Каковы основные достоинства цифровых измерительных приборов
Перейти к содержимому

Каковы основные достоинства цифровых измерительных приборов

  • автор:

Особенности и преимущества виртуальных приборов.

Одним из наиболее перспективных направлений в развитии компьютерных измерительных систем является разработка виртуальных приборов.

Виртуальный прибор состоит из современного быстродействующего персонального компьютера, наличие которого – необходимое условие высококачественных и точных измерений, и одной-двух плат сбора данных (ПСД). Плата устанавливается в персональный компьютер (обычно в слот ISA или PSI) или внешнее дополнительное устройство, подключаемое через LPT-порт в комплексе с соответствующим программным обеспечением.

Пользователь виртуального прибора включает объект графической па­нели с помощью клавиатуры, «мыши» или специализированной прикладной программы. Виртуальные измерительные приборы сочетают большие вычислительные и графические возможности персонального компьютера с высокой точностью и быстродействием аналого-цифровых преобразователей и цифроаналоговых преобразователей, применяемых в платах сбора данных (ПСД). По существу виртуальные приборы (как и практически все типы КИС) выполняют анализ амплитудных, частотных, временных характеристик различных измерительных цепей, определяют параметры сигналов с точностью примененных АЦП и ЦАП, а также формируют сигналы, как для процесса измерений, так и для автоматизации измерительных систем.

Программная часть виртуального прибора может эмулировать (создать) на экране дисплея компьютера виртуальную переднюю управляющую панель стационарного измерительного прибора. Сама панель с виртуальными кнопками, ручками и переключателями, сформированная на экране дисплея, становится панелью управления виртуального прибора. В отличие от реальной панели управления стационарного измерительного прибора, такая виртуальная панель может быть многократно перестроена в процессе работы для адаптации к конкретным условиям эксперимента. В зависимости от используемой платы и программного обеспечения пользователь получает измерительный прибор под ту или иную метрологическую задачу.

Виртуальные приборы предназначены для наблюдения, регистрации, долговременного хранения, анализа, измерения и обработки амплитудных, частотных, фазовых и временных параметров различных видов периодических и случайных процессов. С помощью компьютера можно сравнивать сигналы с эталонными, отображать их на экране и документировать исследуемые (измеряемые) процессы.

Основные преимущества виртуальных цифровых приборов:

  • высокая точность измерений параметров сигналов или цепей;
  • широкая полоса пропускания;
  • возможность запоминания эпюры сигнала на произвольное время;
  • автоматическое измерение параметров сигналов;
  • возможность статистической обработки результатов измерения;
  • возможность подключения принтера и плоттера для создания отчета о результатах измерений;
  • возможность сравнения текущих данных с образцовыми или предварительно записанными;
  • наличие средств самокалибровки и самодиагностики;
  • возможность исследования переходных процессов, протекающих вэлектрических цепях;
  • упрощенная архивация результатов измерений.

Таким образом, широкие вычислительные возможности виртуальных приборов позволяют реализовать программными методами многие способы повышения точности измерений, эффективности и быстродействия.

Виртуальные приборы имеют большое преимущество перед микропроцессорными измерительными приборами, поскольку пользователь получает доступ к обширным объемам прикладных программ, может использовать внешнюю память большой емкости и различные устройства документирования результатов измерений. Сочетание платы сбора данных, измерительного устройства и персонального компьютера представляет человеку новые возможности, недостижимые автономными измерительными приборами.

К преимуществам виртуальных приборов следует отнести также их экономическую эффективность – практически любая плата сбора данных и компьютерные программы обработки измерительной информации намного дешевле измерительного прибора.

Цифровой измерительный прибор (мультиметр)

Цифровой измерительный прибор (ЦИП или мультиметр) — это измерительный прибор, в котором входной сигнал преобразуется в дискретный выходной сигнал и представляется в цифровой форме. Под дискретным сигналом понимают прерывистый сигнал, в котором информация содержится не в интенсивности носителя сигнала (например, в значениях напряжения, тока), а в числе элементов сигнала (например, в числе импульсов напряжения) и их взаимном расположении во времени или пространстве. Систему таких сигналов для представления информации называют кодом. Непрерывную величину часто называют аналоговой величиной.

image

Цифровые измерительные приборы (мультиметры) относятся к приборам непосредственной оценки, так как позволяют сразу отсчитать по шкале значение измеряемой величины.

Электронные цифровые измерительные приборы (мультиметры) имеют ряд преимуществ перед механическими: существенно большую точность, более высокую надежность из-за отсутствия движущихся частей, стойкость к вибрации и ударам и, как правило, экономичность, меньшие габариты и лучший внешний вид.

Основные характеристики

К основным характеристикам цифровых измерительным приборов (мультиметров) относятся:

  • погрешности;
  • диапазон измерений;
  • входное сопротивление прибора;
  • порог чувствительности;
  • быстродействие;
  • помехоустойчивость.

Классификация измерительных приборов

По способу индикации

  • показывающий измерительный прибор — измерительный прибор, допускающий только отсчитывание показаний значений измеряемой величины, например спидометр;
  • регистрирующий измерительный прибор — измерительный прибор, в котором предусмотрена регистрация показаний. Например, гиетограф — прибор для измерения и регистрации изменения интенсивности дождя во времени. Регистрация значений может осуществляться в аналоговой или цифровой формах. Различают самопишущие и печатающие регистрирующие приборы.

По методу измерений

  • измерительный прибор прямого действия — измерительный прибор, например, манометр, амперметр в котором осуществляется одно или несколько преобразований измеряемой величины и значение ее находится без сравнения с известной одноименной величиной;
  • измерительный прибор сравнения — измерительный прибор, предназначенный для непосредственного сравнения измеряемой величины с величиной, значение которой известно.

По форме представления показаний

  • аналоговый измерительный прибор — измерительный прибор, показания которого или выходной сигнал являются непрерывной функцией изменений измеряемой величины (вольтметр, амперметр);
  • цифровой измерительный прибор — измерительный прибор, показания которого представлены в цифровой форме.

По другим признакам

  • суммирующий измерительный прибор — измерительный прибор, показания которого функционально связаны с суммой двух или нескольких величин, подводимых к нему по различным каналам, например: ваттметр, суммирующий мощности нескольких электрических генераторов.
  • интегрирующий измерительный прибор — измерительный прибор, в котором значение измеряемой величины определяются путем ее интегрирования по другой величине (счетчики: электрические, газовые).

Полезные ссылки

Мультиметры цифровые

Какие достоинства и недостатки имеют электромагнитные измерительные приборы

Электромагнитные измерительные приборы — приборы, основанные на свойстве магнитного поля втягивать ферромагнитные тела, напр. мягкую сталь. При пропускании тока через катушку в ней возникает магнитное поле, которое стремится втянуть внутрь катушки стальной якорь, связанный со стрелкой прибора.

Стрелка удерживается в начальном положении спиральной пружиной. По отклонению стрелки можно судить о силе проходящего через катушку тока. Т. к. катушка с током втягивает якорь независимо от того, питается ли она постоянным или переменным током, то электромагнитные измерительные приборы со сталью одинаково пригодны для измерения как постоянного, так и переменного токов.

Итак, электромагнитный прибор имеет электромагнитный измерительный механизм с неподвижной катушкой, по обмотке которой протекает электрический ток, и один или несколько ферромагнитных сердечников, установленных на оси.

Электромагнитные измерительные приборы используют в амперметрах, вольтметрах, частотометрах и фазометрах.

Электромагнитные приборы изготавливают либо с плоской, либо с круглой катушкой. Плоскую неподвижную катушку (рис. 1, а) наматывают обычно из толстой проволоки 1 на неферромагнитный каркас 2 так, что внутри нее образуется воздушный зазор. Рядом с зазором располагают ферромагнитную пластинку 7, ось пластинки расположена асимметрично, на оси крепят стрелку 8 прибора, перемещающуюся вдоль шкалы 3 прибора. На оси укреплены противодействующая пружина 6 и алюминиевый сектор 5, который может поворачиваться в поле постоянного магнита 4.

электромагнитный амперметр

Электромагнитный прибор с круглой катушкой устроен следующим образом. Из толстой проволоки намотана круглая катушка 10 (рис. 1, б) с воздушным центральным зазором. Внутри зазора неподвижно расположена ферромагнитная пластина 11, а на оси закреплена вторая, но уже подвижная ферромагнитная пластина 12. На оси пластины 12 закреплены противодействующая пружинка 13 и стрелка 14 прибора. Для создания противодействующего момента закрепляют на оси алюминиевый сектор и устанавливают постоянный магнит — на рисунке не показаны.

Электромагнитный измерительный механизм: а - с плоской катушкой, б - с круглой катушкой

Рис. 1. Электромагнитный измерительный механизм: а — с плоской катушкой, б — с круглой катушкой

Достоинства электромагнитных измерительных приборов

Угол отклонения стрелки электромагнитного измерительного прибора зависит от квадрата тока. Это говорит о том, что приборы электромагнитной системы могут работать в цепях постоянного и переменного тока.

При протекании по катушке переменного тока подвижный сердечник перемагничивается одновременно с изменением направления магнитного поля, и направление вращающего момента не меняется, то есть изменение знака тока не влияет на знак угла отклонения. Показание прибора в цепи переменного тока пропорционально действующим значениям измеряемых величин.

Электромагнитные измерительные приборы просты по устройству, дешевы, особенно щитовые. Они могут непосредственно измерять большие токи, так как катушки у них неподвижны и их легко изготовить из проводов с большой площадью сечения.

Промышленность изготовляет амперметры электромагнитной системы для непосредственного включения на токи до 150 А.

Электромагнитные измерительные приборы выдерживают не только кратковременные, но и длительные перегрузки, если таковые возникают в процессе измерения.

Какие достоинства и недостатки имеют электромагнитные измерительные приборы

Недостатки электромагнитных измерительных приборов

К недостаткам электромагнитных измерительных приборов можно отнести: неравномерность шкалы и относительно низкую чувствительность при измерении малых токов, то есть сравнительно низкую точность измерения в начале шкалы, зависимость показаний приборов от влияния внешних магнитных полей, низкий частотный диапазон измерений, большую чувствительность приборов к колебаниям частот тока и большое их собственное потребление (достигающее 2 Вт у амперметров на токи до 10 А и 3 — 20 Вт у вольтметров в зависимости от напряжения).

У многих приборов шкала близка к равномерной.

Электромагнитные измерительные приборы подвержены влиянию внешних магнитных полей, так как имеют очень слабое собственное магнитное поле. Дело в том, что катушки изготовляют без ферромагнитных сердечников, поэтому создаваемое в них магнитное поле замыкается по воздуху, а известно, что воздух представляет собой, среду с очень большим магнитным сопротивлением. Для устранения влияния магнитных полей широко используют различные магнитные экраны или изготовляют приборы в астатическом исполнение

В астатических измерительных приборах вместо одной катушки с сердечником применяют две неподвижные катушки и два сердечника, соответственно насаженных на одну ось со стрелкой. Обмотки катушек соединены между собой последовательно и так, что при прохождении через них измеряемого тока в них создаются магнитные потоки, направленные навстречу один другому.

Если измерительный прибор оказывается во внешнем магнитном поле, то оно усиливает магнитное поле у одной катушки и уменьшает у другой. Следовательно, увеличение вращающего момента у одной катушки компенсируется таким же уменьшением вращающего момента у второй. Так компенсируется влияние внешнего однородного магнитного поля. Если внешнее магнитное поле неоднородно, то происходит только частичная компенсация.

электромагнитные измерительные приборы

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Цифровые измерительные приборы: достоинства и недостатки, принцип работы

Цифровые приборы — один из самых революционных способов измерения различных физических величин за всю историю человечества. Можно сказать, что в целом с момента появления цифровых технологий важность этого типа устройств во многом определила будущее всего нашего существования.

Цифровой прибор для измерения напряжения, тока и частоты

Все измерительные приборы подразделяются на аналоговые и цифровые.

Цифровые измерительные приборы обладают высоким быстродействием и высоким классом точности. Они применяются для измерения широкого класса электрических и неэлектрических величин.

В отличии от цифровых аналоговые приборы не хранят измеренные данные и не совместимы с цифровыми микропроцессорными устройствами. По этой причине необходимо записывать каждое проведенное с его помощью измерение, что может быть утомительным и требующим большого количество времени.

Главный недостаток цифровых измерительных приборов заключается в том, что они нуждаются во внешнем источнике питания или подзарядке аккумулятора после определенного времени использования. Также точность, скорость и эффективность цифровых приборов делают их дороже аналоговых.

Экран аналогового и цифрового мультиметра

Цифровые измерительные приборы — приборы, в которых измеряемая входная аналоговая величина X автоматически опытным путем сравнивается с дискретными значениями известной (образцовой) величины N и результаты измерения выдаются в цифровом виде (Чем отличаются аналоговые, дискретные и цифровые сигналы).

Структурная схема цифрового вольтметра

Структурная схема цифрового вольтметра

При выполнении операций сравнения в цифровых измерительных приборах производится квантование по уровню и времени значений непрерывных измеряемых величин. Результат измерения (численный эквивалент измеряемой величины) образуется после выполнения операций цифрового кодирования и представляется в избранном коде (десятичном для отображения или двоичном для дальнейшей обработки).

Цифровой люксметр

Операции сравнения в цифровых измерительных приборах выполняются специальными устройствами сравнения. Обычно конечный результат измерения в таких приборах получается после запоминания и некоторой обработки результатов отдельных операций сравнения аналоговой величины X с различными дискретными значениями образцовой величины N (так же может производиться сравнение известных долей X с N, имеющей одно значение).

Числовой эквивалент X в измерительный прибор представляется с помощью выходных устройств в виде, удобном для восприятия (цифровая индикация), а в необходимых случаях — в виде, удобном для ввода в электронно-вычислительную машину (ЭВМ) или в систему автоматического управления (цифровые регуляторы, программируемые логические контроллеры, интеллектуальные реле, частотные преобразователи). Во втором случае приборы чаще всего называются цифровыми датчиками.

Цифровой штангенциркуль

В общем случае цифровые измерительные приборы содержат аналогово-цифровые преобразователи, блок формирования образцовой величины N или набор заранее сформированных величин N, устройства сравнения, логические устройства и выходные устройства.

В автоматических цифровых измерительных приборах обязательно наличие устройства, обеспечивающего управление работой его функциональных узлов. Кроме обязательных функциональных блоков прибор может содержать дополнительные, например, преобразователи непрерывных величин X в промежуточные непрерывные величины.

Такие преобразователи используются в измерительных приборах в тех случаях, когда промежуточную X можно более просто измерить, чем исходную. К преобразованиям X в электрические величины прибегают весьма часто при измерении разнообразных неэлектрических величин, в свою очередь, электрические часто представляются эквивалентными интервалами времени и т. д.

Цифровой термометр

Аналого-цифровые преобразователи (АЦП) являются устройствами, которые принимают входные аналоговые сигналы и выдают на выходе соответствующие им цифровые сигналы, пригодные для работы с ЭВМ и другими цифровыми устройствами, т.е. обычно физический сигнал сначала преобразуется в аналоговый (аналогичный по отношению к исходному сигналу), а затем аналоговый сигнал преобразуется в цифровой.

В цифровых измерительных приборах используются различные методы автоматических измерений и измерительные схемы. Наличие дискретных N определяет специфику главным образом способов сравнения.

X и N можно сравнивать методами уравновешивания и совпадения. При 1-м методе управление изменением значений N производится до тех пор, пока не будет обеспечено равенство (с погрешностью дискретности) значений X в N или эффектов, ими производимых. По 2-му методу все значения N одновременно сравниваются с X, и значение X определяется по совпавшему с ним (с погрешностью дискретности) значению N .

При методе совпадения обычно используется одновременно несколько устройств сравнений, либо X имеет возможность воздействовать на одно общее устройство, считывающее совпавшее с ним значение N.

Различаются методы следящего, развертывающего и поразрядного уравновешивания, а также методы совпадения со следящим счетом или следящим считыванием, периодическим счетом или периодическим считыванием результатов сравнения.

Цифровой мультиметр

Первые в истории цифровые измерительные приборы представляли собой системы пространственного кодирования.

В этих приборах (датчиках) в соответствии со схемой измерения измеряемая величина с помощью аналогового преобразователя преобразуется в линейное перемещение или угол поворота.

Далее в аналого-дискретном преобразователе происходит кодирование полученного перемещения или угла поворота при помощи специальной кодовой маски, которая наносится на специальные кодовые диски, барабаны, линейки, пластины, электроннолучевые трубки и т. п.

Маски создают символы (0 или 1) кода числа N в виде проводящих и непроводящих, прозрачных и непрозрачных, магнитных и немагнитных участков и т. п. С этих участков специальные считывающие устройства снимают вводимый код.

Наибольшее распространение получил метод устранения ошибок неоднозначности, основанный на применении специальных циклических кодов, в которых соседние числа отличаются только в одном разряде, т. е. ошибка считывания не может превышать шага квантования. Это достигается за счет того, что при изменении любого числа на единицу в циклическом коде изменяется только один символ (например, используется код Грея).

Цифровой энкодер

В зависимости от выполнения кодирующего устройства преобразователи пространственного кодирования могут быть разделены на контактные, магнитные, индуктивные, емкостные и фотоэлектрические преобразователи (смотрите — Как устроены и работают энкодеры).

Примеры цифровых измерительных приборов:

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *