38. Механическая характеристика двигателя.
Механической характеристикой двигателяназывается зависимость частоты вращения ротора от момента на валуn=f(M2). Так как при нагрузке момент холостого хода мал, тоM2 ≈M и механическая характеристика представляется зависимостьюn=f(M). Если учесть взаимосвязьs= (n1 -n) /n1, то механическую характеристику можно получить, представив ее графическую зависимость в координатахn и М (рис. 1).
Рис. 1. Механическая характеристика асинхронного двигателя
Естественная механическая характеристика асинхронного двигателясоответствует основной (паспортной) схеме его включения и номинальным параметрам питающего напряжения.Искусственные характеристики получаются, если включены какие-либо дополнительные элементы: резисторы, реакторы, конденсаторы. При питании двигателя не номинальным напряжением характеристики также отличаются от естественной механической характеристики.
Механические характеристики являются очень удобным и полезным инструментом при анализе статических и динамических режимов электропривода.
39.Основные точки механической характеристики: критическое скольжение и частота, максимальный момент, пусковой момент, номинальный момент.
Механическая характеристика – это зависимость вращающего момента от скольжения, или, иначе говоря, от числа оборотов:
Из выражения видно, что эта зависимость очень сложна, поскольку, как показывают формулы)и, скольжение входит также в выражения дляI2иcosϕ2. Механическая характеристика асинхронного двигателя дается обычно графически
Начальная точка характеристики соответствует n= 0 иs= 1: это первое мгновение пуска двигателя. Величина пускового вращающего моментаMn– очень важная характеристика эксплуатационных свойств двигателя. ЕслиMnмал, меньше номинального рабочего момента, двигатель может запускаться только вхолостую или при соответственно сниженной механической нагрузке.
Обозначим символом Mnpпротиводействующий (тормозной) момент, создаваемый механической нагрузкой на валу, при которой двигатель пускается. Очевидным условием для возможности запуска двигателя является:Mn>Mnp. Если это условие выполнено, ротор двигателя придет в движение, число оборотов егоnбудет возрастать, а скольжениеsуменьшаться. Как видно из изображения выше, вращающий момент двигателя при этом растет отMnдо максимальногоMm, соответствующего критическому скольжениюskp, следовательно, растет и избыточная располагаемая мощность двигателя, определяемая разностью моментовMиMnp.
Чем больше разность между располагаемым моментом двигателя (возможным при данном скольжении по рабочей характеристике) Ми противодействующимМnp, тем легче режим запуска и тем быстрее двигатель достигает установившейся скорости вращения.
Как показывает механическая характеристика, при некотором числе оборотов (при s=skp) располагаемый вращающий момент двигателя достигает максимально возможного для данного двигателя (при данном напряженииU) значенияMт. Далее двигатель продолжает увеличивать скорость вращения, но располагаемый вращающий момент его быстро уменьшается. При каких-то значенияхnиsвращающий момент двигателя становится равным противодействующему: пуск двигателя заканчивается, число оборотов его устанавливается на значении, соответствующем соотношению:
Это соотношение является обязательным для всех нагрузочных режимов двигателя, то есть для всех значений Mnp, не выходящих за пределы максимального располагаемого вращающего момента двигателяМт. В этих пределах двигатель сам автоматически приспосабливается ко всем колебаниям нагрузки: если во время работы двигателя его механическая нагрузка увеличивается, на какое-то мгновениеMnpстанет больше момента, развиваемого двигателем. Обороты двигателя начнут снижаться, а момент увеличиваться.
Скорость вращения установится на новом уровне, отвечающем равенству MиMnp. При снижении нагрузки процесс перехода к новому нагрузочному режиму будет обратным.
Если нагрузочный момент MnpпревыситМт, двигатель сразу остановится, так как с дальнейшим уменьшением оборотов вращающий момент двигателя уменьшается.
Поэтому максимальный момент двигателя Мтназывается еще опрокидывающим или критическим моментом.
Если в формулу момента подставить:
Взяв первую производную от Мпои приравняв ее к нулю, найдем, что максимальное значение вращающего момента наступает при условии:
то есть при таком скольжении s=skp, при котором активное сопротивление ротора равно индуктивному сопротивлению
Значения skpу большинства асинхронных двигателей лежат в пределах 10 – 25%.
Если в написанную выше формулу момента вместо активного сопротивления r2подставить индуктивное по формуле
Максимальный вращающий момент асинхронного двигателя пропорционален квадрату магнитного потока (а значит, и квадрату напряжения) и обратно пропорционален индуктивности рассеяния обмотки ротора.
При постоянстве напряжения, подводимого к двигателю, его поток Фостается практически неизменным.
Индуктивность рассеяния роторной цепи тоже практически постоянна. Поэтому при изменении активного сопротивления в цепи ротора максимальное значение вращающего момента Mтизменяться не будет, но будет наступать при разных скольжениях (с увеличением активного сопротивления ротора – при больших значениях скольжения).
Очевидно, что максимум возможной нагрузки двигателя определяется значением его Mт. Рабочая часть характеристики двигателя лежит в узком диапазоне чисел оборотов отn, соответствующегоMт, до. Приn=n1(конечная точка характеристики)М= 0, так как при синхронной скорости ротораs= 0 иI2= 0.
Номинальный вращающий момент, определяющий значение паспортной мощности двигателя, принимается обычно равным 0,4 – 0,6 от Mт. Таким образом, асинхронные двигатели допускают кратковременные перегрузки в 2 – 2,5 раза.
Основным параметром, характеризующим режим работы асинхронного двигателя, является скольжение s – относительная разность частоты вращения ротора двигателя n и его поля nо: s = (no — n) / no.
Область механической характеристики, соответствующая 0 ≤ s ≤ 1 – область двигательных режимов, причем при s < sкр работа двигателя устойчива, при s > sкр – неустойчива. При s < 0 и s >1 момент двигателя направлен против направления вращения его ротора (соответственно рекуперативное торможение и торможение противовключением).
Устойчивый участок механической характеристики двигателя часто описывается формулой Клосса, подстановкой в которую параметров номинального режима можно определить критическое скольжение sкр:
,
где: λ = Mkp / Mн – перегрузочная способность двигателя.
Механическая характеристика по данным справочника или каталога приближенно может быть построена по четырем точкам (рис.7.1):
- точка 1 – идеальный холостой ход, n = no = 60 f / p, М = 0, где: р — число пар полюсов магнитного поля двигателя;
- точка 2 — номинальный, режим: n = nн, М = Мн = 9550 Pн / nн, где Pн – номинальная мощность двигателя в кВт;
- точка 3 – критический режим: n = nкр, М = Мкр =λ Мн ;
- точка 4 – режим пуска: n = 0, М = Мпуск = β Мн.
Механические характеристики электрических машин
Механическая характеристика представляет собой зависимость угловой скорости или частоты вращения вала от вращающего момента на валу.
Механические характеристики электродвигателей разделяют на виды в зависимости от их жесткости. Жесткость характеристики определяется степенью изменения скорости при одинаковом приращении момента.
По жесткости механические характеристики электродвигателей бывают следующими:
- абсолютно жесткая,
- жесткая (с изменением момента скорость изменяется мало),
- мягкая (с изменением момента скорость изменяется значительно).
Характеристики первого вида имеют синхронные двигатели; второго — двигатели постоянного тока независимого возбуждения и асинхронные двигатели (на рабочих участках характеристик); третьего — двигатели постоянного тока последовательного возбуждения. Двигатели постоянного тока смешанного возбуждения в зависимости от исполнения системы возбуждения могут иметь характеристики двух последних видов.
Механическая характеристика, полученная при удовлетворении всех номинальных условий, называется естественной.
Реостатные характеристики асинхронного двигателя получают при изменении сопротивления роторной цепи. Конструктивно это осуществимо для двигателей, имеющих выводы обмоток ротора. Поэтому реостатные характеристики получают только для двигателей с фазным ротором.
Искусственные механические характеристики можно получить изменением числа пар полюсов обмотки статора. Изменения числа пар полюсов можно достигнуть двумя путями: размещением в пазах обмотки статора двух независимых обмоток и видоизменением схемы соединений одной обмотки переключением. Наиболее широко в практике применяют переключения типа Y-YY и Δ-YY (рис. 89).
Рис. 89. Схемы соединения обмоток многоскоростных двигателей:
а — двойная звезда, б — треугольник, в — звезда
Комбинация из двух независимых обмоток на статоре, каждая из которых имеет переключение полюсов в соотношении 1 : 2, позволяет изготовлять четырехскоростные двигатели. При этом, комбинируя схемы обмоток, добиваются такого сочетания характеристик, которые при регулировании скорости могут обеспечить либо постоянство момента М = const, либо постоянство мощности Р2 = const.
Рис. 90. Рабочие характеристики электродвигателей постоянного тока
Рабочие характеристики двигателей постоянного тока получают изменением сопротивления цепи якоря и изменением напряжения питания якоря (рис. 90).
У двигателей параллельного и последовательного возбуждения введение дополнительного сопротивления в цепь якоря меняет характеристики, они становятся мягче (рис. 90 а, б), а у двигателя смешанного возбуждения сохраняют как особенности своей формы, так и общий характер расположения относительно естественной характеристики (рис. 90, в).
- Устройство асинхронных двигателей
- Устройство синхронных машин
- Устройство машин постоянного тока
- Устройство подшипников электрических машин
Механическая характеристика электропривода
Для решения задач подбора того или иного электродвигателя к рабочей машине, требуется изучить механические характеристики электропривода в составе которого будет находиться двигатель.
Механическая характеристика электропривода представляет из себя зависимость угловой скорости двигателя от момента сопротивления, приведенного к валу двигателя, то есть w=f(M).
Уравнение механической характеристики электропривода
где М0 – момент холостого хода механизма, Мс – момент сопротивления при скорости w, Мсн – номинальный момент сопротивления при номинальной частоте вращения, q – показатель степени который определяет тип характеристики.
Конечно же, производственных механизмов большое множество и каждый из них имеет свою механическую характеристику, но среди них можно выделить четыре основные группы:
1 – Момент сопротивления не зависит от скорости (q=0, M = const). Такую механическую характеристику имеют различные подъемные механизмы (лебедки, краны), механизмы подачи металлорежущих станков, насосы при постоянном давлении, конвейеры и т.д.
2 – Момент сопротивления увеличивается по линейному закону с увеличением скорости (q=1). Такая зависимость присутствует в генераторе постоянного тока с независимым возбуждением, если сопротивление нагрузки постоянно.
3 – Момент сопротивления изменяется обратно пропорционально скорости (q=-1). Данная механическая характеристика присуща металлорежущим станкам, мельницам, бетономешалкам.
4 – Момент сопротивления увеличивается по нелинейному закону с увеличением скорости (q=2). Эта механическая характеристика часто называется “вентиляторной” потому что характерна различным вентиляторам, центробежным насосам, турбокомпрессорам.
Механические характеристики электроприводов
Выбор электропривода определяется требованиями рабочей машины. Электропривод должен обеспечить выполнение рабочей машиной заданной технологии при всех возможных режимах: пуска, приема и сброса нагрузки, торможения, изменения скорости, постоянной нагрузки. Характер протекания этих режимов в первую очередь определяется механическими свойствами двигателя и рабочей машины . Одним из основных критериев оценки механических свойств как двигателя, так и.рабочей машины служат их механические характеристики .
Механические характеристики электродвигателей
Механической характеристикой электродвигателя называется зависимость скорости вращения вала от развиваемого двигателем момента ω = φ (Мд) или n = f (Мд), где ω — угловая скорость вращения вала, рад/с, n — скорость вращения вала, об/мин.
Механическая характеристика двигателя называется естественной , если зависимость n = f (М) получена при номинальных параметрах питающей сети, нормальной схеме включения и без добавочных сопротивлений в цепи двигателя.
При наличии добавочных сопротивлений или питании двигателя от сети с напряжением или частотой, отличными от номинальных, механические характеристики двигателя будут называться искусственными . Очевидно, что искусственных характеристик двигатель имеет бесчисленное множество, а естественную — только одну.
Большинство электродвигателей под нагрузкой при увеличении момента снижает скорость вращения. Характеристику в этом случае называют падающей . Степень изменения скорости двигателя при изменении момента оценивают так называемой жесткостью механической характеристик и, которую определяют отношением α = Δ М/Δω или α = Δ М/Δ n
Рис. 1. Различные виды механических характеристик: а — электродвигателей, б — производственных машин.
Величины изменения момента и падения скорости при определении жесткости берут обычно в относительных единицах. Это дает возможность сравнивать характеристики двигателей различного вида.
В зависимости от степени жесткости все механические характеристики двигателей подразделяют на следующие группы.
1. Абсолютно жесткие характеристики с величиной жесткости α = ∞ . Такие механические характеристики (кривая 1, рис. 1, а) со строго постоянной скоростью вращения имеют синхронные двигатели.
2. Жесткие характеристики со сравнительно небольшим падением скорости при увеличении момента и α = 40 — 10. К этой группе относятся естественные характеристики двигателей постоянного тока с независимым возбуждением (кривая 2) и характеристики асинхронных двигателей в пределах линейного участка (кривая 3).
3. Мягкие механические характеристики с большим относительным падением скорости при увеличении момента и с жесткостью до α = 10. Такие характеристики имеют двигатели постоянного тока с последовательным возбуждением (кривая 4), двигатели с независимым возбуждением с большим сопротивлением в цепи якоря и асинхронные двигатели с добавочными сопротивлениями в цепи ротора.
При работе электропривода для преодоления сопротивления рабочей машины двигатель должен развивать определенный момент. Поэтому при выборе двигателя необходимо выявить прежде всего соответствие характеристик двигателя и рабочей машины.
Механические характеристики рабочих машин
Механической характеристикой рабочей машины называют зависимость момента статических сопротивлений машины от скорости вращения приводного вала. Эту зависимость для удобства совместного построения выражают обычно так же, как и характеристику двигателя, в виде ω = φ (Мс) или n = f (Мс).
Момент статических сопротивлений Мс , или сокращенно статический момент, представляет собой момент сопротивления, создаваемый машиной на приводном валу в статическом (установившемся) режиме, когда скорость не изменяется.
Механическую характеристику машины можно получить опытным путем или расчетом, если известно распределение статических усилий или моментов по элементам кинематической схемы. Статические моменты машин могут зависеть не только от скорости, но и от других величин, поэтому при практических расчетах электроприводов необходимо рассматривать каждый случай в отдельности.
Статические моменты различных рабочих машин по характеру зависимости их от скорости (механические характеристики) подразделяют на группы. Наиболее часто встречающиеся на практике из них следующие.
1. Статический момент мало зависит или практически не зависит от скорости (кривая 1, рис. 2, б). Такие характеристики имеют подъемные механизмы, краны, лебедки, тельферы, а также ленточные транспортеры при постоянной нагрузке.
2. Статический момент машины возрастает пропорционально квадрату скорости (кривая 2). Эту характеристику, типичную для осевых вентиляторов, называют вентиляторной характеристикой и аналитически представляют в виде формулы: Mc = Mо+kn 2 , где Мо — начальный статический момент, обусловленный чаще всего силами трения, которые обычно не зависят от скорости, k — опытный коэффициент. Кроме вентиляторов, вентиляторными характеристиками обладают центробежные и вихревые насосы, сепараторы, центрифуги, гребные винты, турбокомпрессоры и барабаны молотилок на холостом ходу.
3. Статический момент уменьшается при увеличении скорости (кривая 3). К этой группе относятся характеристики некоторых транспортерных механизмов и некоторых металлорежущих станков.
4. Статический момент изменяется от скорости неоднозначно, с резким переходом, обусловленным особенностью технологического процесса. Характеристики этой группы имеют машины, работающие с частыми большими перегрузками, которые иногда приводят к полной остановке. Например, механизм черпания одноковшового экскаватора, скребковый транспортер, работающий под завалом транспортируемой массы, дробилки и другие машины.
Кроме перечисленных, на практике встречаются и другие виды механических характеристик машин, например поршневых насосов и компрессоров, статические моменты которых зависят от пути.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика