Синхронные машины
Если во вращающемся магнитном поле разместить на валу ротора магнит так, чтобы ось, соединяющая его полюса, была направлена вдоль вектора индукции магнитного поля, то вращающееся магнитное поле вовлекает во вращение магнит вместе с валом ротора, который вращается синхронно с магнитным полем. Однако для этого необходимо раскрутить ротор до скорости вращения поля (условие синхронизма). На ротор действует вращающий момент, и энергия тока превращается в механическую энергию электродвигателя, который получил название синхронного.
Синхронные машины используются в качестве источников электрической энергии (генераторов), электродвигателей и синхронных компенсаторов.
Синхронные генераторы гидроэлектростанций вращаются с помощью гидротурбин и носят название гидрогенераторов. Кроме электростанций синхронные генераторы находят применение в установках, требующих автономного источника питания.
Синхронные двигатели переменного тока используются с механизмами средней и большой мощности при редких пусках, требующих постоянной частоты вращения. К таким механизмам относятся компрессоры, вентиляторы, насосы и т.д.
Синхронный компенсатор предназначается для улучшения коэффициента мощности электротехнических установок (компенсации индуктивной реактивной мощности).
Дополнительно по теме
Схема замещения синхронного двигателя и векторная диаграмма
Конструктивно синхронная машина состоит из статора и ротора. Статор аналогичен статору асинхронной машины, а ротор представляет собой постоянный магнит, поле которого создается обмоткой возбуждения, по которой пропускается постоянный ток. Питание обмотки возбуждения осуществляется через скользящий контакт между контактными кольцами и неподвижными щетками. Особенностью синхронной машины является возможность работы как в режиме двигателя, так и в режиме генератора.
Частота ЭДС переменного тока в синхронной машине зависит от частоты вращения ротора и числа пар полюсов, f1 = рn/60. Действующее значение ЭДС, индуцируемой в проводниках
Взаимодействие вращающегося поля статора и поля постоянного магнита ротора вызывает появление вращающего момента, вследствие чего ротор вращается в том же направлении, что и поле статора (n1=n). Скольжение синхронной машины равно нулю.
На рисунке Хс — синхронное индуктивное сопротивление; q — угол нагрузки
В соответствии со схемой уравнение имеет вид:
Характеристика зависимости момента двигателя от угла нагрузки имеет вид синусоиды и выражает работу как двигательного, так и генераторного режима.
С целью получения запаса устойчивости за номинальный момент синхронного двигателя принимается 0,5Мн, которому соответствует угол q=30°.
Важным преимуществом синхронного двигателя является способность регулировать потребляемую из сети реактивную мощность путем изменения тока возбуждения. Рассмотрим зависимости тока статора двигателя от тока возбуждения.
При перевозбуждении Iдв имеет емкостной характер, а при недовозбуждении — индуктивный. Таким образом, синхронный двигатель может быть использован в качестве компенсирующего устройства для регулирования реактивной мощности.
Характеристики имеют границу устойчивости, вдоль которой уменьшение тока возбуждения приведет к опрокидыванию двигателя или «выпаданию из синхронизма». Граница устойчивости соответствует режиму Мдв= Мген.
Недостатком синхронного двигателя является необходимость возбудителя для запуска, так как при равенстве синхронной частоты вращения поля статора и частоты вращения поля ротора пусковой момент отсутствует. Наиболее распространен асинхронный запуск. В этом случае на полюсах двигателя размещается короткозамкнутая обмотка. При пуске статор подключают к сети. Возникающее магнитное поле индуцирует в этой обмотке ЭДС и токи, в результате чего создается электромагнитный момент, как и у асинхронного двигателя. При этом обмотка возбуждения отключена от источника постоянного тока, но замкнута на активное сопротивление с целью уменьшения напряжения на ее зажимах при пуске. При достижении двигателем частоты вращения, близкой к синхронной, обмотка возбуждения переключается на источник постоянного тока. В этом случае говорят, что двигатель «втянулся в синхронизм».
Генераторный режим синхронной машины
Так как выражения электромагнитной мощности и момента у синхронной машины аналогичны и в двигательном и в генераторном режимах, то достаточно рассмотреть генераторный режим синхронной машины.
При работе синхронной машины в качестве генератора можно регулировать магнитный поток Фо и пропорциональную ему Ео, изменяя ток возбуждения.
Зависимость Ео=f(Iв) называется характеристикой холостого хода генератора.
Остаточная ЭДС у синхронного генератора равна 5-10 В.
Совпадение токов в проводниках по фазе с ЭДС будет только при активной нагрузке,
При включении статора на сопротивление нагрузки по обмотке пойдет ток, который создаст поле, вращающееся относительно статора и неподвижное относительно поля возбуждения основного потока ротора Фо. Совпадение токов в проводниках по фазе с ЭДС будет только при активной нагрузке, при индуктивной ток отстает на 90°, при емкостной опережает на 90°. Рост напряжения при емкостной нагрузке связан с подмагничивающим действием реакции якоря (статора), а снижение при индуктивной нагрузке — размагничиванием.
Упрощенное уравнение электрического состояния одной фазы синхронного генератора без учета поля рассеяния якоря имеет вид:
где Ео — ЭДС холостого хода.
Данному выражению соответствуют схема замещения (рис. а) и векторная диаграмма (рис. б). Из диаграммы следует, что Ео соответствует магнитному потоку ротора Фо, а напряжение U — результирующему магнитному потоку Ф. Отсюда следует, что в генераторном режиме Фо опережает Ф на угол q.
Основной режим работы генератора нагрузочный. Пренебрегая потерями в сопротивлении обмотки якоря, получим из векторной диаграммы значение cosy между напряжением и Еo:
С учетом этого выражения получим зависимость для определения электромагнитной мощности:
Момент равен отношению мощности к частоте вращения:
Выражение в скобках соответствует максимальному моменту Мmax, причем.
Зависимости электромагнитной мощности и момента синхронной машины при различных токах возбуждения показаны на рисунке.
В синхронном генераторе с активно-реактивной нагрузкой при определении электромагнитного момента необходимо учитывать фазовый сдвиг тока относительно магнитного потока или напряжения. Тогда выражение для момента
Синхронный генератор в качестве источника электрической энергии переменного тока включают в распределительную сеть параллельно. При параллельной работе генератора с системой большой мощности его частота и напряжение, а также угловая скорость должны оставаться неизменными при любых изменениях как нагрузки, так и тока возбуждения и момента первичного двигателя. Активную мощность, отдаваемую генератором в сеть, можно регулировать только изменением момента первичного двигателя, а реактивную — изменением тока возбуждения.
Синхронный электродвигатель с обмоткой возбуждения
Синхронный электродвигатель с обмоткой возбуждения — это синхронный электродвигатель, ротор которого выполнен с обмоткой возбуждения.
Конструкция синхронного электродвигателя с обмоткой возбуждения
Синхронный электродвигатель с обмоткой возбуждения, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор — неподвижная часть, ротор — вращающаяся часть. Статор обычно имеет стандартную трехфазную обмотку, а ротор выполнен с обмоткой возбуждения. Обмотка возбуждения соединена с контактными кольцами к которым через щетки подходит питание.
Синхронный электродвигатель с обмоткой возбуждения (щетки не показаны)
Принцип работы
Постоянная скорость вращения синхронного электродвигателя достигается за счет взаимодействия между постоянным и вращающимся магнитным полем. Ротор синхронного электродвигателя создает постоянное магнитное поле, а статор – вращающееся магнитное поле.
Работа синхронного электродвигателя основана на взаимодействии вращающегося магнитного поля статора и постоянного магнитного поля ротора
Статор: вращающееся магнитное поле
На обмотки катушек статора подается трехфазное переменное напряжение. В результате создается вращающееся магнитное поле, которое вращается со скоростью пропорциональной частоте питающего напряжения. Подробнее о том, как посредством трехфазного напряжения питания образуется вращающееся магнитное поле можно прочитать в статье «Трехфазный асинхронный электродвигатель».
Взаимодействие между вращающимся (у статора) и постоянным (у ротора) магнитными полями
Ротор: постоянное магнитное поле
Обмотка ротора возбуждается источником постоянного тока через контактные кольца. Магнитное поле создаваемое вокруг ротора возбуждаемое постоянным током показано ниже. Очевидно, что ротор ведет себя как постоянный магнит, так как имеет такое же магнитное поле (в качестве альтернативы можно представить, что ротор сделан из постоянных магнитов). Рассмотрим взаимодействие ротора и вращающегося магнитного поля. Предположим вы придали ротору начальное вращение в том же направлении как у вращающегося магнитного поля. Противоположные полюса вращающегося магнитного поля и ротора будут притягиваться друг к другу и они будут сцепляться с помощью магнитных сил. Это значит, что ротор будет вращаться с той же скоростью, что и вращающееся магнитное поле, то есть ротор будет вращаться с синхронной скоростью.
Магнитные поля ротора и статора сцепленные друг с другом
Синхронная скорость
Скорость с которой вращается магнитное поле может быть вычислена по следующему уравнению:
,
- где Ns – частота вращения магнитного поля, об/мин,
- f – частота тока статора, Гц,
- p – количество пар полюсов.
Это значит, что скорость синхронного электродвигателя может очень точно контролироваться изменением частоты питающего тока. Таким образом эти электродвигатели подходят для высокоточных приложений.
Прямой запуск синхронного двигателя от электрической сети
Почему синхронные электродвигатели не запускаются от электрической сети?
Если ротор не имеет начального вращения, ситуация отличается от описанной выше. Северный полюс магнитного поля ротора будет притягиваться к южному полюсу вращающегося магнитного поля, и начнет двигаться в том же направлении. Но так как ротор имеет определенный момент инерции, его стартовая скорость будет очень низкой. За это время южный полюс вращающегося магнитного поля будет замещен северным полюсом. Таким образом появятся отталкивающие силы. В результате чего ротор начнет вращаться в обратную сторону. Таким образом ротор не сможет запуститься.
Демпферная обмотка — прямой запуск синхронного двигателя от электрической сети
Чтобы реализовать самозапуск синхронного электродвигателя без системы управления между наконечниками ротора размещается «беличья клетка», которая также называется демпферной обмоткой. При запуске электродвигателя катушки ротора не возбуждаются. Под действием вращающегося магнитного поля, индуцируется ток в витках «беличьей клетки» и ротор начинает вращаться подобно тому, как запускаются асинхронные двигатели.
Когда ротор достигает своей максимальной скорости, подается питание на обмотку возбуждения ротора. В результате, как говорилось ранее, полюса ротора сцепляются с полюсами вращающегося магнитного поля и ротор начинает вращаться с синхронной скоростью. При вращении ротора с синхронной скоростью, относительное движение между белечьей клеткой и вращающимся магнитным полем равно нулю. Это значит, что отсутствует ток в короткозамкнутых витках, а следовательно «беличья клетка» не оказывает воздействия на синхронную работу электродвигателя.
Выход из синхронизма
Синхронные электродвигатели имеют постоянную скорость независящую от нагрузки (при условии что нагрузка не превышает макимально допустимую). Если момент нагрузки больше, чем момент создаваемый самим электродвигателем, то он выйдет из синхронизма и остановиться. Низкое напряжение питания и низкое напряжение возбуждения также могут быть причинами выхода двигателя из синхронизма.
Синхронный компенсатор
Синхронные электродвигатели могут также использоваться для улучшения коэффициента мощности системы. Когда единственной целью использования синхронных электродвигателей является улучшение коэффициента мощности их называют синхронными компенсаторами. В таком случае вал электродвигателя не соединяется с механической нагрузкой и вращается свободно.
Устройство синхронных машин
Синхронной называется машина переменного тока, ротор которой вращается с частотой, равной частоте вращения магнитного поля статора. Частота вращения синхронной машины в установившемся режиме не зависит от ее нагрузки и определяется частотой тока сети ƒ числом пар полюсов р машины: n = 60ƒ/р. Синхронные машины выпускаются с двумя типами роторов: явнополюсными и неявнополюсными.
Рис. 84. Синхронная машина:
1 — сердечник статора; 2 — обмотка статора; 3 — полюс ротора; 4 — контактные кольца; 5 — подшипниковый щит; 6 — подшипник (корпус); 7 — вал; 8 — станина.
В станину синхронной машины с явнополюсным ротором запрессован сердечник 1 статора, в пазах которого уложена трехфазная обмотка 2 (рис. 84). В расточке сердечника статора размещен ротор. На валу явнополюсного ротора укреплены полюса 3 с обмотками возбуждения. Питание к обмоткам возбуждения подводится с помощью щеток и колец 4, изолированных от вала и друг от друга. Вал 7 опирается на подшипники 6, расположенные в подшипниковых щитах 5.
Явнополюсные роторы применяют при сравнительно невысоких частотах вращения синхронных машин (до 1500 об/мин) (рис. 85, а). Станина 13 имеет цилиндрическую форму и изготовляется литьем из серого чугуна, силумина. Внутри станина имеет продольные ребра 14, между которыми запрессован с помощью нажимных колец 10, пальцев 11 и шпилек 15 сердечник статора 12.
Сердечник статора изготовляют шихтовкой листов, штампованных из электротехнической стали толщиной 0,5 мм. Внешняя окружность листов имеет выступы или впадины для фиксации их в ребрах станины при сборке. По внутренней окружности заготовок сердечников равномерно предусмотрены пазы, в которых располагают активные проводники обмотки 9 статора. При сборке сердечника между пакетами 12 прокладывают листы с приваренными дистанционными прокладками, образующими вентиляционные каналы.
Рис. 85. Устройство явнополюсного (а) и неявнополюсного (б) роторов:
1 — отвод обмотки возбуждения; 2 — пакет ярма ротора; 3 — вентиляционный канал; 4 — нажимная шека полюса: 5 — полюс; 6 — обмотка возбуждения; 7 — замыкающее кольцо успокоительной обмотки; 8 — стержень успокоительной обмотки; 9 — обмотка статора; 10 — нажимное кольцо статора; 11 — нажимной палец; 12 — пакет статора; 13 — станина; 14 — ребро-клин; 15 — шпилька; 16 — корпус ротора; 17 — клин; 18 — хвостовик полюса ротора; 19 — паз ротора; 20 — стальные клинья; 21 — осевой охладительный канал; 22 — бандаж; 23 — центрирующее кольцо; 24 — контактные кольца; 25 — бочка ротора; 26 — большой зуб; 27 — осевой канал.
Сердечник явнополюсного ротора состоит из полюсов 5 и ярма 2, укрепленных на корпусе 16 (рис. 85, а). Полюса набирают из листов стали толщиной 1 — 1,5 мм и прессуют между литыми или кованными нажимными щеками 4 с помощью шпилек 15.
Ярма роторов машин малой и средней мощности выполняют массивными. В этом случае полюсы крепят к ярму радиальными болтами. В машинах большой мощности ярма выполняют шихтованными из штампованных листов стали СтЗ толщиной до 6 мм. Из листов образуют пакеты 2, разделенные каналами 3, и прессуют их стяжными шпильками. Полюсы соединяют с ярмом креплением Т-образных хвостовиков 18 в пазах ярма клиньями 17. На каждом полюсе установлена катушка 6 обмотки возбуждения. Выводы 1 от обмотки возбуждения соединены с контактными кольцами (не показаны).
В круглых пазах на поверхности полюсов уложены стержни 8 проводников успокоительной (демпферной) обмотки ротора, замкнутые на торцах накоротко кольцами 7.
Неявнополюсный ротор представляет собой цельную массивную цилиндрическую поковку, в которой сердечник ротора совмещен с валом (рис. 85, б). Для изготовления ротора (если его диаметр не превышает 800 мм) применяют углеродистую сталь. При больших размерах для повышения механической прочности конструкции используют специальную легированную сталь.
Неявнополюсный ротор (рис. 85, б) подвергается обработке, в процессе которой высверливается осевой канал 27, который необходим для контроля качества поковки и уменьшения внутренних напряжений в металле. Наружная поверхность бочки 25 имеет винтовую канавку глубиной и шириной около 5 мм для улучшения условий охлаждения. По образующим активной части профрезерованы пазы 19 и осевой охладительный канал 21 в большом зубе 26, свободном от обмотки. Пазы 19 с обмоткой 6 и аксиальные каналы забиты клиньями 20, которые держат обмотки. Выводы обмотки возбуждения соединены с контактными кольцами 24. Лобовые части обмотки укреплены бандажами 22 из высокопрочной немагнитной стали. Бандажи охватывают центрирующие кольца 23, которые выполняют упругими.
- Устройство асинхронных двигателей
- Устройство машин постоянного тока
- Устройство подшипников электрических машин
- Механические характеристики электрических машин
В синхронной машине ротор вращается
Синхронная машина — это электрическая машина переменного тока, частота вращения ротора которой равна или кратна частоте вращения вращающегося в зазоре магнитного поля, создаваемого током якорной обмотки. Принцип действия синхронных машин основан на явлении электромагнитной индукции при взаимодействии магнитных полей .
Общее устройство синхронных машин
Основными частями синхронной машины являются якорь и индуктор (обмотка возбуждения).
Якорь представляет собой одну или несколько обмоток переменного тока. В двигателях токи, подаваемые в якорь, создают вращающееся магнитное поле (так называемое поле реакции якоря), которое сцепляется с полем индуктора и таким образом происходит преобразование энергии. В генераторах поле реакции якоря создается переменными токами, индуцируемыми в обмотке якоря от индуктора.
Индуктор состоит из полюсов — электромагнитов постоянного тока или постоянных магнитов. Индукторы синхронных машин имеют две различные конструкции: явнополюсную или неявнополюсную. Явнополюсная отличается тем, что полюса ярко выражены и имеют конструкцию, схожую с полюсами машины постоянного тока. При неявнополюсной конструкции обмотка возбуждения укладывается в пазы сердечника индуктора, весьма похоже на обмотку роторов асинхронных машин с фазным ротором, с той лишь разницей, что между полюсами оставляется место, не заполненное проводниками (так называемый большой зуб). Неявнополюсные конструкции применяются в быстроходных машинах, чтобы уменьшить механическую нагрузку на полюса.
Для уменьшения магнитного сопротивления, то есть для улучшения прохождения магнитного потока применяются ферромагнитные сердечники ротора и статора. В основном они представляют собой шихтованную конструкцию из электротехнической стали (то есть набранную из отдельных листов). Электротехническая сталь обладает рядом интересных свойств. В том числе она имеет повышенное содержание кремния, чтобы повысить её электрическое сопротивление и уменьшить тем самым вихревые токи Фуко.
Синхронный двигатель
Принцип действия синхронного двигателя основан на взаимодействии вращающегося переменного магнитного поля якоря и постоянных магнитных полей полюсов индуктора. Обычно якорь расположен на статоре, а индуктор — на роторе. В мощных двигателях в качестве полюсов используются электромагниты (ток на ротор подаётся через скользящий контакт), в маломощных — постоянные магниты. Есть так-же обращенная конструкция двигателей, где якорь расположен на роторе, а индуктор — на статоре (в устаревших двигателях, а так же в современных криогенных синхронных машинах, в которых в обмотках возбуждения используются сверхпроводники)
Двигатель требует разгона до номинальной скорости вращения или частотного пуска, прежде чем может работать самостоятельно. При такой скорости вращающееся магнитное поле якоря сцепляется с магнитными полями полюсов индуктора (если индуктор расположен на статоре, то получается, что вращающееся магнитное поле вращающегося якоря (ротора) неподвижно относительно постоянного поля индуктора (статора), если индуктор на роторе, то магнитное поле вращающихся полюсов индуктора (ротора) неподвижно относительно вращающегося магнитного поля якоря (статора)) — это называется «вошел в синхронизм». Для разгона до номинальной скорости обычно используется дополнительный двигатель (чаще всего асинхронный). Так-же используется частотный пуск, когда частоту тока якоря постепено увеличивают от очень малых до номинальных величин.
Частота вращения (об/мин) синхронного двигателя напрямую связана с частотой тока питающей сети соотношением,
где — число пар полюсов машины.
Синхронные двигатели обладают ёмкостной нагрузкой, поэтому их выгодно использовать для компенсации индуктивной нагрузки (повышения коэффициента мощности). Синхронные двигатели применяют там, где нет необходимости частого пуска/остановки и регулирования скорости вращения (например в системах вентиляции).
Синхронный генератор
Обычно в синхронных генераторах якорем является статор, а индуктором — ротор. В индуктор через щётки подают постоянный ток, вращают ротор, тем самым создавая вращающееся магнитное поле, под действием которого в якоре индуцируется переменный ток, который отдаётся в сеть.
Частота вырабатываемого тока (Гц) напрямую связана с частотой вращения ротора (об/мин) соотношением:
где — число пар полюсов машины.
Разновидности синхронных машин :
- Гидрогенератор — явно полюсный синхронный генератор, предназначенный для выработки электрической энергии в работе от гидравлической турбины (при низких скоростях вращения).
- Турбогенератор — неявнополюсный синхронный генератор, предназначенный для выработки электрической энергии в работе от паровой или газовой турбины (при скоростях вращения ротора 6000, 3000, 1500 об/мин.).
- Компенсатор — синхронная электрическая машина (в большинстве случаев неявнополюсная), предназначенная для выработки реактивной мощности (представляет из себя синхронный двигатель на холостом ходу, генерирование реактивной мощности регулируется током возбуждения обмотки индуктора).