличающимися от них постоянными слагаемыми. Вместо абсолютного скачка потенциала на границе металл-раствор удобно использовать ЭДС элемента, состоящего из данного электрода и другого электрода, который во всех случаях должен быть одним и тем же. В качестве такого электрода сравнения принят стандартный водородный электрод.
Электродным потенциалом называется величина, равная ЭДС гальванического элемента, составленного из данного электрода и стандартного водородного электрода.
ЭДС электрохимического элемента равна разности электродных потенциалов:
Е = 1 — 2
Электродный потенциал электрода считается положительным, если в гальваническом элементе со стандартным водородным электродом данный электрод является катодом, и отрицательным — если анодом.
Как определить катод и анод в гальваническом элементе
Для гальванического элемента принята следующая форма записи (на примере элемента Даниэля):
где вертикальная линия | обозначает границу раздела фаз, а двойная вертикальная линия || — солевой мостик. Электрод, на котором происходит окисление, называется анодом; электрод, на котором происходит восстановление, называется катодом. Гальванический элемент принято записывать так, чтобы анод находился слева.
Электродные полуреакции принято записывать как реакции восстановления (таблица 12.1), поэтому общая реакция в гальваническом элементе записывается как разность между реакциями на правом и левом электродах:
Правый электрод: Cu 2+ + 2e = Cu
Левый электрод: Zn 2+ + 2e = Zn
Общая реакция: Cu 2+ + Zn = Cu + Zn 2+
Потенциал E электрода рассчитывается по формуле Нернста:
где aOx и aRed — активности окисленной и восстановленной форм вещества, участвующего в полуреакции; E o — стандартный потенциал электрода (при aOx = aRed =1); n — число электронов, участвующих в полуреакции; R — газовая постоянная; T — абсолютная температура; F — постоянная Фарадея. При 25 o C
Стандартные электродные потенциалы электродов измеряются относительно стандартного водородного электрода, потенциал которого принят равным нулю. Значения некоторых стандартных электродных потенциалов приведены в таблице 12.1.
Электродвижущая сила (ЭДС) элемента равна разности потенциалов правого и левого электродов:
Если ЭДС элемента положительна, то реакция (так, как она записана в элементе) протекает самопроизвольно. Если ЭДС отрицательна, то самопроизвольно протекает обратная реакция.
Стандартная ЭДС равна разности стандартных потенциалов:
Для элемента Даниэля стандартная ЭДС равна
E o = E o (Cu 2+ /Cu) — E o (Zn 2+ /Zn) = +0.337 — (-0.763) = +1.100 В.
ЭДС элемента связана с G протекающей в элементе реакции:
G = — nFE.
Зная стандартную ЭДС, можно рассчитать константу равновесия протекающей в элементе реакции:
Константа равновесия реакции, протекающей в элементе Даниэля, равна
Зная температурный коэффициент ЭДС , можно найти другие термодинамические функции:
H = G + T S = — nFE + .
Таблица 12.1. Стандартные электродные потенциалы при 25 o С.
Пример 12-1. Рассчитать стандартный электродный потенциал пары Cu 2+ /Cu + по данным таблицы 11.1 для пар Cu 2+ /Cu и Cu + /Cu.
Cu 2+ + 2e = Cu G o = —nFE o = -2(96485 Кл . моль -1 )(+0.337 В) = -65031 Дж . моль -1 .
Cu + + e = Cu G o = —nFE o = -(96485 Кл . моль -1 )(+0.521 В) = -50269 Дж . моль -1 .
Cu 2+ + e = Cu + G o = —nFE o = -3(96485 Кл . моль -1 )E o = -14762 Дж . моль -1 ,
откуда E o = +0.153 В.
Пример 12-2. Составить схему гальванического элемента, в котором протекает реакция
Рассчитать стандартную ЭДС элемента при 25 o C, G o и константу равновесия реакции и растворимость AgBr в воде.
Ag | AgBr| Br — || Ag + | Ag
Правый электрод: Ag + + e = Ag E o = 0.7792 В
Левый электрод: AgBr + e = Ag + Br — E o = 0.0732 В
Общая реакция: Ag + + Br — = AgBr E o = 0.7260 В
G o = —nFE o = -(96485 Кл . моль -1 )(0.7260 В) = -70.05 кДж . моль -1
1/K= a(Ag + ) . a(Br — ) = m(Ag + ) . m(Br — ) . ( ) 2 = m 2 ( ) 2
Отсюда, полагая = 1, получаем m = 7.31 . 10 -7 моль . кг -1
Пример 12-3. H реакции Pb + Hg2Cl2 = PbCl2 + 2Hg, протекающей в гальваническом элементе, равно -94.2 кДж . моль -1 при 298.2 K. ЭДС этого элемента возрастает на 1.45 . 10 -4 В при повышении температуры на 1К. Рассчитать ЭДС элемента и S при 298.2 K.
= 2 . 96485 . 1.45 . 10 -4 = 28.0 (Дж . моль -1. K -1 ).
G = H — T S = —nFE, откуда
Ответ. S = 28. Дж . моль -1 K -1 ; E = 0.531 В.
12-1. Рассчитать стандартный электродный потенциал пары Fe 3+ /Fe по данным таблицы 12.1 для пар Fe 2+ /Fe и Fe 3+ /Fe 2+ . (ответ)
12-2. Рассчитать произведение растворимости и растворимость AgCl в воде при 25 o C по данным таблицы 12.1. (ответ)
12-3. Рассчитать произведение растворимости и растворимость Hg2Cl2 в воде при 25 o C по данным о стандартных электродных потенциалах. (ответ)
12-4. Рассчитать константу равновесия реакции диспропорционирования 2Cu + Cu 2+ + Cu при 25 o C. (ответ)
12-5. Рассчитать константу равновесия реакции ZnSO4 + Cd = CdSO4 + Zn при 25 o C по данным о стандартных электродных потенциалах. (ответ)
12-6. ЭДС элемента, в котором обратимо протекает реакция 0.5 Hg2Cl2 + Ag = AgCl + Hg, равна 0.456 В при 298 К и 0.439 В при 293 К. Рассчитать G, H и S реакции. (ответ)
12-7. Вычислить тепловой эффект реакции Zn + 2AgCl = ZnCl2 + 2Ag, протекающей в гальваническом элементе при 273 К, если ЭДС элемента E= 1.015 В и температурный коэффициент ЭДС = — 4.02 . 10 -4 В . K -1 . (ответ)
12-8. В гальваническом элементе при температуре 298 К обратимо протекает реакция Cd + 2AgCl = CdCl2 + 2Ag. Рассчитать изменение энтропии реакции, если стандартная ЭДС элемента E o = 0.6753 В, а стандартные энтальпии образования CdCl2 и AgCl равны -389.7 и -126.9 кДж . моль -1 соответственно. (ответ)
12-9. ЭДС элемента Pt | H2 | HCl | AgCl | Ag при 25 o C равна 0.322 В. Чему равен pH раствора HCl . (ответ)
12-10. Растворимость Cu3(PO4)2 в воде при 25 o C равна 1.6 . 10 -8 моль . кг -1 . Рассчитать ЭДС элемента Pt | H2 | HCl (pH = 0) | Cu3(PO4)2 (насыщ. р-р) | Cu при 25 o C. (ответ)
12-11. Три гальванических элемента имеют стандартную ЭДС соответственно 0.01, 0.1 и 1.0 В при 25 o C. Рассчитать константы равновесия реакций, протекающих в этих элементах, если количество электронов для каждой реакции n = 1. (ответ)
12-12. ЭДС элемента Pt | H2 | HBr | AgBr | Ag в широком интервале температур описывается уравнением: E o (В) = 0.07131 — 4.99 . 10 -4 (T — 298) — 3.45 . 10 -6 (T — 298) 2 . Рассчитать G o , H o и S o реакции, протекающей в элементе, при 25 o C. (ответ)
12-13. Для измерения pH раствора можно применять хингидронный электрод. (Хингидрон, Q . QH2, представляет собой комплекс хинона, Q = C6H4O2, и гидрохинона, QH2 = C6H4O2H2). Электродная полуреакция записывается как Q + 2H + + 2e QH2, стандартный потенциал E o = +0.6994 В. Если элемент Hg | Hg2Cl2 | HCl | Q . QH2 | Pt имеет ЭДС +0.190 В, каков pH раствора HCl . (ответ)
12-14. В гальваническом элементе обратимо протекает реакция CuSO4 + Zn = ZnSO4 + Cu. Рассчитать H и S реакции, если ЭДС элемента равна 1.960 В при 273 К и 1.961 В при 276 К. (ответ)
12-15. В элементе Вестона протекает реакция Cd + Hg2SO4 = Cd 2+ + 2Hg. Рассчитать ЭДС этого элемента при 303 K, если H и S протекающей в нем реакции равны соответственно -198.8 кДж . моль -1 и -7.8 Дж . моль -1 K -1 . (ответ)
12-16. H реакции Pb + 2AgCl = PbCl2 + 2Ag, протекающей в гальваническом элементе, равно -105.1 кДж . моль -1 . ЭДС этого элемента равна 0.4901 В при 298.2 K. Рассчитать ЭДС элемента при 293.2 K. (ответ)
Сервер создается при поддержке Российского фонда фундаментальных исследований
Не разрешается копирование материалов и размещение на других Web-сайтах
Вебдизайн: Copyright (C) И. Миняйлова и В. Миняйлов
Copyright (C) Химический факультет МГУ
Написать письмо редактору
как определить какой металл будет служить анодом при работе гальванического элемента?
может кто знает формулу или теорию по этому вопросу. Буду рад любой помощи, заранее спасибо!
Лучший ответ
В гальваническом элементе анодом становится металл, обладающий меньшим значением электродного потенциала, а катодом – металл с большим значением электродного потенциала. К примеру, гальванический элемент состоит из цинкового и никелевого электродов, опущенных в раствор своей соли. Как определить, какой из двух электродов в гальваническом элементе будет являться анодом, а какой катодом?
Отвечаю. Почти в каждом задачнике по химии в конце задачника есть таблица стандартных электродных потенциалов. Открываешь его и ищешь стандартные электродные потенциалы цинка и никеля по полуреакциям восстановления.
Zn(2+) + 2e = Zn | Еº(Zn(2+)/Zn) = − 0,76 B
Ni(2+) + 2e = Ni | E°(Ni(2+)/Ni) = – 0,234 B
E°(Ni(2+)/Ni) > Еº(Zn(2+)/Zn)
Стандартный электродный потенциал никеля больше, чем стандартный электродный потенциал цинка, значит, в данном гальваническом элементе цинковый электрод будет анодом, а никелевый – катодом.
Кроме того, для того чтобы определиться, какой из двух металлов в гальваническом элементе является анодом, а какой – катодом, можно воспользоваться электрохимическим рядом напряжений. Чем левее стоит металл в электрохимическим ряду напряжений, тем более сильным восстановителем он является, значит, тем меньшее имеет значение стандартного электродного потенциала восстановления. Металл, стоящий в электрохимическом ряду напряжений левее является анодом, а металл, стоящий в электрохимическом ряду напряжений правее – катодом.
Электрохимический ряд напряжений металлов (сокращенный вариант)
Li, K, Ca, Na, Mg, Al, Zn, Cr, Fe, Ni, Pb, H2, Cu, Ag, Hg, Au
Как видишь, цинк в электрохимическом ряду напряжений стоит левее, а никель – правее. Значит, в гальваническом элементе цинковый электрод будет являться анодом, а никелевый – катодом.
Остальные ответы
Похожие вопросы