Здания с рамными конструкциями из двутавров переменной жесткости
Рамные конструкции из двутавров переменной жесткости разработаны ЦНИИСК им. Кучеренко и ЦНИИпроектлегконструкцией (шифр 828 КМ). Конструкции предназначены для применения в одноэтажных однопролетных зданиях общественного и производственного назначения пролетом 24м, возводимых в I-IV снеговых районах, I-V районах по скоростному напору ветра и в сейсмических районах до 9 баллов включительно, при расчетной температуре наружного воздуха -40°С и выше.
Высота рамных конструкций до низа ригеля 7,2м, шаг рам 6м. Уклон двускатного ригеля рамы 1:10, рассчитан под кровлю полистовой сборки из профилированных листов и полужестких минераловатных плит. Элементы переменного двутаврового сечения в ригеле и стойках изготавливаются из прокатных двутавров с параллельными гранями полок по ГОСТ 26020-83 путем их продольного роспуска по наклонной линии на тавры переменной высоты. В качестве расчетной схемы принята рама с шарнирным опиранием на фундаменты и жесткими узлами в карнизах и коньке. Монтажные узлы рамы распологаются в карнизах и коньковом узлах и выполнены на фланцах толщиной 25мм с применением высокопрочных болтов. Работа ригеля рамы на поперечный изгиб обеспечивается раскреплением верхнего пояса ригеля из плоскости прогонами с шагом 3м, устойчивость стоек из плоскости рамы – распорками, расположенными на отметке 4,2м. Каркас здания с рамными конструкциями состоит из поперечных рам, разрезных прогонов, вертикальных связей и распорок по стойкам рам, стоек и балок торцевых фахверков. Жесткость каркаса в поперечном направлении обеспечивается работой рам, в продольном направлении – вертикальными крестовыми связями и распорками по каждому ряду стоек рам. Функции горизонтальных связей по покрытию для районов с сейсмичностью до 7 баллов, выполняют диафрагмы жесткости, образуемые прогонами и профилированным настилом, которые располагаются по торцам здания и в осях расположения вертикальных связей каркаса. Крепление профнастила к прогонам в зонах диафрагм жесткости осуществляется самонарезающими болтами или дюбелями в каждой волне, а листов профнастила между собой – комбинированными заклепками с шагом для сейсмичности до 7 баллов – 500мм. Для районов с сейсмичностью 8 и 9 баллов устанавливаются крестовые горизонтальные связи по покрытию в торцах здания и в осях расположения вертикальных связей каркаса. В торцах здания рамы не предусмотрены, их заменяют угловые и рядовые стойки фахверка, жестко заделанные в фундаменты и связанные по верху балками, на которые опираются прогоны. Конструкции каркаса рассчитаны на следующие нагрузки: — постоянные (от собственной массы конструкций, покрытия и стен), кратковременные (от снеговых и ветровых нагрузок), технологические (приложенные к покрытию) и сейсмические. Суммарная расчетная вертикальная нагрузка на покрытие без учета собственной массы ригелей рам и прогонов составляет 400 и 3200 Па. При применении в I ветровом районе расчетная вертикальная нагрузка соответственно увеличивается до 2500 и 3300 Па. Серийное изготовление рамных конструкций с элементами переменной жесткости применительно к зданиям физкультурно-оздоровительных комплексов (ФОК) организовано на заводах концерна «Легконструкция» без использования специализированного оборудования. При применении механизированной установки по роспуску и сборке прокатных двутавров в элементы переменной жесткости, разработанной в ЦНИИСК им. Кучеренко, можно снизить трудоемкость по переделу прокатного профиля до 40%. Расход стали на рядовую секцию каркаса здания размером 6х24м с рамными конструкциями переменной жесткости из прокатных двутавров по чертежам КМД определяется по таблице. Наряду с рабочей документацией по альбому шифр 828 КМ разработан также альбом технических решений (шифр 982 ТР) стальных конструкций каркасов одноэтажных зданий с несущими рамами 18 и 24м, с высотой до низа ригеля в карнизной зоне 6/8,4м с подвесным крановым оборудованием грузоподъемностью 3,2т или мостовыми кранами грузоподъемностью 10 т на встроенных эстакадах. Конструкции рам в зависимости от назначения и параметров зданий решены в трех вариантах: * для бескрановых зданий и зданий пролетом 18 м, оборудованных подвесными двухопорными кранами грузоподъемностью 3,2т, все элементы рам имеют переменную высоту сечения и образованы роспуском прокатных двутавров; * для зданий с мостовыми кранами грузоподъемностью 10т все элементы рам имеют переменную высоту сечения из прокатных двутавров, стойки встроенных эстакад соединены решеткой со стойками рам для придания рамам повышенной жесткости в своей плоскости. Совместная работа стоек рам и встроенных эстакад учтена расчетом; * для зданий пролетом 24м, оборудованных подвесными трехопорными кранами грузоподъемностью 3,2т, стойки рам имеют переменную высоту сечения из прокатных двутавров, ригели рам сварные с повышенной гибкостью стенки постоянного сечения. Высокий уровень напряжений по периметру рамы с элементами переменной жесткости по сравнению с рамами, элементы которых имеют постоянное по длине сечение, вызывают повышенную деформативность ригеля и стоек. Это обстоятельство ограничивает применение в рамах, элементы которых образованы роспуском прокатных двутавров, мостовых кранов на консолях с существующими конструкциями реборд и жесткими требованиями по перемещению головок рельсов в процессе эксплуатации здания. Аналогичным образом затруднено применение в рамах пролетом 24м трехопорных подвесных кранов, что потребовало применения в ригеле сварного двутавра с постоянным по длине сечением и гибкой стенкой. Отмеченные ограничения по применению кранового оборудования для подобного типа рам могут быть сняты при освоении производством сварных элементов переменной жесткости из Лисовых деталей. Расход стали в этом случае снижается на 5-12%. Разработана рама со сварными элементами переменной жесткости из листовых деталей под снеговую нагрузку, соответствующую VI району, ветровую – VII району с сейсмичностью до 9 баллов включительно. Конструктивные решения узлов рамы принимались аналогичными узлами по альбому 828 КМ. Наибольшая высота сечений в стойке и вутовой части ригеля в карнизной зоне составляет 900мм, в пролетной зоне ригеля – 850мм. Изготовление ФОКов со сварными элементами переменной жесткости из листовых деталей освоено Кулебакским ЗМК.
Жёсткие рамы зданий со стальным каркасом
Жесткие рамы имеют то преимущество, что поля между колоннами не стеснены наклонными раскосами. Обеспечение жесткости с помощью рам в сооружениях из стальных конструкций — это самый распространенный способ, но при этом всегда нужно проверить, нет ли другого решения. Большепролетные рамные конструкции относительно деформативны, смещение от действия горизонтальных сил в них больше, чем в сплошных или решетчатых конструкциях. Стойки рамы, как правило, служат одновременно колоннами, ригели рамы — балками конструкции перекрытия.
Формы рам
Рамы имеют разнообразные формы. Следующий обзор ограничивается рассмотрением прямоугольных рам. Рамные элементы могут примыкать к углам шарнирно или жестко. Шарниры могут быть предусмотрены как на опорах, так и вверху колонн.
1. Однопролетная рама представляет собой жесткую систему, если из четырех узлов рамы не более трех шарнирные и не менее одного жесткий. В этом случае жесткий узел рамы должен воспринимать весь изгибающий момент. Такая рама называется трехшарнирной.
2. Если рама имеет два жестких узла, то момент, воспринимаемый отдельным узлом рамы, уменьшается почти вдвое. Такие рамы называются двухшарнирными. Если шарниры находятся в опорах колонн, то на фундаменты от ветровой нагрузки передаются только горизонтальные и вертикальные усилия.
3. Самая жесткая из однопролетных рам не имеет шарниров. Фундаменты в этом случае дополнительно воспринимают изгибающие моменты.
4. К однопролетной раме могут быть присоединены другие пролеты, которые могут иметь только шарниры жестких узлов.
5. Если в примыкающих полях некоторые или все узлы жесткие, то получается многопролетная рама, в которой изгибающие моменты в узлах от горизонтальных нагрузок соответственно уменьшаются.
6 и 7. Однопролетные или многопролетные рамы установлены друг на друга, образуя многоэтажные рамы.
8. Промежуточное опирание рамного ригеля на шарнирные стойки.
9. В чердачных этажах возможно применение наклонного ригеля, соответствующего уклону кровли.
Оптимальное число рамных элементов
Часто возникает вопрос, все или только отдельные колонны вовлекаются в работу каркаса как рамные стойки. Разные точки зрения показаны на простом примере.
10. Все поперечные диски являются трехстоечными четырехэтажными рамами. Продольные диски запроектированы в виде шестистоечных четырехэтажных рам. Горизонтальные усилия распределяются на все колонны. Это решение наиболее приемлемо для высоких зданий.
11. В поперечном направлении образуются только два диска многоэтажных рам и только средние колонны жестко связаны с ригелем. В продольном направлении только один пролет выполнен в виде двухстоечной четырехэтажной рамы. Вследствие концентрации усилий в нескольких жестких внутренних колоннах все другие колонны следует рассчитывать как конструкции, несущие только вертикальную нагрузку. Благодаря этому в целом достигается экономия материала. То же самое относится и к фундаментам. Фундаменты, стоящие под основными стойками, должны быть выполнены большего размера, чем все остальные.
12. Университетское здание, составленное из стандартных элементов, имеет одинаковую жесткость в обоих направлениях благодаря многопролетным многоэтажным рамам. Внутренние перегородки не нарушают свободной планировки здания. Многоэтажные рамы в поперечном направлении образованы из попарно расположенных швеллерных прогонов и колонн, в продольном направлении поставлены такие же ветровые ригели между колоннами. Конструкция перекрытия, состоящая из балок перекрытий с шагом 1,8 м и плит, опирается на прогоны. — Каркас нового здания университета в Западном Берлине (Далем), запроектированного по системе Крупп-Монтекс.
13. Двенадцатиэтажное административное здание с квадратным планом и шагом колонн 11 м. Жесткость здания обеспечена расположенными по две в обоих направлениях трехпролетными многоэтажными рамами. Здание имеет лишь четыре внутренние колонны. Благодаря рамной конструкции поля между внутренними колоннами свободны от связей или сплошных дисков. — Административное здание «Уоррен петролеум корпорейшн» в Тульсе, штат Оклахома (США). Архитекторы: Скидмор, Оуингс и Меррил.
14. Обе половины здания гаража имеют смещенные по отношению друг к другу на половину высоты этажа перекрытия, которые с помощью пандусов по системе Дюми соединены друг с другом. Для обеспечения жесткости здания в поперечном направлении запроектированы рамные конструкции. К средним колоннам рам жестко присоединены балки пандусов.
В продольном направлении средние колонны, жестко соединенные с направляющими для инженерных коммуникаций, образуют многоэтажную многопролетную раму с небольшим шагом стоек. Так как многократно статически неопределимая рамная система имеет значительный запас прочности, то случайное выключение из работы отдельного ригеля вследствие повреждения не играет роли.
Эта строительная конструкция является примером экономичного использования элементов, которые изготовлялись для других целей, для обеспечения жесткости здания. — Конструкция стандартного гаража системы Крупп-Монтексгр.
15. В уровне подоконных элементов наружных стен расположены жесткие конструкции, которые вместе с часто поставленными наружными колоннами образуют рамы в плоскости фасада (фасадные рамы). Фасадные балки, имеющие такую же высоту, как подоконные элементы, имеют по сравнению с колоннами очень большую жесткость. Поэтому при действии горизонтальных усилий подоконные балки практически не деформируются. Колонны в месте примыкания фасадных балок жестко закреплены и могут деформироваться лишь в зоне окон. При незначительных поперечных сечениях колонн деформации получаются небольшими, так как свободная длина колонн незначительна, а в восприятии усилий участвует очень много колонн.
16. Фасадные балки со сплошной стенкой.
17. Фасадные балки в виде ферм.
18. В 110-этажных башнях высотой по 411,5 м Международного торгового центра в Нью-Йорке жесткость обеспечивается благодаря рамной конструкции наружных стен. Часто поставленные колонны жестко соединены с высокими подоконными балками со сплошной стенкой.
19. В восьмиэтажном здании три стороны образуются из фасадных рам с решетчатыми фасадными балками, а четвертая сторона выполнена в виде жесткой брандмауэрной (противопожарной) стены.— Конструкция здания Парижского объединения касс взаимопомощи в Марселе. Архитектор Жом.
Устройство жестких узлов в продольном и поперечном направлениях
Доброго времени суток!
Проектируется трехэтажное здание с одним подземным этажом в металлическом каркасе на сплошной жб плите с монолитными перекрытиями по профлисту. Кровля двускатная из профлиста.
Из-за фунд плиты имеем два тем-ных блока 60м и 36м.
Высота этажа 2.85м. Пролеты поперечной рамы по осям: 5,6 — 7 — 5,6м. В продольном направлении шаг 6м.
Поперечная рама по рамной схеме с жесткими узлами. Колонны шарнирно крепятся к фунд. плите.
При рамной схеме поперечные связи не требуются.
Исходя из технологических требований установка продольных связей в продольном направлении затруднительна.
Вопрос: возможно ли установить ригели в продольном направлении с жесткими узлами крепления к колоннам в замен установки связей? Какие здесь могут быть подводные камни?
Или так: могут ли монолитные перекрытия по профлисту выступать в качестве элементов жесткости в продольном направлении, опять таки взамен продольных связей?
Спасибо!
Последний раз редактировалось Sanyaf, 16.12.2012 в 19:22 .
Просмотров: 11505
Конструкции, активные по сечению. Рамы
Металлоконструкции в архитектуре » Конструкции, активные по сечению. Рамы
Рамой называют каркасную плоскую систему, состоящую из элементов, обеспечивающих пролет – ригелей, и элементов, обеспечивающих высоту – стоек.
Для организации внутреннего функционального пространства плоские рамы располагаются в здании параллельно, воспринимая нагрузки от второстепенной системы настила и прогонов. Пространственная работа каркаса из рам обеспечивается путем обустройства системы вертикальных и горизонтальных связей соответственно по стойкам и ригелям. Также жесткость каркаса можно повысить примыканием к железобетонным элементам и диафрагмам.
Преимущества, которые обуславливают широкое применение рам:
Классификация рам
Основы проектирования рам
Рамы относятся к конструкциям, работающим преимущественно по сечению. В ригелях и стойках рам возникают значительные изгибающие моменты, а также продольные и поперечные силы. Характерной особенностью рам является наличие жесткого карнизного узла. Элементы рам рассчитывают на прочность и общую устойчивость в плоскости и из плоскости как сжатоизогнутые, а также проверяют касательные напряжения и местную устойчивость отдельных участков сечения. Контролю также подлежат горизонтальные и вертикальные перемещения рамы, в соответствии с ограничениями по второму предельному состоянию. Наибольшее распространение получили рамы, которые имеют наклонные ригели и вертикальные стойки, шарнирно примыкающие к фундаментам. Такие рамы также называются портальными. При этом коньковый узел выполняется, как правило, жестким для увеличения жесткости и уменьшения значений изгибающих моментов в ригеле, однако может быть и шарнирным. Такой тип рам нашел широкое применение благодаря экономичности и наибольшей функциональности в большинстве типов быстровозводимых зданий при пролетах от 20 до 70 м. Портальные рамы, пролетом до 20 м, в основном изготавливают из горячекатаных профилей, а при больших пролетах применяют сварные двутавровые сечения. В последнее время в рамах находят все более широкое применение перфорированные профили, составные двутавры с гофрированной и гибкой стенкой. Применение эффективных сечений, рационального ломаного очертания и увеличение габаритов в карнизном узле позволяет увеличить пролет рам до 80-100 м. Для усиления ригелей и обеспечения плавности передачи усилий в жестком карнизном и коньковом узлах применяются скошенные элементы – вуты. В случае прокатных элементов вуты представляют собой подваренный тавровый профиль из того же двутавра или листов. В составных сварных профилях вуты представляют собой развитие сечения для достижения необходимых геометрических характеристик. С точки зрения общей устойчивости каркаса, особенно в процессе монтажа, большое значение для рам имеют кровельные и стеновые прогоны, а также связи. В табл. приведены ориентировочные данные для эскизного проектирования портальных бескрановых рам. Минимальный уклон кровли, с учетом возможных прогибов и обеспечения водостока, как правило, принимается около 6°. Стойки тяжелее ригелей и их высота составляет примерно 1/5 пролета рамы. Шаг рам зависит от действующих нагрузок и принятой системы прогонов.
Рамы как конструктивный инструмент архитектурной формы
Наибольшее использование рамные конструкции нашли в одноэтажных производственных зданиях или складах, для которых актуально наличие больших свободных площадей. Архитектурные требования к конструкциям промышленных объектов обычно невысоки, однако рамы с таким же успехом могут быть использованы в несущих каркасах спортивных и демонстрационных залов, выставочных и торговых павильонов, являясь важным элементом формирования выразительности внешней и внутренней архитектурной среды. Визуальная открытость или закрытость рам в здании главным образом зависит от конфигурации каркаса и внешней формы. В свою очередь, оболочка ограждающих конструкций зависит от их типа, а также архитектурных, конструктивных и экономических требований. Так, каркас с применением рам может быть полностью расположен снаружи здания, что позволяет прозрачно показать конструктивный принцип работы рам и придать строению современный вид объекта технической среды. И, наоборот, рамы могут быть полностью расположены внутри оболочки здания, что дает дополнительные возможности выражения и организации внутреннего пространства. Помимо этих противоположных решений, частичное взаимопроникновение рам и ограждающих конструкций позволяют получить дополнительный спектр желаемых визуальных эффектов. На схемах показаны основные типы рам по способу взаимодействия с внутренним функциональным пространством. Поскольку рамные конструкции главным образом проектируются для производственных и складских быстровозводимых зданий, в них часто организовываются внутренние антресольные либо внешние пристроенные этажи для размещения вспомогательных, административных и бытовых помещений. Такие этажи могут быть созданы в балочных перекрытиях между рамами либо возведены на собственных несущих конструкциях. Кроме того, дополнительные перекрытия могут потребоваться для оборудования или организации производственного процесса в нескольких уровнях. Для обслуживания производственного процесса в промышленных предприятиях применяется подвесное грузоподъемное оборудование, которое может крепиться к ригелям рам в виде крановых балок – тельферов, либо мостовое, имеющее подкрановые пути, организованные на стойках каркаса. К несущим конструкциям рам может быть присоединено различное транспортное и вспомогательное оборудование. Для внутреннего естественного освещения основного пространства и антресольных этажей могут быть эффективно применены зенитные фонари, шедовые покрытия и солнцеводы. Двух- и более пролетные рамы проектируют по принципу чередования, когда поперечники имеют общую стойку в местах сопряжения. Для экономии внутреннего пространства в многопролетных рамах шаг внутренних стоек может быть разрежен. При этом в местах отсутствия стоек под ригели подводятся подстропильные балки или фермы, которые передают нагрузку на оставшиеся стойки, сечение которых соответственно должно быть увеличено. Большепролетные рамы, как правило, кроме вутов, имеют переменное сечение и изменяемый угол наклона ригеля, который формируется из отдельных линейных элементов разной жесткости. Ригель ломаного очертания приближает работу рам к арочным конструкциям и дает свободу в организации архитектурной формы. Вместо наклонных ригелей могут быть также использованы криволинейные. Радиус изгиба при этом должен позволять установку ограждающих конструкций кровли. Гибка ограждающих элементов может быть выполнена на заводе либо непосредственно на строительном участке. Последнее может оказаться невыполнимым для некоторых систем ограждающих конструкций, имеющих значительную жесткость, например, для толстых многослойных панелей. Наглядный пример достижения архитектурной выразительности за счет рам каркаса, выступающих за пределы оболочки здания, представлен на рис. В данном случае перфорированный ригель и стояки переменного сечения подчеркивают легкость конструкции, сохраняя при этом свою первичную конструктивную функцию.