Виды резисторов и их обозначения на схеме
Перейти к содержимому

Виды резисторов и их обозначения на схеме

  • автор:

Резисторы — виды и обозначения на схемах

Резисторы - виды и обозначения на схемах

Каждый, кто работает с электроникой, или когда-нибудь видел электронную схему, знает, что практически ни одно электронное устройство не обходится без резисторов.

Функция резистора в схеме может быть совершенно разной: ограничение тока, деление напряжения, рассеивание мощности, ограничение времени зарядки или разрядки конденсатора в RC-цепочке и т. д. Так или иначе, каждая из этих функций резистора осуществима благодаря главному свойству резистора — его активному сопротивлению.

Само же слово «резистор» — это русскоязычное прочтение английского слова «resistor» , которое в свою очередь происходит от латинского «resisto» — сопротивляюсь. В электрических цепях применяют постоянные и переменные резисторы, и предметом данной статьи будет обзор основных видов постоянных резисторов, так или иначе встречающихся в современных электронных устройствах и на их схемах.

Максимальная рассеиваемая резистором мощность

Максимальная рассеиваемая резистором мощность

В первую очередь постоянные резисторы классифицируются по максимальной рассеиваемой компонентом мощности: 0,062 Вт, 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 3 Вт, 4 Вт, 5 Вт, 7 Вт, 10 Вт, 15 Вт, 20 Вт, 25 Вт, 50 Вт, 100 Вт и даже больше, вплоть до 1 кВт (резисторы для особых применений).

Данная классификация не случайна, ведь в зависимости от назначения резистора в схеме и от условий, в которых должен работать резистор, рассеиваемая на нем мощность не должна привести к разрушению самого компонента и компонентов расположенных поблизости, то есть в крайнем случае резистор должен разогреться от прохождения по нему тока, и суметь рассеять тепло.

Керамические резисторы

Например, керамический резистор с цементным заполнением SQP-5 (5 ватт) номиналом 100 Ом уже при 22 вольтах постоянного напряжения, длительно приложенных к его выводам, разогреется более чем до 200°C, и это необходимо учитывать.

Так, лучше выбрать резистор необходимого номинала, допустим на те же 100 Ом, но с запасом по максимальной рассеиваемой мощности, скажем, на 10 ватт, который в условиях нормального охлаждения не разогреется выше 100°C — это будет менее опасно для электронного устройства.

SMD резисторы

SMD резисторы для поверхностного монтажа с максимальной рассеиваемой мощностью от 0,062 до 1 ватта — также можно встретить сегодня на печатных платах. Такие резисторы так же как и выводные всегда берутся с запасом по мощности. Например в 12 вольтовой схеме для подтягивания потенциала к минусовой шине можно использовать SMD резистор на 100 кОм типоразмера 0402. Или выводной на 0,125 Вт, поскольку рассеиваемая мощность будет в десятки раз дальше от максимально допустимой.

Проволочные и непроволочные резисторы, точность резисторов

Точность резисторов

Резисторы для различных целей используют разные. Не желательно, например, проволочный резистор ставить в высокочастотную цепь, а для промышленной частоты 50 Гц или для цепи постоянного напряжения достаточно и проволочного.

Проволочные резисторы изготавливают путем намотки проволоки из манганина, нихрома или константана на керамический или порошковый каркас.

Высокое удельное сопротивление данных сплавов позволяет получить требуемый номинал резистора, однако несмотря на бифилярную намотку, паразитная индуктивность компонента все равно остается высокой, именно по этой причине проволочные резисторы не подходят для высокочастотных схем.

Непроволочные резисторы изготавливают не из проволоки, а из проводящих пленок и смесей на основе связующего диэлектрика. Так, выделяют тонкослойные (на основе металлов, сплавов, оксидов, металлодиэлектриков, углерода и боруглерода) и композиционные (пленочные с неорганическим диэлектриком, объемные и пленочные с органическим диэлектриком).

Непроволочные резисторы — это зачастую резисторы повышенной точности, которые отличаются высокой стабильностью параметров, способны работать при высоких частотах, в высоковольтных цепях и внутри микросхем.

Резисторы в принципе подразделяются на резисторы общего назначения и специального назначения. Резисторы общего назначения выпускаются номиналами от долей ома до десяти мегаом. Резисторы специального назначения могут быть номиналом от десятков мегаом до единиц тераом, и способны работать под напряжением 600 и более вольт.

Специальные высоковольтные резисторы способны работать в высоковольтных цепях с напряжением в десятки киловольт. Высокочастотные способны работать с частотами до нескольких мегагерц, поскольку обладают исключительно малыми собственными емкостями и индуктивностями. Прецизионные и сверхпрецизионные отличаются точностью номиналов от 0,001% до 1%.

Номиналы резисторов и их маркировка

Номиналы резисторов

Резисторы выпускаются на различные номиналы, и есть так называемые ряды резисторов, например широко распространенный ряд Е24. Вообще, стандартизированных рядов у резисторов шесть: Е6, Е12, Е24, Е48, Е96 и Е192. Число после буквы «Е» в названии ряда отражает количество значений номиналов на десятичный интервал, и в Е24 этих значений 24.

Номинал резистора обозначается числом из ряда, умноженным на 10 в степени n, где n — целое отрицательное или положительное число. Каждый ряд характеризуется своим допустимым отклонением.

Маркировка резисторов

Цветовая маркировка выводных резисторов в виде четырех или пяти полос давно стала традиционной. Чем больше полос — тем выше точность. На рисунке приведен принцип цветовой маркировки резисторов с четырьмя и пятью полосами.

Резисторы для поверхностного монтажа (SMD – резисторы)

Резисторы для поверхностного монтажа (SMD – резисторы) с допуском в 2%, 5% и 10% маркируются цифрами. Первые две цифры из трех образуют число, которое необходимо умножить на 10 в степени третьего числа. Для обозначения точки в десятичной дроби, на ее месте ставят букву R. Маркировка 473 обозначает 47 умножить на 10 в степени 3, то есть 47х1000 = 47 кОм.

SMD резисторы начиная с типоразмера 0805, с допуском в 1%, имеют четырехзначную маркировку, где первые три — мантисса (число, которое следует умножить), а четвертая — степень числа 10, на которое следует умножить мантиссу, чтобы получить значение номинала. Так, 4701 обозначает 470х10 = 4,7 кОм. Для обозначения точки в десятичной дроби, на ее место ставят букву R.

Две цифры и одна буква применяются в маркировке SMD резисторов типоразмера 0603. Цифры — это код определения мантиссы, а буквы — код показателя степени числа 10 — второго множителя. 12D обозначает 130х1000 = 130 кОм.

Обозначение резисторов на схемах

На схемах резисторы обозначаются белым прямоугольником с надписью, и в надписи иногда содержится как информация о номинале резистора, так и информация о его максимальной рассеиваемой мощности (если она критична для данного электронного устройства). Вместо точки в десятичной дроби обычно ставят букву R, K, M – если имеются ввиду Ом, кОм и МОм соответственно. 1R0 – 1 Ом; 4K7 – 4,7 кОм; 2M2 – 2,2 МОм и т. д.

Чаще в схемах и на платах резисторы просто нумеруются R1, R2 и т. д., а в сопроводительной документации к схеме или плате дается список компонентов по этими номерами.

Обозначение резисторов на схемах

Относительно мощности резистора, на схеме она может быть указана надписью буквально, например 470/5W – значит — 470 Ом, 5 ваттный резистор или символом в прямоугольнике. Если прямоугольник пустой, то резистор берется не очень мощный, то есть 0,125 — 0,25 ватт, если речь о выводном резисторе или максимум типоразмера 1210, если выбран резистор SMD.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Виды резисторов их цветовая маркировка (расшифровка), и обозначение на схеме

Резистором называется элемент схемы, используемый для ограничения тока в электрических цепях. Изобретателем резистора считается английский физик Генри Кавендиш (Henry Cavendish): в 1776 г. он начал изучать удельное сопротивление проводников и впоследствии разработал первые проволочные резисторы. Спустя 150 лет, в конце 1920 г., физик Б. И. Каминский создал первые непроволочные углеродистые резисторы, а спустя еще несколько лет появились металлизированные резисторы с улучшенными тепловыми свойствами. Совершенствование резисторов продолжается и в наши дни.

Основные требования к резисторам приведены в ГОСТ 28608-90 (МЭК 115-1-82) в этом же стандарте можно найти ссылки к другим стандартам, в которых рассматриваются частные требования и методы испытаний.

Виды резисторов

Постоянные резисторы классифицируются по нескольким признакам. Первый из них — по способу монтажа. Выделяются SMD-резисторы и резисторы для навесного монтажа и монтажа в отверстия. В последнее время к этим двум группам добавляют третью — резисторы, встраиваемые в печатную плату. Максимальная мощность рассеивания SMD-резисторов типоразмеров 01005…2512 составляет 0,031–1 Вт соответственно, а резисторов для навесного монтажа и монтажа в отверстия — 0,125–1000 Вт.

Также резисторы делятся на изолированные и неизолированные. Неизолированные виды резисторов не допускают контакта с другими компонентами и токоведущими частями изделия, в то время как изолированные имеют изоляционное покрытие и защищены от электрического контакта. Для защиты от воздействия окружающей среды доступны герметизированные типы резисторов.

Классифицируются резисторы и по технологии изготовления. Существуют два вида — проволочные и непроволочные. Непроволочные резисторы подразделяются на следующие типы:

  • углеродистые
  • металлоуглеродистые
  • металлодиэлектрические
  • металлоокисные;
  • металлофольговые
  • пленочные:
    • тонкопленочные;
    • толстопленочные.

    Кроме того, предусмотрена классификация резисторов в зависимости от назначения:

    • прецизионные и сверхпрецизионные резисторы с допустимым отклонением сопротивления от номинального значения в пределах 0,0005–0,5 %;
    • высокочастотные резисторы с минимальной величиной паразитной индуктивности и емкости;
    • высоковольтные резисторы для работы в цепях с напряжением вплоть до десятков киловольт;
    • высокоомные резисторы с сопротивлением до нескольких ТОм;
    • токочувствительные резисторы и резисторы со сверхнизким сопротивлением вплоть до 100 мкОм;
    • высокотемпературные резисторы с рабочей температурой до +200–300 °С.

    Цветовая маркировка резисторов

    Маркировка резисторов для монтажа в отверстия показана на рис. 1. На рис 2 показана расшифровка цветовой кодировки. Первые три полосы, расположенные слева, означают величину сопротивления, четвертая полоса это множитель, пятая отображает отклонение величины сопротивления от номинального значения, а шестая кодирует температурный коэффициент сопротивления (ТКС). Если используется 5-полосная маркировка, то информация о ТКС отсутствует. При 4-полосной маркировке также отсутствует кодировка ТКС, а величина сопротивления кодируется только двумя левыми полосами. При 5- и 6-полосной маркировке, в мантиссе числа сопротивления используется 3 цифры, что дает возможность маркировать все значения сопротивлений резисторов из рядов E48, E96 и E192. Например, сопротивления 332 кОм можно промаркировать только с помощью 5- и 6-полосная маркировка и нельзя с помощью 4-полосной маркировки.

    Рис. 1. Цветовая маркировка резисторов

    Рис. 2. Расшифровка цветовой кодировки

    Иначе производится маркировка SMD-резисторов. При трехзначной маркировке резисторов с сопротивлением свыше 10 Ом первые две цифры отображают начальное значение сопротивления, а последняя цифра —число нулей. Например, маркировка «473» означает сопротивление 47000 Ом = 47 кОм. Если используется четырехзначная маркировка, то первые три цифры отображают начальное значение, а последняя цифра — число нулей. Например, маркировка «4703» кодирует сопротивление 470 000 Ом = 470 кОм. При маркировке резисторов с сопротивлением менее 10 Ом в качестве запятой используется символ R. Так, маркировка «4R7» кодирует сопротивление 4,7 Ом, а маркировка «R47» означает сопротивление 0,47 Ом. Обратите внимание, что при трехзначной маркировке допустимое отклонение от номинального значения может быть ±2%, ±5% или ±10%, а при четырехзначной маркировке допустимое отклонение составляет ±1%.

    Нюансы выбора

    Обычно при выборе резистора разработчики руководствуются номинальным значением сопротивления, допустимым отклонением сопротивления от номинального значения и рассеиваемой мощностью. Как правило, подобный подход оправдан, но бывают и исключения. Рассмотрим два особенных случая.

    Для начала обратим внимание на упрощенную эквивалентную схему резистора, показанную на рис. 3. На ней приняты следующие обозначения: RН — идеальный резистор; RК — сопротивление контактов резистора, RИЗ — сопротивление изоляции резистора (в нашем случае этим сопротивлением можно пренебречь); LR и CR — паразитная индуктивность и емкость резистора.

    К сожалению, избавиться от паразитных параметров резисторов невозможно. Проводник с током порождает магнитное поле, следовательно, имеет индуктивность. Нетрудно увидеть, что наибольшей индуктивностью обладают обычные проволочные резисторы, которые представляют собой катушку с воздушным сердечником. Этот же тип резисторов имеет и наибольшую паразитную емкость из-за дополнительной межвитковой емкости. Минимальные паразитные параметры имеют специальные СВЧ резисторы. Обычно это пленочные резисторы или резисторы, выполненные в виде тонкой квадратной металлизированной пластины

    Иногда можно встретить термин «безиндуктивный резистор», но это лишь маркетинговая уловка, такой резистор имеет минимальную, но не равную нулю индуктивность. «Безиндуктивными» резисторами обычно называют проволочные резисторы с бифилярной (встречно параллельной) намоткой. Стоимость таких резисторов выше из-за увеличенного расхода проволоки.

    Таким образом, эквивалентная схема резистора представляет собой колебательный контур. Собственная частота колебательного контура описывается известным выражением ω0 = √1/(LR×CR), а степень затухания — β =(RН/2) × √CR/LR.

    Рис. 3. Упрощенная эквивалентная схема резистора

    Для применения в цепях СВЧ с частотами несколько гигагерц или несколько десятков гигагерц используются специальные высокочастотные резисторы с минимальными паразитными индуктивностями и емкостями. В этом случае значение резонансной частоты крайне велико и она не сказывается на работе схемы. Казалось бы, в цепях с частотами несколько десятков или сотен мегагерц паразитными параметрами можно пренебречь, но дело не только в частоте: при крутых фронтах импульсов даже небольшой частоты резонансная цепь может породить звон на фронте импульса, который добавится к пульсациям на шинах распределенной системы питания.

    Следует помнить, что при плотном монтаже у резистора возникает дополнительная индуктивная и емкостная связь с соседними компонентами и проводниками. Наименьшие паразитные параметры у SMD-резисторов из-за минимальной длины выводов.

    Еще одним примером случая, когда некорректный выбор вида резистора может привести к неприятностям, являются измерительные цепи с микровольтовым уровнем сигналов. Важно, чтобы в таких цепях входной каскад измерительного тракта генерировал как можно меньше шумов. Напомним, что резистор R также является генератором шума, определяемого выражением:

    где: Е — спектральная плотность шума, измеряется в нВ/√Гц; K — константа Больцмана (= 1,38×10 −25 ); T — температура в градусах Кельвина.

    Тепловой шум зависит только от номинального значения сопротивления резистора. Но есть два типа шумов, которые зависят от вида резистора. Первый из них — шум 1/f, иногда его называют фликкер-шумом или розовым шумом, а второй — NI, добавочный шум. На данный момент нет единого мнения о природе шума 1/f, он присущ всем без исключения элементам электрической схемы. Предполагается, что он вызван неоднородностью материала и несовершенством технологии производства. Шум NI зависит только от материала резистора. Например, самый большой шум NI у карбоновых и толстопленочных резисторов, а самый низкий — у металлизированных и проволочных резисторов. Производитель, как правило, приводит сведения о шумах, но если их не найти в документации, рекомендуем обратиться в техподдержку компании.

    Применение резисторов

    В заключение приведем два примера использования резисторов.

    Делитель напряжения (рис. 4) является самым простым и наиболее распространенным элементом схемы. Выходное напряжение делителя V2 рассчитывается по формуле:

    Рис. 4. Схема делителя напряжения

    Менее тривиальным примером служит матрица R-2R. В качестве примера на рис. 5 приведена 4-каскадная матрица. Подобная матрица используется в ЦАП, число каскадов матрицы определяет его разрядность. Выходное напряжение матрицы, изображенной на рис. 4, определяется из следующего соотношения:

    Рис. 5. Схема 4-каскадной матрицы

    Vвых = V × [A0 × (1/16) + A1 × (1/8) + A2 × (1/4) + A3 × (1/2)].

    В этом соотношении Ai = 1, если соответствующий ключ Ki замкнут, и Ai = 0, если соответствующий ключ Ki разомкнут.

    Что такое резистор, классификация резисторов и их обозначения на схемах

    Резистор (англ. resistor от лат. resisto — сопротивляюсь) —один из самых распространенных радиоэлементов. Даже в простом транзисторном приемнике число резисторов достигает нескольких десятков, а в современном теле-иизоре их не менее двух-трех сотен.

    Резисторы используют в качестве нагрузочных и токоограничительных элементов, делителей напряжения, добавочных сопротивлений и шунтов в измерительных цепях и т. д.

    Основным параметром резистора является сопротивление, характеризующее его способность препятствовать протеканию электрического тока. Сопротивление измеряется в омах, килоомах (тысяча Ом) и мегаомах (1 000000 Ом).

    Постоянные резисторы

    Вначале резисторы изображали на схемах в виде ломаной линии — меандра (рис. 1,а, б), которая обозначала высокоомный прокол, намотанный на изоляционный каркас. По мере усложнения радиоприборов число резисторов в них увеличивалось, и, чтобы облегчить начертание, их с шли изображать на схемах в виде зубчатой линии (рис. 1,в).

    На смену этому символу пришел символ в виде прямоугольника (рис. 1,г), который стали применять для обозначения любого резистора, независимо от его конструкции и особенностей.

    Постойнные резисторы обозначение

    Рис. 1. Постойнные резисторы и их обозначение.

    Постоянные резисторы могут иметь один или несколько отводов от резистивного элемента. На условном обозначении такого резиетора дополнительные выводы изображают в том же порядке, как это имеет место в самом резисторе (рис. 2). При большом числе отводов длину символа допускается увеличивать.

    Постоянные резисторы с отводами обозначение

    Рис. 2. Постоянные резисторы с отводами — обозначение.

    Сопротивление постоянного резистора, как говорит само название, изменить невозможно. Поэтому, если в цепи требуется установить определенный ток или напряжение, то для этого приходится подбирать отдельные элементы цепи, которыми часто являются резисторы. Возле символов этих элементов на схемах ставят звездочку * — знак, говорящий о необходимости их подбора при настройке или регулировке.

    Обозначение сопротивления резисторов

    Нимннальную мощность рассеяния резистора (от 0,05 до 5 Вт) обозначают специальными знаками, помещаемыми внутри символа (рис. 3). Заметим, мм ни таки не должны касаться контура условного обозначения резистора.

    Обозначение мощности резисторов

    Рис. 3. Обозначение мощности резисторов.

    На принципиальной схеме номинальное сопротивление резистора указывают рядом с условным обозначением (рис. 4). Согласно ГОСТ 2.702—7S сопротивлении от 0 до 999 Ом указывают числом без единицы измерения (2,2; 33, 120. ), от 1 до 999 кОм — числом с бумвой к (47 к, 220 к, 910к и т. д.),свыше 1 мегаома — числом с буквой М (1 М, 3,6М и т. д.).

    Обозначение сопротивления резисторов

    Рис. 4. Обозначение сопротивления для резисторов на схемах.

    На резисторах отечественного производства номинальное сопротивление, допускаемое отклонение от него, а если позволяют размеры, и номинальную мощность рассеяния указывают в виде полного или сокращенного (кодированного) обозначения.

    Согласно ГОСТ 11076—69 единицы сопротивления в кодированной системе обозначают буквами Е (ом), К (килоом) и М (мегаом). Так, резисторы сопротивлением 47 Ом маркируют 47Е, 75 Ом —75Е, 12 кОм — 12К, 82 кОм —82К и т. д.

    Сопротивления от 100 до 1000 Ом и от 100 до 1000 кОм выражают в долях килоома и мегаома соответственно, причем на месте нуля и запятой ставят соответствующую единицу измерения:

    • 180 Ом = 0,18 кОм = К18;
    • 910 Ом = 0,91 кОм = К91;
    • 150 к0м = 0,15 МОм = М15;
    • 680 к0м = 0,68 МОм = М68 и т. д.

    Если же номинальное сопротивление выражено целым числом с дробью, то единицу измерения ставят на месте запятой: 2,2 Ом — 2Е2; 5,1 кОм —5К1; 3,3 МОм — ЗМЗ и т. д.

    Кодированные буквенные обозначения установлены и для допускаемых отклонений сопротивления от номинального. Допускаемому отклонению ±1% -соответствует буква Р, ±2%—Л, ±5%—И, ±10% —С, ±20%—В. Таким образом, надпись на корпусе резистора К75И обозначает номинальное сопротивление 750 Ом с допускаемым отклонением ±5%; надпись МЗЗВ — 330 кОм ±20% и т. д.

    Переменные резисторы

    Переменные резисторы, как правило, имеют минимум три вывода: от концов токопроводящего элемента и от щеточного контакта, который может перемещаться по нему. С целью уменьшения размеров и упрощения конструкции токопроводящий элемент обычно выполняют в виде незамкнутого кольца, а щеточный контакт закрепляют на валике, ось которого проходит через его центр.

    Таким образом, при вращении валика контакт перемещается по поверхности токопроводящего элемента, в результате сопротивление между ним и крайними выводами изменяется.

    В непроволочных переменных резисторах обладающий сопротивлением то-копроводящий слой нанесен на подковообразную пластинку из гетинакса или текстолита (резисторы СП, СПЗ-4) или впрессован в дугообразную канавку керамического основания (резисторы СПО).

    В проволочных резисторах сопротивление создается высокоомным проводом, намотанным в один слой на кольцеобразном каркасе. Для надежного соединения между обмоткой и подвижным контактом провод зачищают на глубину до четверти его диаметра, а в некоторых случаях и полируют.

    Существуют две схемы включения переменных резисторов в электрическую цепь. В одном случае их используют для регулирования тока в цепи, и тогда регулируемый резистор называют реостатом, в другом — для регулирования напряжения, тогда его называют потенциометром. Показанное на рис. 5 условное графическое обозначение используют, когда необходимо изобразить реостат в общем виде.

    Для регулирования тока в цепи переменный резистор можно включить диумя выводами: от щеточного контакта и одного из концов токопроводящего элемента (рис. 6,а). Однако такое включение не всегда допустимо.

    Реостаты и переменные резисторы условное обозначение

    Рис. 5. Реостаты и переменные резисторы — условное обозначение.

    Если, например, в процессе регулирования случайно нарушится соединение щеточного контакта с токопроводящим элементом, электрическая цепь ока-1 жется разомкнутой, а это может явиться причиной повреждения при

    бора. Чтобы исключить такую возможность, второй вывод токопроводящего элемента соединяют с выводом щеточного контакта (рис. 6,б). В этом случае даже при нарушении соединения электрическая цепь не будет разомкнута.

    Общее обозначение потенциометра (рис. 6,в) отличается от символа реостата без разрыва цепи только отсутствием соединения выводов между собой.

    Обозначение потенциометра

    Рис. 6. Обозначение потенциометра на принципиальных схемах.

    К переменным резисторам, применяемым в радиоэлектронной аппаратуре, часто предъявляются требования по характеру изменения сопротивления при повороте их оси.

    Так, для регулирования громкости в звуковоспроизводящей аппаратуре необходимо, чтобы сопротивление между выводом щеточного контакта и правым (если смотреть со стороны этого контакта) выводом токопроводящего элемента изменялось по показательному (обратному логарифмическому) закону.

    Только в этом случае наше ухо воспринимает равномерное увеличение громкости при малых и больших уровнях сигнала. В измерительных генераторах сигналов звуковой частоты, где в качестве частотозадающих элементов часто используют переменные резисторы, также желательно, чтобы их сопротивление изменялось по логарифмическому или показательному закону.

    Если это условие не выполнить, шкала генератора получается неравномерной, что затрудняет точную установку частоты.

    Промышленность выпускает непроволочные переменные резисторы, в основном, трех групп:

    • А — с линейной,
    • Б — с логарифмической,
    • В — с обратно-логарифмической зависимостью сопротивления между правым и средним выводами от угла поворота оси ф (рис. 47,а).

    Резисторы группы А используют в радиотехнике наиболее широко, поэтому характеристику изменения их сопротивления на схемах обычно не указывают. Если же переменный резистор нелинейный (например, логарифмический) и это необходимо указать на схеме, символ резистора перечеркивают знаком нелинейного регулирования, возле которого (внизу) помещают соответствующую математическую запись закона изменения.

    Переменный резистор с обратно-логарифмической зависимостью

    Рис. 7. Переменный резистор с обратно-логарифмической зависимостью сопротивления.

    Резисторы групп Б и В конструктивно отличаются от резисторов группы А только токопроводящим элементом: на подковку таких резисторов наносят токопроводящий слой с удельным сопротивлением, меняющимся по ее длине. В проволочных резисторах форму каркаса выбирают такой, чтобы длина витка высокоомного провода менялась по соответствующему закону (рис. 7,6).

    Регулируемые резисторы

    Регулируемые резисторы — резисторы, сопротивление которых можно изменять в определенных пределах, применяют в качестве регуляторов усиления, громкости, тембра и т. д. Общее обозначение такого резистора состоит из базового символа и знака регулирования, причем независимо от положения символа на схеме стрелку, обозначающую регулирование, проводят в направлении снизу вверх под углом 45 градусов.

    Регулируемые резисторы имеют относительно невысокую надежность и ограниченный срок службы. Кому из владельцев радиоприемника или магнитофона не приходилось после двух-трех лет эксплуатации слышать шорохи п треоки из громкоговорителя при регулировании громкости.

    Причина этого неприятного явления — в нарушении контакта щетки с токопроводящим слоем или износ последнего. Поэтому, если основным требованием к переменному резистору является повышенная надежность, применяют резисторы со ступенчатым регулированием.

    Такой резистор может быть выполнен на базе переключателя на несколько положений, к контактам которого подключены ре-, зисторы постоянного сопротивления. На схемах эти подробности не показывают, ограничиваясь изображением символа регулируемого резистора со знаком ступенчатого регулирования, а если необходимо, указывают и число ступеней (рис. 8).

    Символ регулируемого резистора со знаком ступенчатого регулирования

    Рис. 8. Изображение символа регулируемого резистора со знаком ступенчатого регулирования.

    Некоторые переменные резисторы изготовляют с одним, двумя и даже с тремя отводами. Такие резисторы применяют, например, в тонкомпенсиро-ванных регуляторах громкости, используемых в высококачественной звуковоспроизводящей аппаратуре. Отводы изображают в виде линий, отходящих от длинной стороны основного символа (рис. 9).

    Рис. 9. Обозначение переменного резистора с отводами.

    Для регулирования громкости, тембра, уровня записи в стереофонической аппаратуре, частоты в измерительных генераторах сигналов и т. д. применяют сдвоенные переменные резисторы, сопротивления которых изменяются одновременно при повороте общей оси (или перемещении движка). На схемах символы входящих в них резисторов стараются расположить возможно ближе друг к другу, а механическую связь показывают либо двумя сплошными линиями, либо одной штриховой (рис. 10,а).

    Вид и обозначение блоков с переменными резисторами

    Рис. 10. Внешний вид и обозначение блоков с переменными резисторами.

    Если же сделать этого не удается, т. е. символы резисторов оказываются на большом удалении один от другого, механическую связь изображают отрезками штриховой линии (рис. 10,6). Принадлежность резисторов к одному сдвоенному блоку показывают в этом случае и в позиционном обозначении (R1.1—первый — по схеме — резистор сдвоенного переменного резистора R1, R1.2 — второй).

    Встречаются и такие сдвоенные переменные резисторы, в которых каждым резистором можно управлять отдельно (ось одного проходит внутри трубчатой оси другого). Механической связи, обеспечивающей одновременное изменение сопротивлений обоих резисторов, в этом случае нет, поэтому и на схемах ее не показывают (принадлежность к сдвоенному резистору указывают только в позиционном обозначении).

    В бытовой радиоаппаратуре часто применяют переменные резисторы, объединенные с одним или двумя выключателями. Символы их контактов размещают на схемах рядом с обозначением переменного резистора и соединяют штриховой линией с жирной точкой, которую изображают с той стороны прямоугольника, при перемещении к которой узел щеточного контакта (движок) воздействует на выключатель (рис. 11,а).

    Переменный резистор совмещенный с переключателем

    Рис. 11. Обозначение переменного резистора совмещенного с переключателем.

    При этом имеется в виду, что контакты замыкаются при движении от точки, а размыкаются при движении к ней. В случае, если символы резистора и выключателя удалены один от другого, механическую связь показывают отрезками штриховых линий (рис. 11,6).

    Подстроечные резисторы

    Подстроечные резисторы — разновидность переменных. Узел щеточного контакта таких резисторов приспособлен для управления отверткой. Условное обозначение подстроечного резистора (рис. 12) наглядно отражает его назначение: это, по сути, постоянный резистор с отводом, положение которого можно изменять.

    вид и обозначение подстроечных резисторов

    Рис. 12. Внешний вид и обозначение подстроечных резисторов.

    Общее обозначение подстроечного резистора отличается тем, что вместо знака регулирования использован знак подстроечного регулирования.

    Нелинейные резисторы

    В радиотехнике, электронике и автоматике находят применение нелинейные саморегулирующиеся резисторы, изменяющие свое сопротивление поя действием внешних электричеоких или неэлектрических факторов: угольные столбы, варисторы, терморезисторы и tj д.

    Угольный столб, представляющий собой пакет угольных шайб, изменяет свое сопротивление под действием механического усилия.

    нелинейные саморегулирующиеся резисторы

    Рис. 13. Вид и обозначение нелинейных саморегулирующихся резисторов.

    Для сжатия шайб обычно используют электромагнит. Изменяя напряжение на его обмйтке, можно в больших пределах изменять степень сжатия шайб и, следовательно, сопротивление угольного столба.

    Используют такие резисторы в стабилизаторах и регуляторах напряжения. Условное обозначение угольного столба состоит из ба-зовцго символа резистора и знака нелинейного саморегулирования с буквой Р, которая символизирует механическое усилие — давление (рис. 13,а).

    Терморезисторы, как говорит само название, характеризуются тем, что их сопротивление изменяется под действием температуры. Токопроводящие элементы этих резисторов изготовляют из полупроводниковых материалов.

    Сопротивление терморезистора прямого подогрева изменяется за счет выделяющейся в нем мощности или при изменении температуры окружающей среды, а терморезистора косвенного подогрева — под действием тепла, выделяемого специальным подогревателем.

    Зависимость сопротивления терморезисторов от температуры имеет нелинейный характер, поэтому на схемах их изображают в виде нелинейного резистора со знаком температуры —1° (рис. 13,6, в).

    Знак температурного коэффициента сопротивления (положительный, если с увеличением температуры сопротивление терморезистора возрастает, и отрицательный, если оно уменьшается) указывают только в том случае, если он отрицательный (рис. 13,в).

    В условное обозначение терморезистора косвенного подогрева кроме знака нелинейного регулирования входит символ подогревателя, напоминающий перевернутую латинскую букву U (рис. 13,г).

    Нелинейные полупроводниковые резисторы, известные под названием варисторов, изменяют свое сопротивление при изменении приложенного к ним напряжения.

    Существуют варисторы, у которых увеличение напряжения всего в 2—3 раза сопровождается уменьшением сопротивления в несколько десятков раз. На схемах их обозначают в виде нелинейного саморегулирующегося резистора с латинской буквой U (напряжение) у излома знака саморегулирования (рис. 13,3).

    В системах автоматики широко используют фоторезисторы — полупроводниковые резисторы, изменяющие свое сопротивление под действием света. Условное графическое обозначение такого резистора состоит из базового символа, помещенного в круг (символ корпуса полупроводникового прибора), и знака фотоэлектрического эффекта — двух наклонных параллельных стрелок.

    Литература: В.В. Фролов, Язык радиосхем, Москва, 1998.

    Что такое резистор

    Резистор — это самый распространенный радиоэлемент, который используется в электронике. Я могу со 100% уверенностью сказать, что абсолютно на любой плате какого-либо устройства вы найдете хотя бы один резистор. Резистор имеет важное свойство — он обладает активным сопротивлением электрическому току. Существует также и реактивное сопротивление. Подробнее про реактивное и активное сопротивление.

    Виды резисторов

    Существует множество видов резисторов, которые используются в радио-электронной промышленности. Давайте разберем основные из них.

    Постоянные резисторы

    Постоянное резисторы выглядят примерно вот так:

    Слева мы видим большой зеленый резистор, который рассеивает очень большую мощность. Справа — маленький крохотный SMD резистор, который рассеивает очень маленькую мощность, но при этом отлично выполняет свою функцию. Про то, как определить сопротивление резистора, можно прочитать в статье маркировка резисторов.

    Вот так выглядит постоянный резистор на электрических схемах:

    Наше отечественное изображение резистора изображают прямоугольником (слева), а заморский вариант (справа), или как говорят — буржуйский, используется в иностранных радиосхемах.

    Вот так маркируются мощности на советских резисторах:

    Далее мощность маркируется с помощью римских цифр. V — 5 Ватт, X — 10 Ватт, L -50 Ватт и тд.

    Какие еще бывают виды резисторов? Давайте рассмотрим самые распространенные:

    20 ваттный стекловидный с проволочными выводами, 20 ваттный с монтажными лепестками,30 ваттный в стекловидной эмали, 5 ваттный и 20 ваттный с монтажными лепестками

    Что такое резистор

    1, 3, 5 ваттные керамические; 5,10,25, 50 ваттные с кондуктивным теплообменом

    Что такое резистор

    2, 1, 0.5, 0.25, 0.125 ваттные углеродной структуры; SMD резисторы типоразмеров 2010, 1206, 0805, 0603,0402; резисторная SMD сборка, 6,8,10 выводные резисторные сборки для сквозного монтажа, резистор в DIP корпусе

    Что такое резистор

    Переменные резисторы

    Переменные резисторы выглядят так:

    На схемах обозначаются так:

    переменные резисторы на схемах

    Соответственно отечественный и зарубежный вариант.

    А вот и их цоколевка (расположение выводов):

    потенциометры

    Переменный резистор, который управляет напряжением называется потенциометром, а который управляет силой тока — реостатом. Здесь заложен принцип делителя напряжения и делителя тока соответственно. Различие между потенциометром и реостатом в схеме подключения самого переменного резистора. В схеме с реостатом в переменном резисторе соединяется средний и крайний выводы.

    потенциометр и реостат

    Переменные резисторы, у которых сопротивление можно менять только при помощи отвертки или шестигранного ключика, называются подстроечными переменными резисторами. У них есть специальные пазы для регулировки сопротивления (отмечены красной рамкой):

    А вот так обозначаются подстроечные резисторы и их схемы включения в режиме реостата и потенциометра.

    Что такое резистор

    Термисторы

    Термисторы — это резисторы на основе полупроводниковых материалов. Их сопротивление резко зависит от температуры окружающей среды. Есть такой важный параметр термисторов, как ТКС — тепловой коэффициент сопротивления. Грубо говоря, этот коэффициент показывает на сколько изменится сопротивление термистора при изменении температуры окружающей среды.

    Этот коэффициент может быть как отрицательный, так и положительный. Если ТКС отрицательный, то такой термистор называют термистором, а если ТКС положительный, то такой термистор называют позистором. У термисторов при увеличении температуры окружающей среды сопротивление падает. У позисторов с увеличением температуры окружающей среды растет и сопротивление.

    термисторы

    Так как термисторы обладают отрицательным коэффициентом (NTC — Negative Temperature Coefficient — отрицательный ТКС), а позисторы положительным коэффициентом (РТС — Positive Temperature Coefficient — положительный ТКС), то и на схемах они будут обозначаться соответствующим образом.

    Варисторы

    Есть также особый класс резисторов, которые резко изменяют свое сопротивление при увеличении напряжения — это варисторы.

    варисторы

    Это свойство варисторов широко используют от защиты перенапряжений в цепи, а также от импульсных скачков напряжения. Допустим у нас «скакануло» напряжение. Все это дело «чухнул» варистор и сразу же резко изменил сопротивление в меньшую сторону. Так как сопротивление варистора стало очень маленьким, то весь электрический ток сразу же начнет протекать через него, тем самым защищая основную цепь радиоэлектронного устройства. При этом варистор берет всю мощность импульса на себя и очень часто платит за это своей жизнью, то его выгорает наглухо

    сгоревший варистор

    На схемах варисторы обозначаются вот таким образом:

    обозначение варистора на схеме

    Фоторезисторы

    Большой популярностью также пользуются фоторезисторы. Они изменяют свое сопротивление, если на них посветить. В этих целях можно применять как солнечный свет, так и искусственный, например, от фонарика.

    фоторезисторы

    На схемах они обозначаются вот таким образом:

    обозначение фоторезистора на схеме

    Тензорезисторы

    Принцип действия их работы основан на растяжении тонких печатных проводников. При растяжении они становятся еще тоньше. Это все равно, что вытягивать жевательную резинку. Чем больше вы ее вытягиваете, тем тоньше она становится. А как вы знаете, чем тоньше проводник, тем бОльшим сопротивлением он обладает.

    тензорезисторы

    На схемах тензорезистор выглядит вот так:

    обозначение тензорезистора на схеме

    Вот анимация работы тензорезистора, позаимствованная с Википедии.

    Ну и как вы догадались, тензорезисторы используются в электронных весах, а также в различных датчиках, где применяется какое-либо давление, либо сила.

    Как измерить сопротивление резистора

    Любой резистор обладает сопротивлением. Кто не в курсе, что такое сопротивление и как оно измеряется, в срочном порядке читаем эту статью. Сопротивление измеряется в Омах. Но как же нам узнать сопротивление резистора? Есть прямой и косвенный методы.

    Прямой метод он самый простой. Нам нужно взять мультиметр и просто замерять сопротивление резистора. Давайте рассмотрим, как все это выглядит. Я беру мультиметр, выставляю крутилку на измерение сопротивления и цепляюсь к выводам резистора.

    измерение сопротивления

    Резистор я брал на 1 кОм. Он мне показал 976 Ом, что в принципе тоже нормально, так как у таких резисторов всегда существует некая погрешность.

    Косвенный метод измерения заключается в том, что мы будем рассчитывать сопротивление резистора через закон Ома.

    формула сопротивления через закон Ома

    Поэтому, чтобы узнать сопротивление резистора, нам надо напряжение на концах резистора поделить на силу тока, которая течет через резистор. Все довольно просто!

    Допустим, я хочу узнать сопротивление нити накала лампочки, когда она источает свет. Думаю, некоторые из вас в курсе, что сопротивление холодной вольфрамовой нити и раскаленной — это абсолютно разные сопротивления. Я ведь не смогу измерить мультиметром в режиме измерения сопротивления раскаленную вольфрамовую нить лампы накаливания, так ведь? Поэтому, нам как нельзя кстати подойдет эта формула

    формула сопротивления через закон Ома

    Давайте же узнаем это на опыте. У меня есть лабораторный блок питания, который показывает сразу напряжение и силу тока, которая течет через нагрузку. Беру лампу, выставляю на блоке питания напряжение, которое написано на самой лампе и подключаю ее к клеммам блока питания.

    лампа накаливания потребление тока

    Итак, получается, что на выводах лампы сейчас напряжение 12 Вольт, а ток, который течет в цепи, а следовательно и через лампу 0,71 Ампер.

    Получаем, что сопротивление раскаленной нити лампы в данном случае составляет

    сопротивление нити лампы накаливания

    Последовательное и параллельное соединение резисторов

    Все вышеописанные резисторы можно соединять параллельно или последовательно. При параллельном соединении выводы резисторов соединятся в общих точках.

    В этом случае, чтобы узнать общее сопротивление всех резисторов в цепи, достаточно будет воспользоваться формулой, где сопротивление между точками А и В (RAB) и есть то самое R общее:

    При последовательном соединении номиналы резисторов просто тупо суммируются

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *