Режимы работы трансформатора
Трансформаторы за время эксплуатации работают в разных режимах. Но не все они одинаково сказываются на сроке службы электромагнитного оборудования. Режимы работы силового трансформатора зависят от его нагрузки, напряжения обмоток, температуры масла и обмоток, условий окружающей среды и других параметров.
Режимы работы трансформатора:
- нормальный;
- перегрузочный;
- аварийный.
Нормальные режимы работы трансформатора
К ним относятся номинальный, оптимальный, режим холостого хода и режим параллельной работы.
Номинальный и оптимальный режим
Еще эти режимы трансформатора называют рабочими. Потому что при них напряжение и ток близки к номинальным (на которые рассчитано оборудование) условиям.
Номинальный режим – это когда ток и напряжение на первичной обмотке соответствуют номинальным показателям. Но на деле трансформатор редко работает в таких условиях. Потому что в сети происходят постоянные колебания нагрузки. При таком режиме трансформатор работает исправно. Но коэффициент полезного действия (КПД) оборудования не достигает максимума.
Оптимальный режим – это режим, при котором трансформатор имеет максимальный КПД. Как правило, максимальные КПД трансформатор показывает под нагрузкой 50-70% от номинальной. Современные силовые трансформаторы работают с КПД 90% и выше.
На деле большинство трансформаторов не работают в одном и том же режиме. Потому что нагрузка в сети непостоянная.
Холостой режим трансформатора
При режиме холостого хода на первичную обмотку трансформатора поступает напряжение, а вторичная обмотка не подключена к сети потребителя электроэнергии. В таком режиме КПД равен 0.
На холостом ходу силового трансформатора определяют коэффициент трансформации, мощность потерь в металле и параметры намагничивающей ветви схемы замещения. Для таких измерений на первичную обмотку трансформатора пускают электрический ток номинального напряжения.
А для трансформатора напряжения режим холостого хода является рабочим.
Режим параллельной работы
Два трансформатора устанавливаются в сетях, питающих энергией потребителей первой и второй категории. Важно подключить трансформаторы так, чтобы ни один из них не испытывал перегрузки.
Для этого у трансформаторов:
- должны быть одни и те же группы соединений обмоток;
- коэффициенты трансформации не должны отличаться больше, чем на 0,5 %;
- номинальные мощности должны соотноситься не более, чем один к трем;
- напряжения короткого замыкания должны различаться не более, чем на 10 %;
- должна выполняться фазировка трансформаторов.
Перегрузочный режим
Трансформатор испытывает перегрузки при воздействии нагрузок и температур выше допустимой нормы. Для каждой модели эти показатели свои. Производители силовых трансформаторов предусматривают возможность работы оборудования в условиях перегрузки. Но если устройство испытывает их продолжительное время или регулярно – это уменьшает срок службы оборудования. Допустимые перегрузки описаны в стандартах. Например, для масляных трансформаторов разработан ГОСТ 14209-97.
Аварийный режим
Трансформатор находится в аварийном режиме, если на него воздействует электрический ток, который сильно превосходит номинальные величины. Дальше давать работать оборудованию нельзя. Как правило, в трансформаторах существуют автоматические выключатели. Они отключают питание оборудования.
Признаки аварийного режима:
- громкий и неритмичный шум и треск в баке трансформатора;
- повышение температуры рабочей части трансформатора;
- утечка трансформаторного масла.
Часто аварийный режим возникает из-за короткого замыкания во вторичной обмотке. Исключение – трансформаторы тока и сварочные трансформаторы. Для них режим короткого замыкания является рабочим.
Напряжение во время короткого замыкания (КЗ) – это еще и важный показатель, который влияет на эксплуатацию трансформатора. Его измеряют в процентах. Для трансформаторов со средним показателем мощности напряжение КЗ составляет 5-7%, а для более мощных – 6-12 %.
Важно не допускать работы трансформатора в аварийном режиме вообще и ограничивать его перегрузки. В этом случае оборудование прослужит вам заявленный производителем срок.
49-96 / 62.Измерительные трансформаторы тока и напряжения. Режимы работы, погрешность измерения
Измерительные трансформаторы используют главным образом для подключения электроизмерительных приборов в цепи переменного тока высокого напряжения. При этом электроизмерительные приборы оказываются изолированными от цепей высокого напряжения, что обеспечивает безопасность работы обслуживающего персонала. Кроме того, измерительные трансформаторы позволяют расширять пределы измерения приборов, т. е. измерять большие токи и напряжения с помощью сравнительно несложных приборов, рассчитанных для измерения малых токов и напряжений. В ряде случаев измерительные трансформаторы служат для подключения к цепям высокого напряжения обмоток реле, обеспечивающих защиту электрических установок от аварийных режимов.
Типы измерительных трансформаторов. Измерительные трансформаторы подразделяют на два типа — трансформаторы напряжения и трансформаторы тока. Первые служат для включения вольтметров и других приборов, реагирующих на значение напряжения (например, катушек напряжения ваттметров, счетчиков, фазометров и различных реле). Вторые служат для включения амперметров и токовых катушек указанных приборов.
Измерительные трансформаторы изготовляют мощностью от пяти до нескольких сотен вольт-ампер; они рассчитаны для совместной работы со стандартными приборами (амперметрами на 1; 2; 2,5 и 5 А, вольтметрами на 100 и В).
Трансформатор напряжения. Его выполняют в виде двухобмоточного понижающего трансформатора (рис. 3.33, а). Для обеспечения безопасности работы обслуживающего персонала вторичную обмотку тщательно изолируют от первичной и заземляют.
Рис. 3.33. Схема включения (а) и векторная диаграмма измерительного трансформатора напряжения (б)
Так как сопротивления обмоток вольтметров и других приборов, подключаемых к трансформатору напряжения, велики, то он практически работает в режиме холостого хода. В этом режиме можно с достаточной степенью точности считать, что Ul = U‘2=U2k.
В действительности ток холостого хода I0 (а также небольшой ток нагрузки) создает в трансформаторе падение напряжения, поэтому, как видно из векторной диаграммы (рис. 3.33, б), и между векторами этих напряжений имеется некоторый сдвиг по фазе δu. В результате при измерениях образуются некоторые погрешности.
В измерительных трансформаторах напряжения различают два вида погрешностей:
а) относительную погрешность напряжения
б) угловую погрешность δu; за ее значение принимают угол между векторами и — . Она влияет на результаты измерений, выполненных с помощью ваттметров, счетчиков, фазометров и прочих приборов, показания которых зависят не только от силы тока и напряжения, но и от угла сдвига фаз между ними. Угловая погрешность считается положительной, если вектор опережает вектор .
В зависимости от значения допускаемых погрешностей стационарные трансформаторы напряжения подразделяют на три класса точности: 0,5; 1 и 3, а лабораторные — на четыре класса: 0,05; 0,1; 0,2 и 0,5. Обозначение класса соответствует значению относительной погрешности уи при номинальном напряжении Ulном. Угловая их погрешность составляет 20. 40 угл. мин.
Выпускаемые промышленностью трансформаторы напряжения сохраняют класс точности при изменении первичного напряжения от 80 до 120% номинального.
Рис. 3.34. Схема включения измерительного трансформатора тока (а), общий вид проходного изолятора (б) и векторная диаграмма (в):
1— медный стержень (первичная обмотка); 2 — вторичная обмотка; 3 — магнитопровод
Для уменьшения погрешностей уи и δи сопротивления обмоток трансформатора и делают по возможности малыми, а магнитопровод выполняют из высококачественной стали достаточно большого поперечного сечения, чтобы в рабочем режиме он не был насыщен. Благодаря этому обеспечивается значительное уменьшение тока холостого хода.
Трансформатор тока. Его выполняют в виде двухобмоточного повышающего трансформатора (рис. 3.34, а) или в виде проходного трансформатора, у которого первичной обмоткой служит провод, проходящий через окно магнитопровода. В некоторых конструкциях магнитопровод и вторичная обмотка смонтированы на проходном изоляторе, служащем для ввода высокого напряжения в силовой трансформатор или другую электрическую установку. Первичной обмоткой трансформатора служит медный стержень, проходящий внутри изолятора (рис. 3.34, б).
Сопротивления обмоток амперметров и других приборов, подключаемых к трансформатору тока, обычно малы. Поэтому он практически работает в режиме короткого замыкания, при котором токи I1 и во много раз больше тока I0, и с достаточной степенью точности можно считать, что
В действительности из-за наличия тока холостого хода в рассматриваемом трансформаторе и между векторами этих токов имеется некоторый угол, отличный от 180° (рис. 3.34, в). Это создает относительную токовую погрешность
и угловую погрешность, измеряемую углом δi, между векторами и — . Погрешность δi считается положительной, если вектор — опережает вектор .
В зависимости от значения допускаемых погрешностей трансформаторы тока подразделяют на пять классов точности: стационарные — 0,2; 0,5; 1; 3; 10 и лабораторные — 0,01; 0,02; 0,05; 0,1; 0,2. Приведенные цифры соответствуют допускаемой для данного класса токовой погрешности при номинальном значении тока. Угловая погрешность составляет 10. 120 угл. мин.
Для уменьшения токовой и угловой погрешностей магнитопровод трансформатора тока изготовляют из высококачественной стали достаточно большого сечения, чтобы в рабочем режиме он был не насыщен (B = 0,06. 0,1 Тл). При этих условиях намагничивающий ток будет мал.
Следует отметить, что размыкание цепи вторичной обмотки трансформатора тока недопустимо. Трансформатор переходит в режим х.х. и его результирующая МДС, в рабочем режиме равная , становится (рис. 3.34, в). В результате резко (в десятки и сотни раз) возрастает магнитный поток в магнитопроводе, а индукция в нем достигает значения В>2 Тл, что приводит к сильному возрастанию магнитных потерь в стали; при этом трансформатор может сгореть. Еще большую опасность представляет резкое повышение напряжения на зажимах вторичной обмотки до нескольких сотен и даже тысяч вольт. Для предотвращения режима холостого хода при отключении приборов следует замыкать вторичную обмотку трансформатора тока накоротко.
Измерительный тр-р тока (ТТ)- Это спец тр-р,работающий в режиме КЗ и предназначен для расширения пределов измерений приборов, реагир на величину тока(амперметр,ток катушки)
Токовый датчик для измерения параметров переменного тока может рассматриваться как разновидность простого трансформатора тока. Трансформатор по существу имеет две катушки на общем железном сердечнике. Напряжение I1подаётся на катушку В1, наводя через общий сердечник напряжение I2 на катушке В2.
Тот же самый принцип используется в токовом датчике (см. рис.). На замкнутом магнитопроводе в виде клещей замкнутых на проводнике, находится катушка B2 , по которой протекает электрический ток I1.
В1 это просто проводник, на котором пользователь проводит измерения, при количестве обмоток, образуемых проводником — равным единице. Токовый датчик замкнутый вокруг проводника вырабатывает выходной ток, значения которого определяются количеством витков на катушке В2, по формуле:
I2 (выход датчика) = (N1 / N2) x I1, где N1 = 1 или, иначе, Выходное значение датчика = I1/N2 (где N2 это число витков на катушке датчика).
Часто бывает очень трудно измерить I1 непосредственно, так как значение силы тока слишком велико, чтобы подавать его непосредственно на цепь измерительного прибора, или просто потому, что недопустимо разрывать цепь. Для обеспечения приемлемого выходного значения на катушке датчика размещается большое количество витков.
U1-U2-короткозамк контур-размаг тр-р
Количество витков на катушке датчика в большинстве случаев имеют кратные значения (например, 100, 500 или 1000).
Если N2 равно 1000, в этом случае клещи имеют соотношение N1/ N2 или 1/1000, которое обозначается как 1000:1. Ещё один способ выразить соотношение это сказать что выходное значение датчика 1 мА/А — выходное значение 1 мА (I2) для 1А (или 1А@1000А) появляющееся на дисплее датчика. Существует множество других возможных соотношений: 500:5, 2000:2, 3000:1, 3000:5 и так далее — для различного применения. В большинстве случаев токовый датчик используется с цифровым мультиметром. Рассмотрим для примера токовый датчик с соотношением 1000:1 с токовым выходом и соотношением 1мА/A.
Данное соотношение означает, что ток, протекающий через захваты токовых клещей преобразуется в ток на выходе следующим образом: Входной ток проводника
На какие режимы работы рассчитаны измерительные трансформаторы а) напряжения, б) тока?
1.а) холостой ход; б) короткое замыкание.
2.а) короткое замыкание; б) холостой ход.
3.оба на режим короткого замыкания.
4. оба на режим холостого хода.
Лучший ответ
Трансформатор напряжения работает в режиме, близком к холостому ходу.
Трансформатор тока — на режим, близкий к короткому замыканию.
Остальные ответы
Первый вариант
Трансформатор напряжения. Его выполняют в виде двухобмоточного понижающего трансформатора (рис. 2.72, а) . Для обеспечения безопасности работы обслуживающего персонала вторичную обмотку тщательно изолируют от первичной и заземляют. Условное обозначение трансформатора напряжения такое же, как двухобмоточного трансформатора.
Так как сопротивления обмоток вольтметров и других приборов, подключаемых к трансформатору напряжения, велики, то он практически работает в режиме холостого хода
Трансформатор тока.
Сопротивления обмоток амперметров и других приборов, подключаемых к трансформатору тока, обычно малы. Поэтому он практически работает в режиме короткого замыкания, при котором токи I1 и I’2 во много раз больше тока I0, и с достаточной степенью точности можно считать, чтоI1 = I’2 = I2/k.
Измерительные трансформаторы тока в схемах релейной защиты и автоматики
Энергетическое оборудование электрических подстанций организационно разделяется на два вида устройств:
1. силовые цепи, по которым передается вся мощность транспортируемой энергии;
2. вторичные устройства, позволяющие контролировать происходящие процессы в первичной схеме и управлять ими.
Силовое оборудование располагают на открытых площадках или закрытых распределительных устройствах, а вторичное — на релейных панелях, внутри специальных шкафов или отдельных ячеек.
Промежуточным звеном, выполняющим функцию передачи информации между силовой частью и органами измерения, контроля, защит и управления являются измерительные трансформаторы. Они, как и все подобные устройства, имеют две стороны с разным значением напряжения:
1. высоковольтную, которая соответствует параметрам первичной схемы;
2. низковольтную, позволяющую снизить опасность воздействия силового оборудования на обслуживающий персонал и материальные затраты на создание устройств управления и контроля.
Прилагательное «измерительные» отображает назначение этих электротехнических устройств, поскольку они очень точно моделируют все процессы, происходящие на силовом оборудовании, и разделяются на трансформаторы:
2. напряжения (ТН).
Они работают по общим физическим принципам трансформации, но обладают различным конструктивным исполнением и способами включения в первичную схему.
Как сделаны и работают трансформаторы тока
Принципы работы и устройства
В конструкцию измерительного трансформатора тока заложено преобразование векторных величин токов больших значений, протекающих по первичной схеме, в пропорционально уменьшенные по величине и точно так же направленные вектора во вторичных цепях.
Конструктивно трансформаторы тока, как и любой другой трансформатор, состоит из двух изолированных обмоток, расположенных вокруг общего магнитопровода. Он изготавливается шихтованными металлическими пластинами, для плавки которых используются специальные сорта электротехнических сталей. Это делается для того, чтобы снизить магнитное сопротивление на пути прохождения магнитных потоков, циркулирующих по замкнутому контуру вокруг обмоток и уменьшить потери на вихревые токи.
Трансформатор тока для схем релейных защит и автоматики может иметь не один магнитопровод, а два, отличающиеся количеством пластин и общим объемом используемого железа. Это делается для создания двух типов обмоток, которые могут надежно работать при:
1. номинальных условиях эксплуатации;
2. или при значительных перегрузках, вызванных токами коротких замыканий.
Первые конструкции используются для выполнения измерений, а вторые применяются для подключения защит, отключающих возникающие ненормальные режимы.
Устройство обмоток и клемм подключения
Обмотки трансформаторов тока, рассчитанные и изготовленные на постоянную работу в схеме электроустановки, отвечают требованиям безопасного прохождения тока и его теплового воздействия. Поэтому они выполняются из меди, стали или алюминия с площадью поперечного сечения, исключающей повышенный нагрев.
Поскольку первичный ток всегда больше вторичного, то обмотка для него значительно выделяется своими габаритами, как показано на картинке ниже для правого трансформатора.
На левой и средней конструкции силовой обмотки вообще нет. Вместо нее предусмотрено отверстие в корпусе, через которое пропускается питающий силовой электрический провод или стационарная шина. Такие модели используются, как правило, в электроустановках до 1000 вольт.
На выводах обмоток трансформаторов всегда предусмотрено стационарное крепление для подключения шин и соединительных проводов с помощью болтов и винтовых зажимов. Это одно из ответственных мест, где может быть нарушен электрический контакт, который способен привести к поломкам или нарушениям точной работы измерительной системы. Качеству его затяжки в первичной и вторичной схеме всегда обращается внимание при эксплуатационных проверках.
Клеммы трансформаторов тока маркируются на заводе во время изготовления и обозначаются:
- Л1 и Л2 для входа и выхода первичного тока;
- И1 и И2 — вторичного.
Эти индексы означают направление навивки витков относительно друг друга и влияют на правильность подключения силовых и моделируемых цепей, характеристику распределения векторов токов по схеме. На них обращают внимание при первичном монтаже трансформаторов или заменах неисправных устройств и даже исследуют различными методиками электрических проверок как до сборок устройств, так и после монтажа.
Количество витков в первичной W1 и вторичной W2 схеме не одинаково, а сильно отличается. Высоковольтные трансформаторы тока обычно имеют всего одну прямую шину, пропущенную сквозь магнитопровод, которая работает в качестве силовой обмотки. Вторичная же катушка имеет большее количество витков, которое влияет на коэффициент трансформации. Его для удобства эксплуатации записывают дробным выражением номинальных величин токов в обеих обмотках.
Например, запись 600/5 на шильдике корпуса означает, что трансформатор предназначен для включения в цепь высоковольтного оборудования с номинальным током 600 ампер, а во вторичной схеме будет трансформироваться только 5.
Каждый измерительный трансформатор тока включается в свою фазу первичной сети. Количество же вторичных обмоток для устройств релейной защиты и автоматики обычно увеличивается для раздельного использования в кернах токовых цепей для:
- измерительных приборов;
- общих зашит;
- защит шин и ошиновок.
Такой способ позволяет исключить влияние менее ответственных цепочек на более значимые, упростить их обслуживание и проверки на действующем оборудовании, находящемся под рабочим напряжением.
С целью маркировки выводов таких вторичных обмоток применяют обозначение 1И1, 1И2, 1И3 для начал и 2И1, 2И2, 2И3 — концов.
Каждая модель трансформатора тока рассчитана для работы с определенной величиной высоковольтного напряжения на первичной обмотке. Слой изоляции, расположенный между обмотками и корпусом, должен длительно выдерживать потенциал силовой сети своего класса.
С внешней стороны изоляции высоковольтных трансформаторов тока в зависимости от назначения может применяться:
- фарфоровое покрытие;
- загустевшие эпоксидные смолы;
- некоторые виды пластмасс.
Эти же материалы могут быть дополнены трансформаторной бумагой или маслом для изоляции внутренних пересечений проводов на обмотках и исключения межвитковых замыканий.
Класс точности ТТ
Идеально трансформатор теоретически должен работать точно, без внесения погрешностей. Однако, в реальных конструкциях происходят потери энергии на внутренний нагрев проводов, преодоление магнитного сопротивления, образование вихревых токов.
За счет этого хоть немного, но нарушается процесс трансформации, что сказывается на точности воспроизводства в масштабе первичных векторов тока их вторичными величинами с отклонениями ориентации в пространстве. Все трансформаторы тока имеют определенную погрешность измерения, которая нормируется процентным выражением отношения абсолютной погрешности к номинальному значению по амплитуде и углу.
Класс точности трансформаторов тока выражается числовыми значениями «0,2», «0,5», «1», «3», «5»,»10».
Трансформаторы с классом 0,2 работают для выполнения особо важных лабораторных замеров. Класс 0,5 предназначен для точных измерений токов, используемых приборами расчетных учетов 1-го уровня в коммерческих целях.
Измерения тока для работы реле и контрольных учетов 2-го уровня производится классом 1. К трансформаторам тока 10-го класса точности подключаются катушки отключения приводов. Они точно работают в режиме коротких замыканий первичной сети.
Схемы включения ТТ
В энергетике в основном применяются трех или черырехпроводные линии электропередач. Для контроля токов, проходящих по ним, используются разные схемы подключения измерительных трансформаторов.
1. Силовое оборудование
На фотографии показан вариант измерения токов трехпроводной силовой цепи 10 киловольт с помощью двух трансформаторов тока.
Здесь видно, что шины присоединения первичных фаз А и С подключены болтовым соединением к выводам трансформаторов тока, а вторичные цепи спрятаны за ограждение и выведены отдельным жгутом проводов в защитной трубе, которая направляется в релейный отсек для подключения цепей на клеммники.
Этот же принцип монтажа применяется и в других схемах высоковольтного оборудования, как показано на фотографии для сети 110 кВ.
Здесь корпуса измерительных трансформаторов смонтированы на высоте с помощью заземленной железобетонной платформы, что требуют правила безопасности. Подключение первичных обмоток к силовым проводам выполнено в рассечку, а все вторичные цепи выведены в рядом расположенный ящик с клеммной сборкой.
Кабельные соединения вторичных токовых цепей защищены от случайного внешнего механического воздействия металлическими чехлами и бетонными плитами.
2. Вторичные обмотки
Как уже отмечено выше, выходные керны трансформаторов тока собираются для работы с измерительными приборами или защитными устройствами. Это влияет на сборку схемы.
Если необходимо контролировать по амперметрам ток нагрузки в каждой фазе, то используется классический вариант подключения — схема полной звезды.
В этом случае каждый прибор показывает величину тока своей фазы с учетом угла между ними. Использование автоматических самописцев в этом режиме наиболее удобно позволяет отображать вид синусоид и строить по ним векторные диаграммы распределения нагрузок.
Часто на отходящих фидерах 6?10 кВ в целях экономии устанавливают не три, а два измерительных трансформатора тока без задействования одной фазы В. Этот случай показан на расположенном выше фото. Он позволяет включить амперметры по схеме неполной звезды.
За счет перераспределения токов на дополнительном приборе получается отобразить векторную сумму фаз А и С, которая противоположно направлена вектору фазы В при симметричном режиме нагрузки сети.
Случай включения двух измерительных трансформаторов тока для контроля линейного тока с помощью реле показан на картинке ниже.
Схема полностью позволяет контролировать симметричную нагрузку и трехфазные короткие замыкания. При возникновении двухфазных КЗ, особенно АВ или ВС, чувствительность такого фильтра сильно занижена.
Распространенная схема контроля токов нулевой последовательности создается подключением измерительных трансформаторов тока в схему полной звезды, а обмотки контрольного реле к объединенному проводу нуля.
Ток, проходящий через обмотку создан сложением всех трех векторов фаз. При симметричном режиме он сбалансирован, а во время возникновения однофазных или двухфазных КЗ происходит выделение в реле составляющей дисбаланс величины.
Особенности эксплуатации измерительных трансформаторов тока и их вторичных цепей
При работе трансформатора тока создается баланс магнитных потоков, образованных токами в первичной и вторичной обмотке. В результате они уравновешены по величине, направлены встречно и компенсируют влияние созданных ЭДС в замкнутых цепях.
Если первичную обмотку разомкнуть, то по ней ток перестанет протекать и все вторичные схемы будут просто обесточены. А вот вторичную цепь при прохождении тока по первичной размыкать нельзя, иначе под действием магнитного потока во вторичной обмотке вырабатывается электродвижущая сила, которая не тратится на протекание тока в замкнутом контуре с малым сопротивлением, а используется в режиме холостого хода.
Это приводит к появлению на разомкнутых контактах высокого потенциала, который достигает несколько киловольт и способен пробить изоляцию вторичных цепей, нарушить работоспособность оборудования, нанести электрические травмы обслуживающему персоналу.
По этой причине все переключения во вторичных цепях трансформаторов тока производят по строго определенной технологии и всегда под надзором контролирующих лиц без разрыва токовых цепей. Для этого используют:
- специальные виды клеммников, позволяющие устанавливать дополнительную закоротку на время разрыва выводимого из работы участка;
- испытательные токовые блоки с закорачивающими перемычками;
- специальные конструкции переключателей.
Регистраторы аварийных процессов
Измерительные приборы делят по виду фиксации параметров при:
- номинальном режиме эксплуатации;
- возникновении сверхтоков в системе.
Чувствительные элементы регистраторов прямо пропорционально воспринимают поступающий на них сигнал и также отображают его. Если величина тока поступила на их вход с искажением, то эта погрешность будет введена в показания.
По этой причине приборы, предназначенные для измерения аварийных токов, а не номинальных, подключают в керны защит трансформаторов тока, а не измерений.
Об устройстве и принципах работы измерительных трансформаторов напряжения читайте здесь: Измерительные трансформаторы напряжения в схемах релейной защиты и автоматики
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети: