Кристаллическая решетка металлов образована положительными ионами и атомами металлов
Перейти к содержимому

Кристаллическая решетка металлов образована положительными ионами и атомами металлов

  • автор:

Кристаллическая решетка металла, образуемая ионами, имеет положительный заряд. Почему же металлы электрически нейтральны?

Кристаллическая решетка металла, образуемая ионами, имеет положительный заряд. Почему же металлы электрически нейтральны?

Голосование за лучший ответ
вроде ядро отрицательно

потому что свободные электроны в металле, двигаясь хаотично, попадают на поверхность и экранируют положительный заряд решетки Б. потому что ионы сохраняют свое местоположение в твердом теле В

Электрически нейтральными являются металлы в свободном виде ( в виде атомов, как и все атомы веществ в свободном виде). В металлической решетке присутствуют как положительно заряженные ионы, так и негативно заряженные свободные электроны, которые удерживают ионы на углах кристаллической решетки, чтобы решетка держалась. Атомы металлов электронейтральны по сути, если же баланс смещается, то они либо отдают, либо присоединяют электроны, переходя в возбужденное состояние ( превращаясь в ионы металлов).

В металлах носителями электрических зарядов являются свободные электроны, хаотически движущиеся между положительно заряженными ионами кристаллической решетки. Сумма отрицательных зарядов всех свободных электронов равна сумме положительных зарядов ионов кристаллической решетки. В следствии чего металлы становятся нейтральными.

Положение металлов в периодической системе. Металлическая кристаллическая решетка и металлическая химическая связь. Общие физические свойства металлов

Цель: Опираясь на ранее полученные знания, подвести обучающихся к пониманию представлений о металлах как химических элементах и простых веществах.

1) Познакомить обучающихся со строением и общими свойствами металлов, исходя из их положения в периодической системе и строения атомов.
2) Дать понятие о металлической связи и металлической кристаллической решетке. Добавить, обобщить и углубить знания о физических
свойствах металлов.

1) Расширить и углубить знания учащихся о роли металлов в организме, значении в жизнедеятельности человека, показать разнообразие их свойств.
2) Продолжить формирование мировоззренческих взглядов (умения устанавливать причинно-следственные связи между строением и
свойствами металлов, доказывать переход количественных изменений в качественные).
3) Акцентировать внимание обучающихся на возможности интеграции курсов химии, литературы и истории, развивать представления о познаваемости мира.
4) Прививать навыки самостоятельной работы, учить четко и грамотно выражать свои мысли. Уметь слушать своего товарища.

1) Научить работать с дополнительной литературой и другими источниками информации, готовить доклады,
2) Выступать перед аудиторией,
3) Формировать критическое мышление, умение анализировать, выделять главное, обобщать и делать выводы.

Тип урока: Урок усвоения новых знаний с мультимедийным сопровождением.

Оборудование. Компьютер, проектор, экран; учебная презентация по данной теме, выполненная на компьютере в программе Power Point, созданная учителем, коллекции “Металлы и сплавы”; шаростержневые модели кристаллической решетки металлов железа, магния, меди; таблицы: “Изменение атомного радиуса в периоде, группе”, “Строение металлической кристаллической решетки”, учебник химии 9 класс автор О.С. Габриелян 2010 год.

I. Ориентировочно-мотивационный этап.

Учитель: – Здравствуйте, ребята. Я рада вас видеть на своем уроке здоровыми и бодрыми. Я думаю, что и у вас прекрасное настроение как у ромашки на слайде презентации. Слайд 1.

А сейчас обратите внимание на лотки, что стоят на ваших столах. В них образцы веществ. Причем, предложенные вашему вниманию вещества, против обыкновения, не подписаны. Ваша задача состоит в том, чтобы распределить эти вещества по каким-то признакам, то есть как-то их проклассифицировать. Признаки выберите сами.

Учитель: – Какие признаки? (Твердость, металлический блеск.)

Учитель: – На какие группы распределились вещества? (Металлы и неметаллы.)

Учитель: – Каких веществ больше?

В настоящее время известно более 80 металлов, точно сосчитаете дома. Чем они отличаются друг от друга?

Учитель: – Они отличаются друг от друга свойствами: цветом, блеском, твердостью.

Учитель: Как вы думаете, что мы сегодня будем изучать? Металлы. Да, мы начинаем изучение большой темы “Металлы” (на экране проецируем тему урока) Слайд 2.

Презентацию можно получить у автора статьи.

Записываем дату и тему урока в тетради.

Эпиграф нашего урока. “Мощь и сила науки – во множестве фактов, цель – в обобщении этого множества”. Д.И.Менделеев. Слайд 3

“Внимательно осмотритесь вокруг. Где бы вы ни были: дома или в школе, на улице или в транспорте – вы увидите, какое множество металлов трудится вокруг нас и для нас.Слайд 4.

Учитель: Основываясь на собственный опыт, знания из курса физики, биологии, литературы давайте вспомним, что мы знаем о металлах? Поделитесь своими знаниями. (Беседа с классом.)

Учитель: Что мы должны узнать?

Цели: (Слайд 5.)

Учитель: Чтобы ответить на эти вопросы мы должны с вами выполнить большую работу по изучению нового материала и приобретению знаний.

“Свойства веществ зависят от строения”. Сегодня эту зависимость мы рассматриваем применительно к металлам. Давайте проследим причинно-следственную связь между строением атома, химической связью и физическими свойствами.

Строение атома – металлическая связь – металлическая кристаллическая решетка – физические свойства – практическое применение

Учитель: – Ответьте на следующие вопросы:

1) Где расположены элементы– металлы? Слайд 6.
2) Какое место занимают металлы в периодической системе химических элементов Д.И.Менделеева?

В периодической системе химических элементов каждый период, кроме первого, начинается с активного металла. Эти элементы образуют главную подгруппу I группы и называются щелочными металлами. Свое название они получили от названия соответствующих им гидроксидов, хорошо растворимых в воде, – щелочей.

Следующие за щелочными металлами элементы, составляющие главную подгруппу II группы, также являются металлами. Из этих металлов кальций, стронций, барий и радий называют щелочноземельными металлами. Такое название они получили потому, что их оксиды, которые алхимики называли “землями”, при растворении в воде образуют щелочи.

Далее к металлам относят элементы главных подгрупп: III группы, исключая бор; IV группы – германий, олово, свинец; V группы – сурьму и висмут; VI группы – полоний.

Что касается элементов побочных подгрупп, то все они – металлы. Таким образом, если в периодической системе провести диагональ от В к Астату через элементы главных подгрупп, то по диагонали и над ней будут располагаться неметаллы, а под ней – металлы. В периодах: в малых – металлы расположены в начале, в больших – в четных рядах и начале нечетных. Слайд 7.

Из положения металлов в периодической системе можно определить и особенности строения их атомов. Слайд 8.

1) На внешнем энергетическом уровне – 1–3 электрона.
2) У металлов сравнительно большой радиус атома
3) В периоде восстановительные свойства уменьшаются, т.к. увеличивается заряд ядра, число электронов на внешнем слое.
4) В группе в главной подгруппе восстановительные свойства увеличиваются, т.к. возрастает радиус атома.

Учитель: Давайте распишем электронное строение атомов металлов Na, Ca, Al (3 обучающихся возле доски.) Вместе проверяем даем оценку.

Загадочная пауза Слайд 9. (Загадки про металлы.)

Учитель: Атомы – металлы образуют простые вещества, соединяясь посредством химической связи. Какой? Слайд 10.

Учитель: Что такое металлическая связь? Связь в металлах и сплавах между атом – ионами посредством обобществленных электронов называется металлической. Веществам с металлической связью присущи металлические кристаллические решетки. Свойства металлов обусловлены строением их кристаллов. В узлах металлических кристаллических решеток располагаются атомы и ионы металлов, связанные посредством обобществленных электронов, электронов, которые оторвались от конкретных атомов и стали принадлежать всему кристаллу. Эти электроны компенсируют силы электростатического отталкивания между положительными ионами, связывают их, обеспечивают устойчивость металлической решетки. Такой тип связи называется металлической. Она обусловливает все важнейшие физические свойства металлов. Слайд 11.

Учитель: У меня на столе представлены кристаллические решетки металлов магния, меди и железа дайте вместе рассмотрим строение кристаллических решеток этих металлов. (Три обучающихся возле доски рассказывают о строении предложенных решеток металлов.)

Физкультминутка.

Учитель: Какими физическими свойствами обладают металлы? Слайд 11

Учитель подчеркивает, что физические свойства металлов определяются их строением.

Индивидуальные задания обучающимся. По материалу параграфа 6 заполнить таблицу

Физическое свойство металлов Чем оно обусловлено Примеры
Пластичность
Электрическая проводимость
Металлический блеск

Остальные обучающиеся, для изучения физических свойств металлов по материалу параграфа 6 (страница 30–32) делятся на 3 группы по свойствам, готовятся, пишут свою часть схемы, выходят к доске приклеивают свои листочки и отвечают. Класс может задавать вопросы. Обучающиеся 4 группы готовят и задают вопросы остальным обучающимся групп.

Заполнение схемы по ходу изучения нового материала (по выступлениям обучающихся от каждой группы).

После заполнения схемы возвращаемся к образцам металлов в лотках на столах обучающихся и выполняем Лабораторный опыт “Ознакомление с образцами металлов” на карточках подписаны названия металлов (железо, цинк, олово, алюминий, свинец, серебро).

Физические свойства металлов.

Пластичность. Слайд 13. Металлы обладают пластичностью, ковкостью и прочностью. Благодаря свободному перемещению электронов по всему кристаллу разрыв связей не происходит, т. к. отдельные слои в кристалле могут смещаться относительно друг друга. Это придает металлам пластичность — способность изменять свою форму без разрыва химических связей. Металлы, обладающие высокой пластичностью — золото, серебро, медь, олово, железо, алюминий.

Просмотр фрагмента “Кузнечное дело” с диска “Неорганическая химия”.

Электропроводность. Лучшие проводники электричества – серебро и медь, худшие – марганец, свинец и ртуть. Металлы обладают электрической проводимостью благодаря наличию свободных электронов или электронного “газа”. Хаотически движущиеся в металле электроны под воздействием приложенного электрического напряжения приобретают направленное движение, в результате чего возникает электрический ток.

Теплопроводность металлов, как правило, соответствует электропроводности. Она обусловлена большой подвижностью свободных электронов, которые, сталкиваясь с колеблющими ионами и атомами, обмениваются с ними энергией. Поэтому происходит быстрое выравнивание температуры по всему куску металла. Лучшая проводимость у серебра, меди, худшая — у висмута, ртути.

Для всех металлов характерен металлический блеск: серый цвет или непрозразрачность. Свободные электроны, заполняющие межатомное пространство в решетке, отражают световые лучи, поэтому металлы имеют металлический блеск (серебристо-белый и серый). Только золото и медь в большей степени поглощают короткие волны (близкие к фиолетовому цвету) и отражают длинные волны светового спектра, поэтому имеют желтый и оранжевый цвет. Самые блестящие металлы — ртуть, серебро.

Плотность. Слайд 14. Все металлы делятся на легкие (с плотностью до 5г/см 3 ) и тяжелые (с плотностью больше 5г/см 3 ). Легкие: Li, Na, K, Mg, Al Тяжелые: Zn, Cu, Sn, Ag, Au

Температура плавления. Слайд 15, 16.

Металлы делятся на легкоплавкие и тугоплавкие.

Твердость. Все металлы, кроме ртути, твердые. Но это свойство различно у каждого металла. Слайд 17.

Самые мягкие металлы — натрий, калий, индий, их можно резать ножом самый твердый металл — хром, царапает стекло. Рассмотреть образцы щелочных и щелочноземельных металлов.

С представителями некоторых металлов мы сейчас познакомимся

Вступление к сообщениям обучающихся “Заморочки из бочки”

– Алхимики старались его получить используя философский камень для того, чтобы править миром и вечно жить;
– Из-за этого металла пролилось много крови;
– Его используют в ювелирной промышленности) Это – Золото. (Сообщение про золото. Слайд 18–27.)

Вступление к сообщению обучающегося о меди “МАСКА, Я ТЕБЯ ЗНАЮ!” Звон колокольчика под тканью.

Следующий металл, о котором мы поговорим, – медь. Медь называют музыкальным металлом. Почему, сейчас мы узнаем. Слайд 28. Когда на Русь нападали полчища врагов, когда нужно было собрать народ на важные собрания, ударяли в колокола. Давайте послушаем запись звонов ростовских колоколов. В народе говорят, что колокольный звон делает человека добрее, справедливее. Все злое, нехорошее от него уходит. Искусство колокольных дел мастеров осталось составной частью национальной культуры. И поныне остается загадкой, как удалось нашим предкам без измерительных приборов и точного анализа сплавов создать “стозвонные” колокола – каждый со своим звоном (прослушивание звона колоколов). После Слайда 31.

Сегодня медь широко используется в электротехнике и приборостроении. Но давайте рассмотрим, как и где применяли раньше медь и ее значение сегодня. Слайд 32–36.

Вступление к сообщению про железо (загадка – стихотворение).

Важнейший, древний элемент.
В тяжелой индустрии главный,
Знаком с ним школьник и студент.
Родился в огненной стихии,
Расплав его течет рекой.
Важнее нет в металлургии –
Он нужен всей стране родной.

Сообщение про железо. Слайд 37–42

А теперь, внимание! Знакомимся с самыми, самыми металлами. Слайд 43.

Проверка знаний по результатам изучения нового материала (тест на компьютере) обмениваемся работами и проверяем с выставлением оценок по ключу

Подведение итогов. “Свойства веществ зависят от строения”. Сегодня эту зависимость мы рассмотрели применительно к металлам. Проследили причинно-следственную связь между строением атома, химической связью и физическими свойствами.

Выставление оценок за урок.

Проведение рефлексии по результатам урока. Слайд 44. Рефлексия. Чтобы осмыслить все увиденное, услышанное и выполненное на нашем уроке мы предлагаем вам рефлексивный тест, направленный на оценку своих собственных действий. Рефлексивный тест. Я узнал (а) много нового. Мне это пригодится в жизни. На уроке было над чем, подумать. На все возникшие у меня в ходе урока вопросы я получил (а) ответы. На уроке я поработал (а) добросовестно и цели урока достиг(ла).

Сейчас прозвенит долгожданный звонок,
Увы, но к концу подошел наш урок.
Прошу, уберите рабочее место.
Давайте без слов, и, пожалуй, без жестов.
А я благодарность вам всем объявляю,
Проверив работы,
В журнал выставляю
Отметки все ваши, надеюсь привычно,
Что будут они хорошо и отлично.
Большое спасибо я вам говорю,
Мы цели достигли, благодарю.

Домашнее задание: параграф 5, 6 составить ребусы или загадки про металлы, подготовить сообщения про сплавы меди и сплавы железа, составить презентацию по теме “Сплавы”

Кристаллическое строение металлов

Металлы – особая группа элементов в периодической таблице Менделеева. В отличие от неметаллов элементы этой группы являются исключительно восстановителями с положительной степенью окисления, а также обладают пластичностью, твёрдостью, упругостью, что обусловлено кристаллическим строением металлов.

Общее строение

Металлы – твёрдые вещества, имеющие кристаллическое строение. Исключение составляет ртуть – жидкий металл. Кристаллические решётки представляют собой упорядоченные определённым образом атомы металла. Каждый атом состоит из положительно заряженного ядра и нескольких отрицательно заряженных электронов. В атомах металлов недостаточно электронов, поэтому они являются ионами.

Единица кристаллической решётки – элементарная кристаллическая ячейка, в условных узлах и на гранях которой находятся положительно заряженные ионы. Их удерживают вместе металлические связи, возникающие за счёт беспорядочного движения отделившихся от атомов электронов (благодаря чему атомы превратились в ионы).

Отрицательно заряженные электроны держат на равном расстоянии положительно заряженные электроны, предавая кристаллической решётке правильную геометрическую форму.

Схема металлической связи

Свободное движение электронов обусловливает электро- и теплопроводность металлов.

Виды решёток

Элементарные кристаллические ячейки могут иметь различную конфигурацию. В связи с этим выделяют три типа кристаллических решёток:

  • объемно-центрированная (ОЦК) кубическая – состоит из 9 ионов;
  • гранецентрированная (ГЦК) кубическая – включает 14 ионов;
  • гексагональная плотноупакованная (ГПУ) – состоит из 17 ионов.

ОЦК представляет собой куб, в узлах которого находится по атому. В центре куба, на пересечении диагоналей располагается девятый ион. Этот тип характерен для железа, молибдена, хрома, вольфрама, ванадия.

Элементарной кристаллической ячейкой типа ГЦК является куб с ионами в узлах и в середине каждой грани – на пересечении диагоналей. Такое строение имеют медь, серебро, алюминий, свинец, никель.

Третий тип имеет вид гексагональной призмы, в узлах которой находится по шесть ионов с каждой стороны. Посередине между шестью узлами располагается по одному иону. В середине призмы между шестиугольными гранями находится равносторонний треугольник, который составляют три иона.

Типы решёток

Металл может содержать большое количество дефектов атомного строения. Дефекты влияют на свойства металла.

Характеристика решётки

Кристаллические решётки характеризуются компактностью или степенью наполненности. Компактность определяют показатели:

  • параметр решётки – расстояние между атомами;
  • число атомов;
  • координационное число – количество соседних ячеек;
  • плотность упаковки – отношение объёма, занимаемого атомами, к полному объёму решётки.

При подсчёте количества атомов следует помнить, что атомы в узлах и на гранях входят в состав соседних ячеек.

Кристаллические ячейки составляют решётку

Что мы узнали?

Узнали кратко об атомно-кристаллическом строении металлов. Металлы – твёрдые кристаллические вещества. Единицей решётки является элементарная кристаллическая ячейка. Благодаря металлическим связям ионы в узлах ячеек удерживаются на одинаковом расстоянии. Различают три типа кристаллических решёток – ОЦК, ГЦК и ГПУ, отличающихся количеством атомов и геометрической формой.

Строение молекул. Химическая связь

Молекула — электрически нейтральная частица, образованная из двух или более связанных ковалентными связями атомов.

Химическая связь — это взаимодействие атомов, обуславливающее устойчивость молекулы или кристалла как целого.

Химическая связь может образовываться путем предоставления от каждого из атомов по одному или нескольким неспаренным электронам (кратные связи) с образованием электронных пар (ковалентная связь). В образовании химической связи участвуют только электроны внешней электронной оболочки, а внутренние электронные уровни не затрагиваются. В результате, при образовании химической связи у каждого атома образуется заполненная электронная оболочка внешнего электронного уровня, состоящая из двух (дуплет) или восьми (октет) электронов.

Химическая связь характеризуется длиной и энергией. Длина химической связи это расстояние между ядрами связанных атомов. Энергия химической связи показывает сколько необходимо затратить энергии на разведение двух атомов, между которыми существует химическая связь, на расстояние, при котором эта химическая связь будет разорвана.

Виды химической связи

Ионная химическая связь

Ионная связь — очень прочная химическая связь, образующаяся между атомами с большой разностьюэлектроотрицательностей, при которой общая электронная пара переходит преимущественно к атому с большей электроотрицательностью.

Результатом этого является образование соединения противоположно заряженных ионов:

Это притяжение ионов как разноимённо заряженных тел. Ионная связь — крайний случай поляризации ковалентной полярной связи.

Образуется между типичными металлом и неметаллом (Me + неМе).

При этом электроны у металла полностью переходят к неметаллу, образуются ионы (частицы, имеющие заряд).

Например, типичные металлы литий (Li), натрий (Na), калий (K), кальций (Ca), стронций (Sr), барий (Ba) образуют ионную связь с типичными неметаллами, в основном с галогенами.

Кроме галогенидов щелочных металлов, ионная связь также образуется в таких соединениях, как щелочи и соли. Например, в гидроксиде натрия (NaOH) и сульфате натрия (Na2SO4) ионные связи существуют только между атомами натрия и кислорода (остальные связи — ковалентные полярные).

Ковалентная химическая связь

Ковалентная полярная химическая связь образуется при взаимодействии атомов, значение электроотрицательностей которых отличаются, но не резко, происходит смещение общей электронной пары к более электроотрицательному атому.

Электроотрицательность (ЭО) — способность атома химических элемента смещать к себе общие электронные пары, участвующие в образовании химической связи.

Ковалентная полярная связь образуется между разными неметаллами (неМе + неMe).

Это наиболее распространенный тип химической связи, которой встречается как в неорганических, так и органических соединениях.

Такая связь существует в молекулах следующих сложных веществ: Н2О, H2S, NH3 и др.

К ковалентным связям в полной мере относятся и те связи, которые образованы по донорно-акцепторному механизму, например в ионах гидроксония (Н3О+) и аммония (NH4+).

Металлическая химическая связь

Связь в металлах и сплавах между атом-ионами посредством обобществленных электронов называется металлической.

Металлическая связь — химическая связь, которая обусловлена взаимодействием положительных ионов металлов, составляющих кристаллическую решётку, с электронным газом из валентных электронов.

Металлическая химическая связь образуется в простых веществах-металлах (Me).

Сущность процесса образования металлической связи состоит в следующем: атомы металлов легко отдают валентные электроны и превращаются в положительные заряженные ионы. Относительно свободные электроны, оторвавшиеся от атома, перемещаются между положительными ионами металлов. Между ними возникает металлическая связь, т.е. электроны как бы цементируют положительные ионы кристаллической решетки металлов.

Металлическая связь существует в металлах в твердом в жидком состоянии. В соответствии с положением в периодической системе атомы металлов имеют небольшое число валентных электронов (1-3 электрона) и низкую энергию ионизации (отрыва электрона). Поэтому валентные электроны слабо удерживаются в атоме, легко отрываются и имеют возможность перемещаться по всему кристаллу.

В узлах кристаллической решетки металлов находятся свободные атомы, положительно заряженные ионы, а часть валентных электронов, свободно перемещаясь в объеме кристаллической решетки, образует «электронный газ» , обеспечивающий связь между атомами металла.

Связь, которую осуществляют относительно свободные электроны между ионами металлов в кристаллической решетке, называется металлической связью.

Металлическая связь возникает за счет обобществления атомами валентных электронов. Однако между этими видами связи есть существенное различие. Электроны, осуществляющие ковалентную связь, в основном пребывают в непосредственной близости от двух соединенных атомов.

В случае металлической связи электроны, осуществляющие связь, перемещаются по всему куску металла. Этим определяются общие признаки металлов: металлический блеск, хорошая проводимость теплоты и электричества, ковкость, пластичность и т. д.

Общим химическим свойством металлов является их относительно высокая восстановительная способность.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *