Как ультразвук передает изображение на экран
Перейти к содержимому

Как ультразвук передает изображение на экран

  • автор:

Ультразвук. Основы теории распространения ультразвуковых волн

Ультразвук

Ультразвук — механические колебания, находящиеся выше области частот, слышимых человеческим ухом (обычно 20 кГц). Ультразвуковые колебания перемещаются в форме волны, подобно распространению света. Однако в отличие от световых волн, которые могут распространяться в вакууме, ультразвук требует упругую среду такую как газ, жидкость или твердое тело.

Основные параметры ультразвука

Основными параметрами волны являются длина волны и период. Число циклов совершенных за одну секунду называется частотой и измеряется в Герцах (Гц). Время, требуемое чтобы совершить полный цикл, называется периодом и измеряется в секундах. Взаимосвязь между частотой и периодом волны приведено в формуле:

f=1/T

,

Основные параметры волны

Рисунок 1 – Основные параметры ультразвуковой волны

Скорость звука в идеальном упругом материале при заданной температуре и давлении является постоянной. Связь между скоростью ультразвука и длиной волны следующая:

lamda=c/f

,

  • где λ – длина волны, м,
  • с – скорость звука, м/с

В твердых веществах для продольных волн скорость звука [1]

Скорость ультразвука в твердых веществах

,

  • где cl – скорость звука для продольных волн, м/c,
  • E – модуль упругости, Па,
  • μ – коэффициент Пуассона,
  • ρ – плотность, кг/м 3

Для поперечных волн она определяется по формуле

Скорость ультразвука для поперечных волн

,

  • где ct – скорость звука для поперечных волн, м/с,
  • G – модуль сдвига, Па

Дисперсия звука — зависимость фазовой скорости монохроматических звуковых волн от их частоты. Дисперсия скорости звука может быть обусловлена как физическими свойствами среды, так и присутствием в ней посторонних включений и наличием границ тела, в котором звуковая волна распространяется.

Разновидности ультразвуковых волн

Большинство методов ультразвукового исследования использует либо продольные, либо поперечные волны. Также существуют и другие формы распространения ультразвука, включая поверхностные волны и волны Лэмба.

Продольные ультразвуковые волны – волны, направление распространения которых совпадает с направлением смещений и скоростей частиц среды.

Поперечные ультразвуковые волны – волны, распространяющиеся в направлении, перпендикулярном к плоскости, в которой лежат направления смещений и скоростей частиц тела, то же, что и сдвиговые волны [2].

Движение частиц в продольных и поперечных ультразвуковых волнах

Рисунок 2 – Движение частиц в продольных и поперечных ультразвуковых волнах

Поверхностные (Рэлеевские) ультразвуковые волны имеют эллиптическое движение частиц и распространяются по поверхности материала. Их скорость приблизительно составляет 90% скорости распространения поперечной волны, а их проникновение вглубь материала равно примерно одной длине волны [3].

Волна Лэмба — упругая волна, распространяющиеся в твёрдой пластине (слое) со свободными границами, в которой колебательное смещение частиц происходит как в направлении распространения волны, так и перпендикулярно плоскости пластины. Лэмба волны представляют собой один из типов нормальных волн в упругом волноводе – в пластине со свободными границами. Т.к. эти волны должны удовлетворять не только уравнениям теории упругости, но и граничным условиям на поверхности пластины, картина движения в них и их свойства более сложны, чем у волн в неограниченных твёрдых телах.

Визуализация ультразвуковых волн

Интенсивность и мощность ультразвука

Интенсивность звука (сила звука) — средняя по времени энергия, переносимая звуковой волной через единичную площадку, перпендикулярную к направлению распространения волны, в единицу времени. Для периодического звука усреднение производится либо за промежуток времени большой по сравнению с периодом, либо за целое число периодов [2]. Интенсивность ультразвука – величина, которая выражает мощность акустического поля в точке [6].

Для плоской синусоидальной бегущей волны интенсивность ультразвука I определяется по формуле

I=pv/2

,

  • где р — амплитуда звукового давления, Па
  • v — амплитуда колебательной скорости частиц, м/c
  • ρ — плотность среды, кг/м 3
  • с — скорость звука, м/c

В сферической бегущей волне интенсивность ультразвука обратно пропорциональна квадрату расстояния от источника. В стоячей волне I = 0, т. е. потока звуковой энергии в среднем нет. Интенсивность ультразвука в гармонической плоской бегущей волне равна плотности энергии звуковой волны, умноженной на скорость звука. Поток звуковой энергии характеризуют так называемым вектором Умова — вектором плотности потока энергии звуковой волны, который можно представить как произведение интенсивности ультразвука на вектор волновой нормали, т. е. единичный вектор, перпендикулярный фронту волны. Если звуковое поле представляет собой суперпозицию гармонических волн различной частоты, то для вектора средней плотности потока звуковой энергии имеет место аддитивность составляющих.

Для излучателей, создающих плоскую волну, говорят об интенсивности излучения, понимая под этим удельную мощность излучателя, т. е. излучаемую мощность звука, отнесённую к единице площади излучающей поверхности.

Интенсивность звука измеряется в системе единиц СИ в Вт/м 2 . В ультразвуковой технике интервал изменения интенсивности ультразвука очень велик — от пороговых значений ~ 10 -12 Вт/м 2 до сотен кВт/м 2 в фокусе ультразвуковых концентраторов.

Мощность звука — энергия, передаваемая звуковой волной через рассматриваемую поверхность в единицу времени. Различают мгновенное значение мощности ультразвука и среднее за период или за длительное время. Наибольший интерес представляет среднее значение мощности ультразвука, отнесённое к единице площади, т. н. средняя удельная мощность звука, или интенсивность звука [2].

Таблица 1 — Свойства некоторых распространенных материалов [6]

Материал Плотность, кг/м 3 Скорость продольной волны, м/c Скорость поперечной волны, м/c Акустический импеданс, 10 3 кг/(м 2 *с)
Акрил 1180 2670 3,15
Воздух 0,1 330 0,00033
Алюминий 2700 6320 3130 17,064
Латунь 8100 4430 2120 35,883
Медь 8900 4700 2260 41,830
Стекло 3600 4260 2560 15,336
Никель 8800 5630 2960 49,544
Полиамид (нейлон) 1100 2620 1080 2,882
Сталь (низколегированный сплав) 7850 5940 3250 46,629
Титан 4540 6230 3180 26,284
Вольфрам 19100 5460 2620 104,286
Вода (293К) 1000 1480 1,480

Затухание ультразвука

Одной из основных характеристик ультразвука является его затухание. Затухание ультразвука – это уменьшение амплитуды и, следовательно, интенсивности звуковой волны по мере ее распространения. Затухание ультразвука происходит из-за ряда причин. Основными из них являются:

  • убывание амплитуды волны с расстоянием от источника, обусловленное формой и волновыми размерами источника;
  • рассеяние ультразвука на неоднородностях среды, в результате чего уменьшается поток энергии в первоначальном направлении распространения;
  • поглощение ультразвука, т.е. необратимый переход энергии звуковой волны в другие формы, в частности в тепло.

Первая из этих причин связана с тем, что по мере распространения волны от точечного или сферического источника энергия, излучаемая источником, распределяется на все увеличивающуюся поверхность волнового фронта и соответственно уменьшается поток энергии через единицу поверхности, т.е. интенсивность звука. Для сферической волны, волновая поверхность которой растёт с расстоянием r от источника как r 2 , амплитуда волны убывает пропорционально r -1 , а для цилиндрической волны — пропорционально r -1/2 .

Рассеяние ультразвука происходит из-за резкого изменения свойств среды – её плотности и модулей упругости — на границе неоднородностей, размеры которых сравнимы с длиной волны. В газах это могут быть, например, жидкие капли, в водной среде — пузырьки воздуха, в твёрдых телах — различные инородные включения или отдельные кристаллиты в поликристаллах и т. п. Особый интерес представляет рассеяние на хаотически распределённых в пространстве неоднородностях.

Поглощение ультразвука может быть обусловлено различными механизмами. Большую роль играет вязкость и теплопроводность среды, взаимодействие волны с различными молекулярными процессами вещества, с тепловыми колебаниями кристаллической решётки и др.

3атухание звука, обусловленное рассеянием и поглощением, описывается экспоненциальным законом убывания амплитуды с расстоянием, т. е. амплитуда пропорциональна e -δr , а интенсивность – e -2δr в отличие от степенного закона убывания амплитуды при расхождении волны, где δ – коэффициент затухания звука [2].

Коэффициент затухания выражают либо в децибелах на метр (дБ/м), либо в неперах на метр (Нп/м).

Для плоской волны коэффициент затухания по амплитуде с расстоянием определяется по формуле [4]

Коэффициент затухания ультразвука по амплитуде

,

  • где α – коэффициент затухания с расстоянием, 1/м,
  • L – расстояние, м,
  • p(0), p(L) – амплитуда звукового давления в исходной точке и на расстояние L, Па

Коэффициент затухания от времени определяется [5]

Коэффициент затухания ультразвука от времени

,

  • где β – коэффициент затухания от времени, 1/с,
  • T – время, с,
  • p(0), p(T) – амплитуда звукового давления в начале и через время T соответственно, Па

Для измерения коэффициента также используют единицу дБ/м, в этом случае

Коэффициент затухания ультразвука в дБ/м

,

Децибел (дБ) – логарифмическая единица измерения отношения энергий или мощностей в акустике [2].

децибел

,

  • где A1 – амплитуда первого сигнала,
  • A2 – амплитуда второго сигнала

Тогда связь между единицами измерения (дБ/м) и (1/м) будет:

,

Коэффициент затухания выражается либо в децибелах на метр (дб/м), либо в неперах на метр (Нп/м) или что тоже самое м -1 . Затухание в 1 Нп/м означает, что на расстоянии 1м амплитуда волны уменьшается в e раз (e =2,71 — основание натуральных логарифмов или число непера).

Отражение ультразвука от границы раздела сред

При падении звуковой волны на границу раздела сред, часть энергии будет отражаться в первую среду, а остальная энергия будет проходить во вторую среду. Соотношение между отраженной энергией и энергией, проходящей во вторую среду, определяется волновыми сопротивлениями первой и второй среды. При отсутствии дисперсии скорости звука волновое сопротивление не зависит от формы волны и выражается формулой:

Z=ro c

,

  • где Z – волновое сопротивление, кг/(м 2 с),
  • ρ – плотность, кг/м 3 ,
  • с – скорость звука, м/с

Коэффициенты отражения и прохождения будут определяться следующим образом

формула определения коэффициентов отражения и прохождения

,

  • где R – коэффициент отражения звукового давления [1],
  • Z1 – волновое сопротивление первого вещества, в котором распространяется звуковая волна, кг/(м 2 с),
  • Z2 – волновое сопротивление второго вещества, в которую проходит звуковая волна, кг/(м 2 с)

формула определения коэффициента прохождения звукового давления

,

  • где D – коэффициент прохождения звукового давления

Стоит отметить также, что если вторая среда акустически более «мягкая», т.е. Z1>Z2, то при отражении фаза волны изменяется на 180˚ [1].

Коэффициент пропускания энергии τ из одной среды в другую определяется отношением интенсивности волны, проходящей во вторую среду, к интенсивности падающей волны

коэффициент пропускания энергии

,

Интерференция и дифракция ультразвуковых волн

Интерференция звука — неравномерность пространственного распределения амплитуды результирующей звуковой волны в зависимости от соотношения между фазами волн, складывающихся в той или иной точке пространства. При сложении гармонических волн одинаковой частоты результирующее пространственное распределение амплитуд образует не зависящую от времени интерференционную картину, которая соответствует изменению разности фаз составляющих волн при переходе от точки к точке. Для двух интерферирующих волн эта картина на плоскости имеет вид чередующихся полос усиления и ослабления амплитуды величины, характеризующей звуковое поле (например, звукового давления). Для двух плоских волн полосы прямолинейны с амплитудой, меняющейся поперёк полос соответственно изменению разности фаз. Важный частный случай интерференции — сложение плоской волны с её отражением от плоской границы; при этом образуется стоячая волна с плоскостями узлов и пучностей, расположенными параллельно границе.

Дифракция звука — отклонение поведения звука от законов геометрической акустики, обусловленное волновой природой звука. Результат дифракции звука — расхождение ультразвуковых пучков при удалении от излучателя или после прохождения через отверстие в экране, загибание звуковых волн в область тени позади препятствий, больших по сравнению с длиной волны, отсутствие тени позади препятствий, малых по сравнению с длиной волны, и т. п. Звуковые поля, создаваемые дифракцией исходной волны на препятствиях, помещённых в среду, на неоднородностях самой среды, а также на неровностях и неоднородностях границ среды, называются рассеянными полями. Для объектов, на которых происходит дифракция звука, больших по сравнению с длиной волны λ, степень отклонений от геометрической картины зависит от значения волнового параметра

волновой параметр

,

  • где D — поперечник объекта (например, поперечник ультразвукового излучателя или препятствия),
  • r — расстояние точки наблюдения от этого объекта

Излучатели ультразвука

Излучатели ультразвука — устройства, применяемые для возбуждения ультразвуковых колебаний и волн в газообразных, жидких и твердых средах. Излучатели ультразвука преобразуют в энергию звукового поля энергию какого-либо другого вида.

Наибольшее распространение в качестве излучателей ультразвука получили электроакустические преобразователи. В подавляющем большинстве излучателей ультразвука этого типа, а именно в пьезоэлектрических преобразователях, магнитострикционных преобразователях, электродинамических излучателях, электромагнитных и электростатических излучателях, электрическая энергия преобразуется в энергию колебаний какого-либо твердого тела (излучающей пластинки, стержня, диафрагмы и т.п.), которое и излучает в окружающую среду акустические волны. Все перечисленные преобразователи, как правило, линейны, и, следовательно, колебания излучающей системы воспроизводят по форме возбуждающий электрический сигнал; лишь при очень больших амплитудах колебаний вблизи верхней границы динамического диапазона излучателя ультразвука могут возникнуть нелинейные искажения.

В преобразователях, предназначенных для излучения монохроматической волны, используется явление резонанса: они работают на одном из собственных колебаний механической колебательной системы, на частоту которого настраивается генератор электрических колебаний, возбуждающий преобразователь. Электроакустические преобразователи, не обладающие твердотельной излучающей системой, применяются в качестве излучателей ультразвука сравнительно редко; к ним относятся, например, излучатели ультразвука, основанные на электрическом разряде в жидкости или на электрострикции жидкости [2].

Характеристики излучателя ультразвука

К основным характеристикам излучателей ультразвука относятся их частотный спектр, излучаемая мощность звука, направленность излучения. В случае моночастотного излучения основными характеристиками являются рабочая частота излучателя ультразвука и его частотная полоса, границы которой определяются падением излучаемой мощности в два раза по сравнению с её значением на частоте максимального излучения. Для резонансных электроакустических преобразователей рабочей частотой является собственная частота f0 преобразователя, а ширина полосы Δf определяется его добротностью Q.

Ширина полосы излучателя ультразвука

,

Излучатели ультразвука (электроакустические преобразователи) характеризуются чувствительностью, электроакустическим коэффициентом полезного действия и собственным электрическим импедансом.

Чувствительность излучателя ультразвука — отношение звукового давления в максимуме характеристики направленности на определённом расстоянии от излучателя (чаще всего на расстоянии 1 м) к электрическому напряжению на нём или к протекающему в нём току. Эта характеристика применяется к излучателям ультразвука, используемым в системах звуковой сигнализации, в гидролокации и в других подобных устройствах. Для излучателей технологического назначения, применяемых, например, при ультразвуковых очистке, коагуляции, воздействии на химические процессы, основной характеристикой является мощность. Наряду с общей излучаемой мощностью, оцениваемой в Вт, излучатели ультразвука характеризуют удельной мощностью, т. е. средней мощностью, приходящейся на единицу площади излучающей поверхности, или усреднённой интенсивностью излучения в ближнем поле, оцениваемой в Вт/м 2 .

Эффективность электроакустических преобразователей, излучающих акустическую энергию в озвучиваемую среду, характеризуют величиной их электроакустического коэффициента полезного действия, представляющего собой отношение излучаемой акустической мощности к затрачиваемой электрической. В акустоэлектронике для оценки эффективности излучателей ультразвука используют так называемый коэффициент электрических потерь, равный отношению (в дБ) электрической мощности к акустической. Эффективность ультразвуковых инструментов, используемых при ультразвуковой сварке, механической обработке и тому подобное, характеризуют так называемым коэффициентом эффективности, представляющим собой отношение квадрата амплитуды колебательного смещения на рабочем конце концентратора к электрической мощности, потребляемой преобразователем. Иногда для характеристики преобразования энергии в излучателях ультразвука используют эффективный коэффициент электромеханической связи.

Звуковое поле излучателя

Звуковое поле преобразователя делят на две зоны: ближнюю зону и дальнюю зону. Ближняя зона это район прямо перед преобразователем, где амплитуда эха проходит через серию максимумов и минимумов. Ближняя зона заканчивается на последнем максимуме, который располагается на расстоянии N от преобразователя. Известно, что расположение последнего максимума является естественным фокусом преобразователя. Дальняя зона это район находящийся за N, где давление звукового поля постепенно уменьшается до нуля [1].

Звуковое поле круглого излучателя

Рисунок 3 – Звуковое поле круглого излучателя

Положение последнего максимума N на акустической оси в свою очередь зависит от диаметра и длины волны и для дискового круглого излучателя выражается формулой

Длина ближней зоны

,

  • где N – длина ближней зоны, м,
  • D – диаметр излучателя, м,
  • λ – длина волны, м

Однако поскольку D обычно значительно больше λ, уравнение можно упростить и привести к виду

длина ближней зоны после упрощения

,

Ближняя и дальняя зоны звукового поля

Рисунок 4 – Ближняя и дальняя зоны звукового поля

Характеристики звукового поля определяются конструкцией ультразвукового преобразователя. Следовательно, от его формы зависит распространение звука в исследуемой области и чувствительность датчика.

Применение ультразвука

Многообразные применения ультразвука, при которых используются различные его особенности, можно условно разбить на три направления. Первое связано с получением информации посредством ультразвуковых волн, второе — с активным воздействием на вещество и третье — с обработкой и передачей сигналов (направления перечислены в порядке их исторического становления). При каждом конкретном применении используется ультразвук определённого частотного диапазона.

Получение информации с помощью ультразвуковых методов. Ультразвуковые методы широко используются в научных исследованиях для изучения свойств и строения веществ, для выяснения проходящих в них процессов на макро- и микроуровнях. Эти методы основаны главным образом на зависимости скорости распространения и затухания акустических волн от свойств веществ и от процессов, в них происходящих.

Воздействие ультразвука на вещество. Активное воздействие ультразвука на вещество, приводящее к необратимым изменениям в нём, или воздействие ультразвука на физические процессы, влияющее на их ход, обусловлено в большинстве случаев нелинейными эффектами в звуковом поле. Такое воздействие широко используется в промышленной технологии; при этом решаемые с помощью ультразвуковой технологии задачи, а также и сам механизм ультразвукового воздействия различны для разных сред.

Обработка и передача сигналов. Ультразвуковые устройства применяются для преобразования и аналоговой обработки электрических сигналов в различных отраслях радиоэлектроники, например в радиолокации, связи, вычислительной технике, и для управления световыми сигналами в оптике и оптоэлектронике. В устройствах для управления электрическими сигналами используются следующие особенности ультразвука: малая по сравнению с электромагнитными волнами скорость распространения; малое поглощение в кристаллах и соответственно высокая добротность резонаторов [2].

Типы ультразвуковых датчиков и их назначение

УЗИ датчики - типы и как правильно выбрать

Чтобы полноценно воспользоваться всеми возможностями вашего ультразвукового аппарата, вы должны иметь правильные аксессуары. Таким образом, главным фактором эффективности вашего УЗ-сканера является правильно подобранные ультразвуковые датчики.

В данной публикации мы расскажем о различных видах ультразвуковых датчиков и для каких исследований предназначен каждый из них. В заключении мы поделимся несколькими полезными советами, которые следует помнить при покупке УЗ-датчиков.

Итак, давайте по порядку.

— Что такое ультразвуковой датчик и для чего он нужен?

УЗ-датчик представляет собой устройство, которое генерирует ультразвуковые волны. Эти волны отражаются от тканей тела человека и в виде эхо-сигналов улавливаются этим же датчиком. Полученные эхо-сигналы датчик передает на компьютер, который использует их для создания изображения, называемого эхограммой. Основным элементом каждого ультразвукового датчика является пьезоэлектрический кристалл, который служит для генерации и приема ультразвуковых волн. К сожалению, индустрия медицинской визуализации уже более 40 лет использует один и тот же пьезоэлектрический материал.

Так было вплоть до недавнего времени, когда появился новый вид материала и новая технология ультразвуковых датчиков – монокристаллическая, что повлекло за собой значительное улучшение качества изображения.

Виды ультразвуковых датчиков

В настоящее время на рынке доступны УЗ-датчики различных форм, размеров и предназначенные для самых разных применений. Это связано с тем, что для получения хорошего качества изображения в разных частях тела необходимо применять датчики с соответствующими характеристиками. УЗ-датчики могут быть внешними или полостными. Внешние располагаются на поверхности тела или органа, а полостные вводятся в полый орган или отверстие (например, в прямую кишку или влагалище).

Есть ли еще какие-то различия между ними?

Ультразвуковые датчики отличаются своей конструкцией в зависимости от:

  • Расположения пьезоэлектрических кристаллов
  • Размера апертуры (размера контактной площадки)
  • Частоты

Ниже мы перечислим три наиболее распространенных вида ультразвуковых датчиков: линейный, конвексный (стандартный или микроконвексный) и секторный фазированный. Кроме того, мы включили в обзор и некоторые другие датчики, которые доступны на рынке и на нашем складе.

Линейные датчики

Пьезоэлектрические кристаллы в этих датчиках расположены линейно, форма области сканирования прямоугольная. Этот датчик обладает хорошим разрешением в ближней зоне. Частота и применение линейного датчика зависят от того, предназначен ли он для получения 2D- или 3D/4D-изображения.

Линейный УЗ-датчик

Линейный 2D датчик имеет широкую апертуру, и его центральная частота находится в диапазоне 2,5-12 МГц.

Линейный датчик используется для следующих целей:

  • Исследование сосудов
  • Выполнение катетеризации сосудов под контролем узи
  • Выполнение регионарной анастезии под контролем узи
  • Исследование молочных желез
  • Исследование щитовидной железы
  • Исследование мышц, сухожилий и суставов
  • Исследование других поверхностных органов
  • Проведение интраоперационных исследований и лапароскопии

Линейный 3D/4D датчик имеет широкую апертуру и центральную частоту в диапазоне 7,5-11 МГц.

Область применения данного вида датчика:

  • Исследование молочных желез
  • Исследование щитовидной железы
  • Исследование сосудов, в частности сонных артерий

Конвексные датчики

Конвексный ультразвуковой датчик также называют выпуклым датчиком, поскольку пьезоэлектрические кристаллы в нем расположены криволинейно. Форма области сканирования является выпуклой. Этот датчик хорошо визуализирует глубоко расположенные структуры, даже при уменьшении разрешения изображения с увеличением глубины.

Конвексный УЗ-датчик

Область сканирования, частота и применение конвексного датчика зависят от того, предназначен ли он для получения 2D- или 3D/4D-изображений.

Конвексный 2D датчик имеет широкую апертуру, и его центральная частота составляет 2,5-7,5 МГц.

Конвексный датчик используется для следующих целей:

  • Исследование органов брюшной полости у взрослых и детей
  • Исследование органов малого таза у взрослых и детей
  • Диагностика плода

Конвексный 3D/4D датчик имеет широкую апертуру, и его центральная частота составляет 3,5-6,5 МГц. Он применяется для исследования органов брюшной полости, органов малого таза и диагностики плода.

Существует подвид конвексных датчиков, называемый микроконвексным. Он имеет гораздо меньшую апертуру. Врачи обычно используют его в неонатологии и педиатрии.

Секторные фазированные (кардиологические) датчики

Этот датчик назван по типу устройства пьезоэлементов, которое называется фазированной решеткой. Фазированный датчик имеет небольшую апертуру и низкую частоту (центральная частота составляет 2-7,5 МГц). Форма области сканирования практически является треугольной. Эти датчики имеют плохое разрешение в ближнем поле но дают хороший обзор на глубине. Позволяют наблюдать структыры через узкую межреберную щель.

Секторный фазированный УЗ-датчик

Сфера применения фазированного датчика:

  • Исследование сердца, включая транспищеводные исследования у взрослых и детей
  • Исследования органов брюшной полости у взрослых и детей
  • Исследования головного мозга у взрослых и детей

Для исследования детей используются датчики с высокой частотой (5 или 7,5 МГц), что позволяет получить более качественное изображение. Это возможно благодаря маленьким размерам пациентов.

Другие типы ультразвуковых датчиков

И это еще не всё. На рынке присутствует большое количество всевозможных видов УЗ-датчиков. Вот некоторые из них:

Карандашные датчики, также называемые CW-датчиками, используются для измерения кровотока. Этот датчик имеет небольшую апертуру и использует низкую частоту (обычно 2-8 МГц). Следующий вид ультразвукового датчика – внутриполостной. Эти датчики предназначены для проведения исследования при введении их в определенные полые органы или отверстия. К внутриполостным датчикам относятся вагинальные (гинекологические), ректальные и ректально-вагинальные датчики. Как правило, они имеют небольшую область сканирования, а их частота колеблется в диапазоне 3,5-11,5 МГц. Также имеется чреспищеводный (трансэзофагеальный) датчик. Как и ранее упомянутые датчики, он имеет небольшую апертуру и используется в кардиологии для получения лучшего изображения сердца, выполняемого через пищевод. Эти датчики работают на средней частоте, в диапазоне 3-10 МГц.Кроме того, существует несколько датчиков, предназначенных для хирургического применения, например, лапароскопические.

Советы, которые следует помнить при покупке ультразвукового датчика

Теперь, когда вы уже знаете о наиболее распространенных видах ультразвуковых датчиков, предлагаем вашему вниманию несколько советов, которые вы должны помнить при их покупке:

  • Удостоверьтесь и дважды проверьте, совместим ли датчик, который вы собираетесь приобрести, с вашим аппаратом – для этого вы можете использовать руководство по эксплуатации или обратиться в наш отдел продаж.
  • Низкая частота (от 2,5 до 7,5 МГц) обеспечивает лучшую глубину проникновения, однако ее недостатком является более низкое качество изображения.
  • Чем выше частота (выше 7,5 МГц), тем ниже глубина проникновения ультразвука, тем не менее вы получаете изображения более высокого качества вблизи поверхности (7,5 МГц = 20 см).

Внимание!

  • Черная линия на мониторе ультразвукового аппарата, вероятнее всего, будет означать, что внутри датчика есть кристалл, отработавший свой срок службы.
  • Тень на экране ультразвукового аппарата может указывать на слабый кристалл внутри датчика, который не производит необходимую вибрацию.

Уход и обслуживание УЗ-датчика

Наконец, помните, что датчик является очень важным и очень дорогим элементом ультразвукового аппарата. Поэтому после его приобретения вы должны эксплуатировать его, соблюдая следующие меры предосторожности:

  • Не бросайте, не роняйте и не подвергайте датчик механическим воздействиям
  • Избегайте повреждения кабеля датчика
  • После каждого использования удаляйте с датчика излишки геля
  • Не используйте спиртосодержащие растворы

Ультразвукові методи дослідження

Ультразвуковые методы исследования

Ультразвуковая диагностика — один из самых распространенных методов обследования пациентов с различными патологиями. Технология основана на воздействии высокочастотных волн, способных проникать сквозь ткани, на организм. Сигналы, которые получает датчик от органов, передаются на основное устройство, после чего на экране появляется изображение сканируемой области. Современные сканеры работают в нескольких режимах.

Виникли питання — проконсультуйтеся з лікарем
Для запису на консультацію телефонуйте або заповніть форму зворотнього зв’язку:
(050) 301-99-26 (067) 446-11-79

Ваш запит успішно відправлено!

У найближчий час з Вами зв’яжеться специаліст
call-центра і уточнить всі питання.

  1. Одномерный (М-режим), позволяющий проводить скрининг тканей с высокой точностью. Используется для анализа постоянно движущихся структур (сердечных клапанов и т. п.).
  2. Двухмерный (В-режим), отображающий органы в поперечном разрезе. На экран выводится черно-белая движущаяся картинка.
  3. 3D-режим, при котором диагностируемая область отображается на мониторе в виде объемного изображения. Снимок может быть черно-белым или цветным, в зависимости от типа устройства.
  4. Допплерография, применяемая для качественной и количественной оценки кровотока. Исследование позволяет определить скорость и характер движения крови по сосудам.

Ультразвуковые методы исследования делятся на трансабдоминальные и эндокорпоральные. Первый тип представляет скриниг внутренних органов и структур поверхностным способом, через кожные покровы. Для этого используется датчик, смазанный контактным гелем. Анализ производится легким нажимом аппарата на кожу пациента. Эндокорпоральные методы диагностики основываются на сканировании организма изнутри. В свою очередь, они делятся на трансвагинальные и трансректальные. В первом случае датчик вводится в матку через влагалище женщины, во втором — помещается в прямую кишку. С помощью эндокорпоральных методов обследуются внутренние половые органы, мочевой пузырь, толстая кишка. Процедура может доставлять пациенту некоторый дискомфорт, поэтому ее применяют в крайней необходимости, когда поверхностный способ диагностики малоэффективен.

Сонография применяется в различных сферах медицины: офтальмологии, акушерстве, гинекологии, урологии, кардиологии, эндокринологии и т. д. Ультразвуковая диагностика помогает выявлять аномальные процессы органов, опухоли злокачественного и доброкачественного характера. С достаточно высокой точностью определяется наличие кист, абсцессов и гематом. Если больной страдает хроническими недугами, УЗИ проводится не реже, чем раз в полгода. Профилактические обследования позволяют предупредить развитие осложнений либо устранить их на ранней стадии.

Во многих случаях анализ организма ультразвуком гораздо эффективнее рентгенографии. Так, с помощью процедуры выявляются инородные тела в полостях и органах, которые не видны под воздействием рентгеновского облучения. Кроме того, сонография безопасна, ведь она использует не ионизированные лучи, а ультразвук.

Процедура незаменима при необходимости хирургического вмешательства. Она обеспечивает контроль состояния организма до и после операции, помогает избежать осложнений. Также методика назначается беременным женщинам с целью пренатальной диагностики. Обычно ультразвуковое исследование проводится трижды за весь срок — на 11-й, 20-й и 30-й неделях. Дополнительный скрининг назначается при тяжелом протекании беременности или подозрении на наличие патологий.

Чтобы сделать УЗИ, пациенту не нужно выполнять сложных подготовительных операций. Диагностика сердца, легких, щитовидной железы, лимфоузлов проводится вне зависимости от приема пищи и лекарств. Если исследованию подвергается брюшная полость, желательно отказаться от еды за 4-5 часов.

Розповісти друзям:

  • Алергологія 20
  • Гастроентерологія 32
  • Діагностика 139
  • Дерматологія 58
  • Дитячі захворювання 16
  • Дослідження 13
  • Ендокрінологія 8
  • Жіночі захворювання 66
  • Задати питання лікарю 11
  • Кардіологія 16
  • Косметологія 6
  • Наркологія 7
  • Неврологія 17
  • Нетрадиційна медицина 51
  • Нефрологія 2
  • Онкологія 35
  • Ортопедія 8
  • Отоларингологія 41
  • Офтальмологія 11
  • Пацієнту 35
  • Педіатрія 15
  • Перша медична допомога 6
  • Подологія 3
  • Проктологія 11
  • Психологія 38
  • Стоматологія 19
  • Терапія 39
  • Технології 1
  • Травматологія 13
  • Трихологія 8
  • Урологія 18
  • Флебологія 6
  • Хірургія 26
  • Чоловічі захворювання 11

Принцип работы УЗИ

Если речь идет о техническом обслуживании, ремонте или работе на ультразвуковом оборудовании, в первую очередь необходимо понимать физические основы процессов, с которыми придется иметь дело. Конечно, как и в каждом деле, здесь есть очень много нюансов и тонкостей, но мы предлагаем Вам в первую очередь рассмотреть самую суть процесса. В данной статье мы коснемся следующих вопросов:

  1. Что такое ультразвук, каковы его характеристики и параметры
  2. Формирование ультразвука в современной технике на основе пьезокерамики
  3. Принципы работы УЗИ: цепь преобразований электрической энергии в энергию ультразвука и обратно.
  4. Основы формирования изображения на дисплее УЗИ-аппарата.

Обязательно посмотрите наше видео о том, как работает УЗИ

Наша основная задача — разобраться в том, что такое ультразвук, и какие его свойства помогают нам в современных медицинских исследованиях.

О звуке.

Мы знаем, что частоты от 16 Гц до 18 000 Гц, которые способен воспринимать слуховой аппарат человека, принято называть звуковыми. Но в мире также много звуков, которые мы услышать не можем, поскольку они ниже или выше диапазона доступных нам частот: это инфра- и ультра звук соответственно.

диапазон частоты ультразвука

Звук имеет волновую природу, то есть все существующие в нашей вселенной звуки — волны, как, в прочем, и многие другие природные явления.

С физической точки зрения волна — это возбуждение среды, которое распространяется с переносом энергии, но без переноса массы. Другими словами, волны — это пространственное чередование максимумов и минимумов любой физической величины, например — плотности вещества или его температуры.

Охарактеризовать параметры волны (в том числе и звуковой) можно через ее длину, частоту, амплитуду и период колебания.

Рассмотрим параметры волны более подробно:

Максимумы и минимумы физической величины можно условно представить в виде гребней и впадин волны.

звуковая волна ультразвука

Длиной волны называют расстояние между этими гребнями или между впадинами. Поэтому, чем ближе находятся друг к другу гребни — тем меньше длина волны и тем выше ее частота, чем гребни дальше друг от друга — тем длина волны выше и наоборот — тем ниже ее частота.

Еще один важный параметр — амплитуда колебания, или степень отклонения физической величины от ее среднего значения.

длина волны ультразвука

Все эти параметры связаны друг с другом (для каждой взаимосвязи есть точное математическое описание в виде формул, но приводить их здесь мы не будем, поскольку наша задача — понять основной принцип, а описать его с физической точки зрения можно всегда). Важна каждая из характеристик, но чаще всего Вам придется слышать именно о частоте ультразвука.

Ваш УЗИ аппарат предоставляет плохое качество визуализации? Оставьте заявку на вызов инженера прямо на сайте и он проведет бесплатную диагностику и настроит Ваш УЗИ сканер

Звук высокой частоты: Как вызвать несколько тысяч колебаний в секунду

Существует несколько способов получить ультразвук, но чаще всего в технике используются кристаллы пьезоэлектрических элементов и основанный на их применении пьезоэлектрический эффект: природа пьезоэлектриков позволяет генерировать звук высокой частоты под воздействием электрического напряжения, чем выше частота напряжения, тем быстрее (чаще) начинает вибрировать кристалл, возбуждая высокочастотные колебания в окружающей среде.

пьезоэлектрическиий кристал

Оказавшись в поле высокочастотных звуковых колебаний, пьезокристалл напротив начинает генерировать электроэнергию. Включив такой кристалл в электрическую цепь и определенным образом обрабатываю получаемые с него сигналы мы можем формировать изображение на дисплее УЗИ-аппарата.

колебания пьезоэлектрического кристала пьезоэлектрическиий кристал

Но чтобы этот процесс стал возможным, необходимо дорогое и сложно организованное оборудование.

Несмотря на десятки и даже сотни взаимосвязанных компонентов УЗИ сканер можно условно разделить на несколько основных блоков, участвующих в преобразовании и передаче различных видов энергии.

Все начинается с источника питания, способного поддерживать высокое напряжение заранее заданных значений. Затем, через множество вспомогательных блоков и под постоянным контролем специального программного обеспечения сигнал передается на датчик, основным элементов которого является пьезокристаллическая головка. Она преобразует электрическую энергию в энергию ультразвуковых колебаний.

Через акустическую линзу, сделанную из особых материалов и согласующий гель ультразвуковая волна попадает в тело пациента.

физика ультразвуковой волны

Как и любая волна, ультразвук имеет свойство отражаться от встречающейся на его пути поверхности.

Далее волна проходит обратных путь через различные ткани человеческого тела, акустический гель и линзу она попадает на пьезокристаллическую решетку датчика, которая преобразует энергию акустической волны в электрическую энергию.

как отражается ультразвуковая волна

Принимая и правильным образом интерпретируя сигналы с датчика мы можем моделировать объекты, находящиеся на различной глубине и недоступные человеческому глазу.

Принцип построения изображения на основе данных ультразвукового сканирования

Рассмотрим как именно полученная информация помогает нам в построении изображения на УЗИ сканере. В основе этого принципа лежит различный акустический импеданс или сопротивление газообразных, жидких и твердых сред.

Другими словами, кости, мягкие ткани и жидкости нашего тела пропускают и отражают ультразвук в различной степени, частично поглощая и рассеивая его.

На самом деле весь процесс исследования можно разбить на микропериоды, и лишь малую часть каждого периода датчик испускает звук. Остальное время уходит на ожидание ответа. При этом время межу передачей и получением сигнала напрямую переводится в расстояние от датчика до “увиденного” объекта.

Информация о расстоянии до каждой точки помогает нам построить модель изучаемого объекта, а также используется для измерений, необходимых при ультразвуковой диагностике. Данные кодируются цветом — в результате мы получаем на экране УЗИ необходимое нам изображение.

черно-белое узи изображение

Чаще всего это Черно-белый формат, поскольку считается, что к оттенкам серого наш глаз более восприимчив и с большей точностью. увидит разницу в показаниях, хотя в современных аппаратах используется и цветное представление, например, для исследования скорости кровотока, и даже звуковое представление данных. Последнее вместе с видеорядом в допплеровских режимах помогает поставить диагноз более точно и служит дополнительным источником информации.

цветное ультразвуковое изображение

Но Вернемся обратно к построению простейшего изображения и рассмотрим подробнее три случая:

Примеры простейших изображений будем изучать на основе B-режима. Визуализация костной ткани и других твердых образований представляет из себя светлые участки (в основном — именно белого цвета), поскольку от твердых поверхностей звук отражается лучше всего и почти в полном объеме возвращается к датчику.

В качестве примера мы можем отчетливо видеть белые области — камни в почках пациента.

камни в почках на УЗИ

Визуализация жидкости или пустот напротив представлена черными участками на снимке, поскольку не встречая преград звук проходит дальше в тело пациента и мы не получаем никакого ответа

жидкости на УЗИ

Мягкие ткани, как например, структура самой почки будут представлены областями с различной градацией серого цвета. Именно от качества визуализации таких объектов и будет во многом зависеть точность диагноза и здоровье пациента.

мягкие ткани на УЗИ

Итак сегодня мы с Вами узнали о том, что такое ультразвук и как он используется в УЗИ-сканерах для исследования органов человеческого тела.

Если на Вашем УЗИ аппарате плохое качество изображения, обращайтесь в наш сервисный центр. Инженеры ERSPlus с большим опытом и высокой квалификацией всегда готовы Вам помочь

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *