Емкостное сопротивление
Конденсатор емкостью C имеет в цепи постоянного тока бесконечно большое сопротивление. Если же приложить к конденсатору переменное напряжение, то он будет периодически перезаряжаться, и в цепи потечет ток. Напряжение на конденсаторе достигает максимального значения в те моменты, когда ток равен нулю.
Если R = 0, то напряжение на конденсаторе совпадает с приложенным напряжением и u = q/C. Мгновенное значение тока определяется выражением:
\[ i = \frac
\[ i = ωCU_
Емкостное сопротивление — график тока и напряжения
Между напряжением и током имеется разность фаз —π/2.
В чисто емкостной цепи переменного тока ток опережает напряжение на π/2 (или Т/4).
В соответствии с приведенным выше уравнением амплитуда тока Im = ωCUm. Сравнение с законом Ома U = RI показывает, что величина 1/ωС играет роль сопротивления.
Цепь переменного тока, содержащая емкость C, обладает сопротивлением переменному току; оно называется емкостным сопротивлением ХC.
Единица СИ емкостного сопротивления: [XC] = Ом.
ХC | емкостное сопротивление цепи переменного тока, | Ом |
---|---|---|
ω = 2πf | круговая частота переменного тока, | радиан/Секунда |
C | емкость, | Фарад |
При увеличении частоты емкостное сопротивление уменьшается. Для постоянного тока (f = 0) оно бесконечно велико.
Ток в цепи, обладающей только емкостным сопротивлением, определяется выражением
Вычислить, найти емкостное сопротивление
Copyright © FXYZ.ru, 2007 2024.
Мобильная β версия | полная
Емкостное сопротивление.
Емкостное сопротивление в цепи переменного тока — это та часть сопротивления , которая создается конденсатором, включенным в цепь переменного тока (при пренебрежимо малой емкости подводящих проводов).
Емкостное сопротивление в цепи переменного тока — это та часть сопротивления, которая создается конденсатором, включенным в цепь переменного тока (при пренебрежимо малой емкости подводящих проводов).
Для получения формулы емкостного сопротивления определим, как меняется сила тока в цепи, содержащей только конденсатор.
.
Напряжение на обкладках конденсатора u = φ1 – φ2 = q/C равно напряжению на входе цепи, поэтому
Для силы тока, которая определяется как производная заряда q по времени, из (q = C Um cos ωt) получим:
Между напряжением и силой тока в цепи с конденсатором наблюдается сдвиг фаз на π/2 (), причем ток опережает напряжение. Когда конденсатор разряжается (напряжение на нем равно нулю), ток максимален.
Амплитуда силы тока равна
.
называется емкостным сопротивлением. Если вместо амплитуд силы тока и напряжения в (Im = Um Cω) использовать их действующие значения, то, учитывая , получим:
.
Это означает, что действующие значения силы тока и напряжения на конденсаторе связаны так же, как и сила постоянного тока и напряжение согласно закону Ома, причем роль активного сопротивления R играет емкостное сопротивление Хс.
Чем больше емкость конденсатора и частота напряжения, тем меньше емкостное сопротивление и тем больше ток перезарядки.
Благодаря сдвигу фаз между током и напряжением в среднем за период не происходит ни накопления энергии на конденсаторе, ни ее диссипации (рассеяния). За четверть периода, когда конденсатор заряжается до максимального значения, на нем происходит накопление энергии электрического поля; в следующую четверть периода, при разрядке конденсатора, эта энергия возвращается в сеть.
Формула ёмкостного сопротивления для цепи переменного тока
Конденсатор оказывает определённое сопротивление переменному току и совершенно не проводит постоянный. Это свойство находит применение в различных областях радиоэлектроники и электротехники. Ёмкостное сопротивление в цепи переменного тока зависит от частоты последнего и ёмкости конденсатора.
Основные понятия
Ёмкостное сопротивление — это величина, которая создаётся конденсатором, включённым в цепь. Сопротивление подводящих проводов должно быть непренебрежимо большим. При подаче переменного тока возникают процессы, обусловленные периодическим зарядом и разрядом конденсатора.
Период разбивается на четыре четверти. В течение первой четверти напряжение растёт. В этот момент по цепи проходит зарядный ток, сила которого будет уменьшаться, достигнув нуля, когда электродвижущая сила достигнет положительного максимума. Конденсатор полностью заряжен. После этого начнётся спад напряжения. Конденсатор будет разряжаться через подключённую к нему нагрузку. По цепи потечёт ток.
К концу полупериода величина напряжения будет равна нулю, а сила тока будет наибольшей. Разрядка завершена. В начале третьей четверти электродвижущая сила будет возрастать, изменив своё направление. Вновь начнётся процесс заряда. Направление зарядного тока в третью четверть будет таким же, как и в предыдущую. По мере зарядки конденсатора эта величина будет убывать. К концу третьей четверти процесс зарядки будет завершён.
Электродвижущая сила достигнет своего наибольшего отрицательного значения. А на той обкладке, на которой в течение первого полупериода был положительный заряд, теперь будет отрицательный. Во время четвёртой четверти значение электродвижущей силы снова будет стремиться к нулю. Конденсатор будет разряжаться. Соответственно, в цепи появится постепенно нарастающий ток. Процесс повторяется. Таким образом, фаза переменного тока в конденсаторной цепи опережает фазу напряжения на 90 градусов.
Формула сопротивления
Формула ёмкостного сопротивления выводится следующим образом:
- Вначале следует вычислить угловую частоту. Для этого частоту протекающего по цепи тока (в герцах) необходимо умножить на удвоенное число «пи».
- Затем полученное число следует перемножить на ёмкость конденсатора в фарадах.
Чтобы получить значение ёмкостного сопротивления в омах, следует разделить единицу на число, полученное после умножения угловой частоты на ёмкость. Из этой формулы вытекает, что чем больше ёмкость конденсатора или частота переменного тока, тем меньше его сопротивление.
Когда частота будет равна нулю (постоянный ток), ёмкостное сопротивление станет бесконечно большим. Конденсатор очень большой ёмкости будет проводить ток в широком диапазоне частот.
Применение на практике
Свойства конденсатора используются при конструировании различных фильтров. Действие ёмкостного сопротивления в этом случае зависит от способа подключения детали:
- Если он присоединён параллельно нагрузке, то получится фильтр, задерживающий высокие частоты. С их ростом падает сопротивление конденсатора. Соответственно, нагрузка на высоких частотах шунтируется сильнее, чем на низких.
- Если деталь подключена последовательно с нагрузкой, то получится фильтр, задерживающий низкие частоты. Эта схема также не пропускает постоянное напряжение.
Ещё одна область применения — отделение переменной составляющей от постоянной. Например, в оконечных каскадах усилителей звуковой частоты. Чем выше ёмкость, тем более низкую частоту способен воспроизвести подключённый громкоговоритель.
В фильтрах электропитания, наряду с ёмкостным сопротивлением, используется также свойство накопления и отдачи заряда. В момент повышения нагрузки заряженная ёмкость фильтра разряжается, отдавая дополнительную энергию. Она также осуществляет подавление пульсаций и прочих паразитных сигналов, пропуская их через себя и замыкая на общий провод. Таким образом, обеспечивается сглаживание и поддержание напряжения на нагрузке в заданных пределах, и устранение нежелательных междукаскадных связей, вызывающих нестабильную работу.
Благодаря своим свойствам конденсаторы используются в тех случаях, когда необходимо передать и постоянный, и переменный ток по одним и тем же проводам. Источник постоянного напряжения подключается к общему проводу и второму выводу ёмкости, через которую присоединяется источник переменного напряжения. На другой стороне происходит разделение: потребитель переменного подключается через конденсатор той же ёмкости, а потребитель постоянного — напрямую, до выводов детали.
Распространённый пример подобного использования — это телевизионная наружная антенна с усилителем. Сам телевизор или подключаемое к кабелю устройство, называемое «инжектором», подаёт напряжение питания. В антенном усилителе происходит разделение и фильтрация сигналов. Таким образом, ёмкостное сопротивление конденсатора находит широкое применение. Фильтры обеспечивают задержку одних сигналов и прохождение — других.
Благодаря этому свойству, можно передавать сразу и переменное, и постоянное напряжение, что имеет немаловажное значение при построении некоторых линий связи.
Емкостное и индуктивное сопротивление в цепи переменного тока.
При включении конденсатора в цепь постоянного напряжения сила тока I=0, а при включении конденсатора в цепь переменного напряжения сила тока I ? 0. Следовательно, конденсатор в цепи переменного напряжения создает сопротивление меньше, чем в цепи постоянного тока.
Мгновенное значение напряжения равно .
Мгновенное значение силы тока равно:
Таким образом, колебания напряжения отстают от колебаний тока по фазе на π/2.
Т.к. согласно закону Ома сила тока прямо пропорциональна напряжению, то для максимальных значений тока и напряжения получим: , где — емкостное сопротивление.
Емкостное сопротивление не является характеристикой проводника, т.к. зависит от параметров цепи (частоты).
Чем больше частота переменного тока, тем лучше пропускает конденсатор ток (тем меньше сопротивление конденсатора переменному току).
Т.к. разность фаз между колебаниями тока и напряжения равна π/2, то мощность в цепи равна 0: энергия не расходуется, а происходит обмен энергией между источником напряжения и емкостной нагрузкой. Такая нагрузка наз. реактивной.
Индуктивное сопротивление в цепи переменного тока
В катушке, включенной в цепь переменного напряжения, сила тока меньше силы тока в цепи постоянного напряжения для этой же катушки. Следовательно, катушка в цепи переменного напряжения создает большее сопротивление, чем в цепи постоянного напряжения.
Мгновенное значение силы тока:
Мгновенное значение напряжения можно установить, учитывая, что u = — εi , где u – мгновенное значение напряжения, а εi – мгновенное значение эдс самоиндукции, т. е. при изменении тока в цепи возникает ЭДС самоиндукции, которая в соответствии с законом электромагнитной индукции и правилом Ленца равна по величине и противоположна по фазе приложенному напряжению.
Следовательно , где амплитуда напряжения.
Напряжение опережает ток по фазе на π/2.
Т.к. согласно закону Ома сила тока прямо пропорциональна напряжению и обратно пропорциональная сопротивлению, то приняв величину ωL за сопротивление катушки переменному току, получим: — закон Ома для цепи с чисто индуктивной нагрузкой.
Величина — индуктивное сопротивление.
Т.о. в любое мгновение времени изменению силы тока противодействует ЭДС самоиндукции. ЭДС самоиндукции — причина индуктивного сопротивления.
В отличие от активного сопротивления, индуктивное не является характеристикой проводника, т.к. зависит от параметров цепи (частоты): чем больше частота переменного тока, тем больше сопротивление, которое ему оказывает катушка.
Т.к. разность фаз между колебаниями тока и напряжения равна π/2, то мощность в цепи равна 0: энергия не расходуется, а происходит обмен энергией между источником напряжения и индуктивной нагрузкой. Такая нагрузка наз. реактивной.