Термометры сопротивления из чего состоят
Перейти к содержимому

Термометры сопротивления из чего состоят

  • автор:

Термометр сопротивления RTD

Термометры сопротивления — электрический температурный датчик, использующий изменения сопротивления, которое противодействует протеканию тока, который является основой для измерений температуры. В английском языке термометр сопротивления обозначается тремя буквами RTD.

Стандартный термометр сопротивления

Рекомендуем обратить внимание и на другие приборы для измерения температуры.

Основным электрическим компонентом термометра сопротивления является резистор, который часто представляет собой провод, обмотанный вокруг керамического изолятора в виде стержня Резистор и является температурным чувствительным элементом термометра сопротивления. Для защиты чувствительного элемента от физического воздействия и изоляции электрической цепи от технологической жидкости во избежание короткого замыкания резистор обычно заключается в корпус из нержавеющей стали. Два провода подсоединяются к электрической цепи внутри корпуса посредством герметичного уплотнения.

Схема термометра сопротивления

Принцип действия термометра сопротивления

Термометры сопротивления могут использоваться для измерения температуры электрическим путем, так как существует прямо пропорциональная зависимость между изменениями сопротивления и изменением температуры.

Другими словами, при повышении температуры величина сопротивления возрастает прямо пропорционально, а при понижении температуры сопротивление пропорционально уменьшается. Подобный принцип используется в термометрах сопротивления, так как сопротивление термометра уменьшается или увеличивается пропорционально температуре процесса, который он измеряет. Любое изменение сопротивления может быть зарегистрировано и преобразовано в температурные показания с помощью таблицы, или отображено на шкале, которая откалибрована в единицах измерения температуры.

Как и термопара или любой другой температурный датчик термометр сопротивления (RTD) функционален при измерении температуре только, если он подсоединен к электрической цепи. Обычно с термометрами сопротивления применяются мостовые схемы, так как такие схемы позволяют добиться высокой точности. Вместе с мостовой схемой используется батарея, которая служит в качестве источника питания. Цепи термометров сопротивления должны иметь внешний источник питания, так как они не способны генерировать напряжение сами.

Мостовая схема термометра сопротивления с батареей

Мостовая схема, изображенная на рисунке выше состоит из пяти резисторов: Р1, R2, R3, R4, R5; и точек соединения: А, В, С, D.

В данном случае давайте предположим, что каждый резистор в мостовой схеме обладает одинаковым сопротивлением. Так как ток протекает от минуса к плюсу в данном контуре, то протекание начинается с минусовой клеммы батареи и ток достигает точки А. В точке А ток расщепляется на равные части: одна половина протекает через сопротивление R1 в точку В, а другая половина протекает через R2 к точке С. Так как сопротивление всех резисторов одинаковое, то между точками В и С нет разницы в величине напряжения, поэтому ток через R5 не протекает.

Когда ток через средний резистор не протекает, то мост, как говорится «уравновешен». В данном примере ток протекает от точки В, через R3 в точку D. Ток также протекает от точки С через R4 в точку D. Ток от точки D возвращается на положительную клемму батареи, завершая цепь.

Протекание тока через уравновешенный мост

Мостовая схема, изображенная на рисунке выше похожа на предыдущую схему за исключением того, что резистор R3 заменен термометром сопротивления. В данной конфигурации ток по-прежнему протекает от минусовой клеммы батареи на точки В и С. Однако, если сопротивление термометра сопротивления (RTD) отличается по величине от сопротивления резистора R4, то между точками В и С появится напряжение. Это означает, что мост неуравновешен и ток будет протекать через резистор R5.

Мостовая схема с термометром сопротивления

Ток, протекающий через мост, может быть измерен, если мы заменим R5 измерительным прибором, который и будет определять температуру, измеряя ток. Так схема обеспечивает высокую точность, то она часто используется вместе с термометрами сопротивления для измерения температуры.

Мостовая схема с термометром сопротивления и измерительным прибором

Когда для измерения температуры используются термометры сопротивления, то они включаются в схему, подобно той, что показана на рисунке выше. Во многих случаях термометры сопротивления расположены на удалении от остальных элементов цепи, так как они подвержены воздействию температуры технологического процесса. По мере того, как температура вокруг термометра меняется, то пропорционально меняется величина сопротивления термометра. Когда сопротивление термометра меняется, то мост становится неуравновешенным и определенный ток протекает через измерительный прибор. Этот ток пропорционален изменениям температуры. Температура процесса затем может быть определена по показаниям шкалы прибора. В некоторых случаях шкалы откалиброваны на показания величины сопротивления, а не температуры. В таких случаях надо воспользоваться переводной таблицей для перевода ом в градусы.

Читайте также

Жидкостный термометр технический это прибор для измерения температуры технологических процессов при помощи жидкости, которая реагирует на изменение температуры

Ртутный термометр технический это прибор для измерения температуры, в котором в качестве жидкости используется ртуть, единственный жидкий метал

Биметаллический термометр это прибор для измерения температуры, принцип работы которого основан на расширении и сжатии твердых тел

Термопары наиболее распространенное устройство для измерения температуры

Пирометр это продвинутый прибор для определения температуры любого объекта на основе инфракрасного датчика, который считывает невидимое инфракрасное излучение

Термометры сопротивления — принцип действия, виды и конструкции, особенности использования

Один из наиболее популярных в промышленности типов термометров — термометр сопротивления, представляющий собой первичный преобразователь, для получения точного значения температуры от которого необходим дополнительный, нормирующий преобразователь или промышленный ПЛК — программируемый логический контроллер.

Термометр сопротивления представляет собой конструкцию, в которой проволока из платины или меди намотана на специальный диэлектрический каркас, размещенный внутри герметичного защитного корпуса, удобного по форме для монтажа.

Термометр сопротивления

Работа термометра сопротивления основана на явлении изменения электрического сопротивления проводника в зависимости от его температуры (от температуры исследуемого термометром объекта). Зависимость сопротивления проволоки от температуры в общем виде выглядит так: Rt=R0(1+at), где R0 – сопротивление проволоки при 0°C, Rt – сопротивление проволоки при t°C, а — температурный коэффициент сопротивления термочувствительного элемента.

Градуировка платинового термометра

Градуировка медного термометра сопротивления

В процессе изменения температуры, тепловые колебания кристаллической решетки металла изменяют свою амплитуду, соответственно изменяется и электрическое сопротивление датчика. Чем выше температура — тем сильнее колеблется кристаллическая решетка — тем выше оказывается текущее сопротивление. В приведенной выше таблице представлены типичные характеристики двух популярных термометров сопротивления.

Устройство термометра сопротивления

Жаропрочный корпус датчика призван защитить его от механических повреждений в процессе измерения температуры того или иного объекта.

На рисунке: 1 — чувствительный элемент из платиновой или медной проволоки, в форме спирали, расположенный на керамическом стержне; 2 — пористый керамический цилиндр; 3 — керамический порошок; 4 — защитная наружная трубка из нержавеющей стали; 5 — токопередающие выводы; 6 — наружная защитная трубка из нержавеющей стали; 7 — головка термометра со съемной крышкой; 8 — клеммы для присоединения выводного провода; 9 — провод к фиксирующему прибору; 10 — втулка с резьбой для установки в трубопровод, имеющий патрубки с внутренней резьбой.

Если потребитель точно определился, для каких целей необходим термодатчик, и выбрал именно термометр сопротивления (термопреобразователь сопротивления), значит важнейшими критериями для решения предстоящей задачи явились: высокая точность (порядка 0,1°С), стабильность параметров, почти линейная зависимость сопротивления от температуры объекта, взаимозаменяемость термометров.

Виды и конструкции

Итак, в зависимости от того, из какого материала выполнен чувствительный элемент термометра сопротивления, эти приборы можно строго разделить на две группы: медные термопреобразователи и платиновые термопреобразователи. Датчики, всюду применяемые на территории России и ближайших ее соседей, маркируются следующим образом. Медные — 50М и 100М, платиновые — 50П, 100П, Pt100, Pt500, Pt1000.

Наиболее чувствительные термометры Pt1000 и Pt100 изготавливают путем напыления тончайшего слоя платины на керамическую основу-подложку. Технологически достигается напыление малого количества платины (около 1 мг) на чувствительный элемент, дающее элементу небольшой размер.

Свойства платины при этом сохраняются: линейная зависимость сопротивления от температуры, устойчивость к высоким температурам, термостабильность. По этой причине наиболее популярные платиновые преобразователи сопротивления — это именно Pt100 и Pt1000. Медные элементы 50М и 100М изготавливаются путем ручной намотки тонкой медной проволоки, а платиновые 50П и 100П — путем намотки проволоки платиновой.

Прежде чем монтировать термометр, необходимо убедиться, что его тип выбран правильно, что градуировочная характеристика соответствует поставленной задаче, что монтажная длина рабочего элемента подходит, и остальные особенности конструкции позволяют произвести установку на данное место, для данных внешних условий.

Датчик проверяют на отсутствие внешних повреждений, осматривают его корпус, проверяют целостность обмотки датчика, а также сопротивление изоляции.

Термометр сопротивления

Некоторые факторы могут негативно отразиться на точности измерений. Если датчик установлен в не то место, монтажная длина не соответствует рабочим условиям, плохое уплотнение, нарушение теплоизоляции трубопровода или иного оборудования — все это вызовет погрешность при измерении температуры.

Следует проверить все контакты, ведь если электрический контакт в соединениях прибора и датчика плохой, то это чревато погрешностью. Не попадает ли влага или конденсат на обмотку термометра, нет ли замыкания витков, правильно ли выполнена схема соединения (отсутствие компенсационного провода, отсутствие подгонки сопротивления линии), соответствует ли градуировка измерительного прибора градуировке датчика? Это важные моменты, на которые всегда стоит обращать пристальное внимание.

Вот типичные ошибки, которые могут возникнуть при монтаже термодатчика:

  • Если на трубопроводе отсутствует теплоизоляция, то это неизбежно приведет к потерям тепла, поэтому место для измерения температуры должно быть выбрано так, чтобы все внешние факторы были учтены заранее.
  • Малая или излишняя длина датчика может способствовать ошибке из-за неправильной установки датчика в рабочий поток исследуемой среды (датчик установлен не навстречу потоку и не по оси потока, как это должно быть по правилам).
  • Градуировка датчика не соответствует регламентированной схеме для монтажа на данном объекте.
  • Нарушение условия компенсации паразитного влияния изменяющейся температуры окружающей среды (не установлены компенсационные пробки и компенсационный провод, датчик подключен к прибору регистрации температуры по двухпроводной схеме).
  • Не учтен характер среды: повышенная вибрация, химически агрессивная среда, среда повышенной влажности или повышенного давления. Датчик должен соответствовать условиям среды, выдерживать их.
  • Непрочный или неполный контакт на зажимах датчика из-за плохой пайки или из-за влажности (отсутствует герметизация проводки от случайного попадания влаги в корпус термометра).

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Как работают термометры сопротивления

Измерение температуры — один из самых распространенных и важных параметров, контролируемых в любом технологическом процессе. И это не случайно, так как перегрев производственных систем грозит самыми разрушительными последствиями.

В целом, температуру измеряют различными способами, контактным и бесконтактным методами, при помощи термометров.

измерение температуры термометрами

С особенностями использования термоэлектрических термометров или термопар вы можете ознакомиться в других наших статьях. В этом материале рассмотрим, как устроены термометры сопротивления, на какие типы подразделяются, когда целесообразней использовать тот или иной вид ТС.

Принцип работы термопреобразователей сопротивления отражен в названии датчиков и основан на методе изменения электрического сопротивления в металлах, согласно которому, электрическое сопротивление элемента растет с увеличением температуры окружающей среды и наоборот.

Металлические проводники термометров сопротивления должны удовлетворять следующим условиям:

  • Стабильность градуировочной характеристики;
  • Взаимозаменяемость, то есть возможность замены вышедшего из строя датчика на аналогичный без повторной юстировки системы;
  • Нечувствительность к малым примесям;
  • Наилучшую линейность зависимости сопротивления от температуры;
  • Высокое значение температурного коэффициента электрического сопротивления;
  • Большое удельное сопротивление;
  • Невысокая стоимость материала.

Известно, что чем чище металл, тем более он соответствует указанным требованиям. Поэтому самыми распространенными металлами для изготовления термометров сопротивления являются платина Pt и медь Cu.

Тип термопреобразователя

Номинальное сопротивление R0 при 0°C

Условное обозначение
градуировочной характеристики

Диапазон измеряемых
температур

РФ

Международная

Термометры сопротивления

программа TCal-8-461

Термометр сопротивления ТС это термометр, как правило, в металлическом или керамическом корпусе, чувствительный элемент которого представляет собой резистор, выполненный из металлической проволоки или пленки и имеющий известную зависимость электрического сопротивления от температуры. Самый популярный тип термометра – платиновый термометр сопротивления, это объясняется высоким температурным коэффициентом платины, ее устойчивостью к окислению и хорошей технологичностью. В качестве рабочих средств измерений применяются также медные и никелевые термометры. Российский (межгосударственный) стандарт на технические требования к рабочим термометрам сопротивления: ГОСТ 6651-2009. Ознакомиться со стандартом и скачать текст можно в разделе Российские стандарты. В стандарте приведены диапазоны, классы допуска ТС, таблицы НСХ и стандартные зависимости сопротивление-температура. Эти данные приведены также на нашем сайте в разделе справочник. Главное преимущество термометров сопротивления – широкий диапазон температур, высокая стабильность, близость характеристики к линейной зависимости, высокая взаимозаменяемость. Пленочные платиновые термометры сопротивления отличаются повышенной вибропрочностью, но меньшим диапазоном температур. Изготавливаются также герметичные чувствительные элементы термометров сопротивления различных размеров, что позволяет их использовать в местах, где важно устанавливать миниатюрный датчик температуры. Недостаток термометров и чувствительных элементов сопротивления – необходимость использования для точных измерений трех- или четырех- проводной схемы включения, т.к. при подключении датчика с помощью двух проводов, их сопротивление включается измеренное сопротивление термометра. Важнейшей технологической проблемой для ТС проволочного типа является герметизация корпуса ЧЭ специальной глазурью, состав глазури должен быть подобран так, чтобы при колебаниях температуры в пределах рабочего диапазона не происходило разрушение герметизирующего слоя.
Промышленные платиновые термометры сопротивления в большинстве случаев используются со стандартной зависимостью сопротивление-температура (НСХ), что обуславливает допуск не лучше 0,1 °С (класс АА при 0 °С). Однако высокая стабильность некоторых термометров позволяет делать их индивидуальную градуировку и определять характерную именно для них зависимость сопротивление-температура. Такая градуировка может повысить точность до нескольких сотых градуса. Следует отметить, что использование функции МТШ-90 (что возможно сейчас для многих цифровых термометров) может точнее описать индивидуальную зависимость ТС. Использование квадратичного уравнения Каллендара Ван Дьюзена ограничивает точность аппроксимации до 0,01-0,03 °С в зависимости от диапазона температур.

Эталонные платиновые термометры (ПТС, ТСПН) первого и второго разряда по точности превосходят промышленные термометры сопротивления (расширенная неопределенность ПТС 1 разряда при 0 °С равна 0,002 °С), но они требуют очень осторожного обращения, не выносят тряски и резких тепловых ударов. Кроме того, их стоимость в несколько раз выше стоимости рабочих термометров сопротивления. Стандарт на образцовые ПТС первого и второго разряда: ГОСТ Р 51233-98 «Термометры сопротивления платиновые эталонные 1 и 2 разрядов. Общие технические требования» (см. раздел Российские стандарты). Подробная информация о свойствах эталонных платиновых термометров сопротивления и методах работы с ними приводится в разделе «Платиновый термометр сопротивления — основной интерполяционный прибор МТШ-90»

Для точного изменения криогенных температур с успехом применяются железо-родиевые термометры сопротивления. Их действие основано, на эффекте аномальной температурной зависимости сплава 0,5 ат.% железа к родию при низких температурах с положительным коэффициентом сопротивления. Опыт работы с термометрами показал, что их стабильность может достигать 0,15 мК/год при 20 К. Зависимость сопротивление — температура в диапазоне 0,5-27 К хорошо аппроксимируется полиномами не высоких степеней (8 -11 степень). Однако, сложности возникают при попытке аппроксимировать диапазоны, включающие 28 К, т.к. в этой точке «низкотемпературное» сопротивление, обусловленное примесями, уступает место «высокотемпературному» сопротивлению, обусловленному рассеянием на фононах.

Свойства термометров сопротивления трех наиболее распространенных типов.

Металл Температурный коэффициент Рекомендуемый рабочий диапазон температур Описание Использование
Платина 0.00385, 0,00391 °C -1 – рабочие ТС
(ГОСТ 6651-2009, МЭК 60751)

НСХ и перечень международных нормативов для термометров сопротивления см. по ссылке>>>

Особенности конструкции платиновых чувствительных элементов (ЧЭ)

1.Самая распространенная конструкция – так называемая «свободная от напряжения спираль» (Strain-free). Эта конструкция выпускается многими российскими предприятиями и считается самой надежной. Вариации основного дизайна заключаются в размерах деталей и материалах, используемых для герметизации корпуса чувствительног элемента (ЧЭ). Для различных диапазонов температур используются разные виды глазури. Эта конструкция ЧЭ также очень распространена за рубежом. Приводим примерную схему данного типа ЧЭ.

ЧЭ представляет собой платиновую спираль, четыре отрезка которой укладываются в каналы трубки из оксида алюминия и засыпаются мелкодисперсным порошком из оксида алюминия высокой чистоты. Таким образом, обеспечивается изоляция витков спирали друг от друга, амортизация спирали при термическом расширении и вибропрочность. Герметизация концов ЧЭ проводится с помощью цемента, приготовленного на основе оксида алюминия, или специальной глазури.

2. Вторая конструкция – это новая разработка, которая используется в ЧЭ значительно реже из-за высокой стоимости. Так называемая полая конструкция «hollow annulus». Эта конструкция применяется на особо важных объектах, в атомной промышленности, т.к. обладает повышенной надежностью и стабильностью метрологических параметров.

Чувствительный элемент наматывается на поверхность полого металлического цилиндра, изолированную слоем оксида алюминия, образованным способом горячего распыления. Для изготовления цилиндра используется специальный металл, температурный коэффициент расширения которого очень близок к температурному коэффициенту платины. После специальных процедур отжига и обработки поверхности платины изолирующим слоем оксида алюминия ЧЭ вставляется в тонкую металлическую трубку, которая герметизируется с обоих концов. Коэффициент тепловой инерции такого элемента составляет около 350 мс, для погружаемого ЧЭ, до 11 с для ЧЭ, монтированного в корпус термометра. Недостатком данной конструкции, препятствующим ее широкому распространению в промышленности, является высокая стоимость ЧЭ.

3. Пленочные чувствительные элементы типа “thin-film”

Технология изготовления пленочного ЧЭ очень сложная. Подложка имеет толщину порядка 0,3-0,6 мм. Как правило, попытка просто напылять чистую платину на подложку не приводит к успеху, т.к свойства напыленной платиновой пленки не позволяют получить температурный коэффициент a = 0,00385, необходимый для выполнения требований стандарта МЭК 60751. Проблема также возникает при термоциклировании, когда может нарушаться адгезия пленки с подложкой. Поэтому первые пленочные термометры были пригодны только в очень узком температурном диапазоне. В результате научных исследований был подобран состав подложки, позволивший повысить ее температурный коэффициент расширения до значения, близкого к коэффициенту платины. Толщина пленки была уменьшена до нескольких сотен нанометров. Кроме того, были разработаны технологии преднамеренного легирования платины, что позволило обеспечить соответствие температурного коэффициента сопротивления стандарту МЭК 60751. В настоящее время пленочный платиновый ЧЭ – это самый дешевый и самый широко продаваемый сенсор. Большим преимуществом является малый размер и масса ЧЭ, это позволяет устанавливать такие ЧЭ в миниатюрные корпуса и получать быструю скорость реагирования на изменение температуры объекта. Благодаря малым размерам, пленочные ЧЭ могут изготавливаться с повышенным номинальным сопротивлением. Уже разработаны и производятся ЧЭ с сопротивлением 1000 Ом. Это позволяет значительно снизить влияние сопротивления выводов при подключении по 2-х проводной схеме. По стабильности пленочные ЧЭ все еще уступают проволочным, но их технология постоянно совершенствуется, и в последнее время отчетливо наблюдается прогресс в повышении стабильности сопротивления ЧЭ и расширении температурного диапазона.

4. Платиновая спираль в стеклянной изоляции.

Некоторые фирмы выпускают ЧЭ из платиновой проволоки, покрытой стеклом. Это обычно довольно дорогие термометры сопротивления. Преимуществом является полная герметизация чувствительного элемента, стойкость к условиям повышенной влажности, недостатком – ограниченный диапазон рабочих температур.

Дополнительную информацию о конструкции и методах работы с платиновыми термометрами сопротивления публикуем в материалах семинара « Термометры сопротивления и комплекты термометров для измерения разности температур. Производство, стандартизация, поверка, эксплуатация»

Классы точности (допуска)

В стандарте МЭК 60751 (редакция 2008 г., а также новая редакция 2022 г) и в ГОСТ 6651-2009 (введен в России с 1 января 2011) были приняты значения предельных отклонений ТС от стандартной функции сопротивление-температура, а также температурные диапазоны, для которых нормируется точность по стандарту. В классификацию допусков включены проволочные и пленочные термометры сопротивления. В стандарте МЭК 6651 нормируются отдельно допуски для чувтсвительных элементов (резисторов) и для термометров.

Классы допуска для платиновых термометров и чувствительных элементов по ГОСТ 6651-2009

Класс допуска Допуск, °С Диапазон измерений, °С
Платиновый ТС, ЧЭ Медный ТС, ЧЭ Никелевый ТС, ЧЭ
проволочный пленочный
АА
W 0.1
F 0.1
± (0,1+0,0017|t|) От -50 до +250 От 0 до +150
А
W 0.15
F 0.15
± (0,15+0,002|t|) От -100 до +450 От -30 до +300 От -50 до +120
В
W 0.3
F 0.3
± (0,3+0,005|t|) От -196 до +660 От -50 до +500 От -50 до +200
С
W 0.6
F 0.6
± (0,6+0,01|t|) От -196 до +660 От -50 до +600 От -180 до +200 От -60 до +180

Классы допуска для чувствительных элементов (резисторов) платиновых термометров по МЭК 60751(22)

Проволочные платиновые резисторы

Пленочные платиновые резисторы

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *