Правильный выбор трансформатора тока по ГОСТу
Задача данной статьи дать начальные знания о том, как выбрать трансформатор тока для цепей учета или релейной защиты, а также родить вопросы, самостоятельное решение которых увеличит ваш инженерный навык.
В ходе подбора трансформатора тока я буду ссылаться на два документа. ГОСТ-7746-2015 поможет в выборе стандартных значений токов, мощностей, напряжений, которые можно принимать для выбора ТТ. Данный ГОСТ действует на все электромеханические трансформаторы тока напряжением от 0,66кВ до 750кВ. Не распространяется стандарт на ТТ нулевой последовательности, лабораторные, суммирующие, блокирующие и насыщающие.
Кроме ГОСТа пригодится и ПУЭ, где обозначены требования к трансформаторам тока в цепях учета, даны рекомендации по выбору.
Выбор номинальных параметров трансформаторов тока
До определения номинальных параметров и их проверки на различные условия, необходимо выбрать тип ТТ, его схему и вариант исполнения. Общими, в любом случае, будут номинальные параметры. Разниться будут некоторые критерии выбора, о которых ниже.
1. Номинальное рабочее напряжение ТТ. Данная величина должна быть больше или равна номинальному напряжению электроустановки, где требуется установить трансформатор тока. Выбирается из стандартного ряда, кВ: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.
2. Далее, перед нами встает вопрос выбора первичного тока ТТ. Величина данного тока должна быть больше значения номинального тока электрооборудования, где монтируется ТТ, но с учетом перегрузочной способности.
Приведем пример из книги. Допустим у статора ТГ ток рабочий 5600А. Но мы не можем взять ТТ на 6000А, так как турбогенератор может работать с перегрузкой в 10%. Значит ток на генераторе будет 5600+560=6160. А это значение мы не замерим через ТТ на 6000А.
Выходит необходимо будет взять следующее значение из ряда токов по ГОСТу. Приведу этот ряд: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. После 6000 идет 8000. Однако, некоторое электрооборудование не допускает работу с перегрузкой. И для него величина тока будет равна номинальному току.
Но на этом выбор первичного тока не заканчивается, так как дальше идет проверка на термическую и электродинамическую стойкость при коротких замыканиях.
2.1 Проверка первичного тока на термическую стойкость производится по формуле:
Формула проверки первичного тока ТТ на термическую устойчивость показывает, что ТТ выдержит определенную величину тока КЗ (IТ) на протяжении определенного промежутка времени (tt), и при этом температура ТТ не превысит допустимых норм. Или говоря короче, тепловое воздействие тока короткого замыкания.
iуд — ударный ток короткого замыкания
kу — ударный коэффициент, равный отношению ударного тока КЗ iуд к амплитуде периодической составляющей. При к.з. в установках выше 1кВ ударный коэффициент равен 1,8; при к.з. в ЭУ до 1кВ и некоторых других случаях — 1,3.
2.2 Проверка первичного тока ТТ на электродинамическую стойкость (формула):
В данной проверке мы исследуем процесс, когда от большого тока короткого замыкания происходит динамический удар, который может вывести из строя ТТ.
Для большей наглядности сведем данные для проверки первичного тока ТТ в небольшую табличку — выбор первичного тока трансформатора тока по термической и электродинамической устойчивости.
3. Третьим пунктом у нас будет проверка трансформатора тока по мощности вторичной нагрузки. Здесь важно, чтобы выполнялось условие Sном>=Sнагр. То есть номинальная вторичная мощность ТТ должна быть больше расчетной вторичной нагрузки.
Вторичная нагрузка представляет собой сумму сопротивлений включенных последовательно приборов, реле, проводов и контактов умноженную на квадрат тока вторичной обмотки ТТ (5, 2 или 1А, в зависимости от типа).
Величину данного сопротивления можно определить теоретически, или же, если установка действующая, замерить сопротивление методом вольтметра-амперметра, или имеющимся омметром.
Сопротивление приборов (амперметров, вольтметров), реле (РТ-40 или современных), счетчиков можно выцепить из паспортов, которые поставляются с новым оборудованием, или же в интернете на сайте завода. Если в паспорте указано не сопротивление, а мощность, то на помощь придет известный факт — полное сопротивление реле равно потребляемой мощности деленной на квадрат тока, при котором задана мощность.
Схемы включения ТТ и формулы определения сопротивления при различных видах КЗ
Не всегда приборы подключены последовательно и это может вызвать трудности при определении величины вторичной нагрузки. Ниже на рисунке приведены варианты подключения нескольких трансформаторов тока и значение Zнагр при разных видах коротких замыканий (1ф, 2ф, 3ф — однофазное, двухфазное, трехфазное).
zр — сопротивление реле
rпер — переходное сопротивление контактов
rпр — сопротивление проводов определяется как длина отнесенная на произведение удельной проводимости и сечения провода. Удельная проводимость меди — 57, алюминия — 34,5.
Кроме вышеописанных существуют дополнительные требования для ТТ РЗА и цепей учета — проверка на соблюдение ПУЭ и ГОСТа.
Выбор ТТ для релейной защиты
Трансформаторы тока для цепей релейной защиты исполняются с классами точности 5Р и 10Р. Должно выполняться требование, что погрешность ТТ не должна превышать 10%. Для отдельных видов защит эти десять процентов должны обеспечиваться вплоть до максимальных токов короткого замыкания. В отдельных случаях погрешность может быть больше 10% и специальными мероприятиями необходимо обеспечить правильное срабатывание защит. Подробнее в ПУЭ вашего региона и справочниках. Эта тема имеет множество нюансов и уточнений. Требования ГОСТа приведены в таблице:
Хоть это и не самые высокие классы точности для нормальных режимов, но они и не должны быть такими, потому что РЗА работает в аварийных ситуациях, и задача релейки определить эту аварию (снижение напряжения, увеличение или уменьшение тока, частоты) и предотвратить — а для этого необходимо уметь измерить значение вне рабочего диапазона.
Выбор трансформаторов тока для цепей учета
К цепям учета подключаются трансформаторы тока класса не выше 0,5(S). Это обеспечивает бОльшую точность измерений. Однако, при возмущениях и авариях осциллограммы с цепей счетчиков могут показывать некорректные графики токов, напряжений (честное слово). Но это не страшно, так как эти аварии длятся недолго. Опаснее, если не соблюсти класс точности в цепях коммерческого учета, тогда за год набежит такая финансовая погрешность, что “мама не горюй”.
ТТ для учета могут иметь завышенные коэффициенты трансформации, но есть уточнение: при максимальной загрузке присоединения, вторичный ток трансформатора тока должен быть не менее 40% от максимального тока счетчика, а при минимальной — не менее 5%. Это требование п.1.5.17 ПУЭ7 допускается при завышенном коэффициенте трансформации. И уже на этом этапе можно запутаться, посчитав это требование как обязательное при проверке.
По требованиям же ГОСТ значение вторичной нагрузки для классов точности до единицы включительно должно находиться в диапазоне 25-100% от номинального значения.
Диапазоны по первичному и вторичному токам для разных классов точности должны соответствовать данным таблицы ниже:
Исходя из вышеописанного можно составить таблицу для выбора коэффициента ТТ по мощности. Однако, если с вторичкой требования почти везде 25-100, то по первичке проверка может быть от 1% первичного тока до пяти, плюс проверка погрешностей. Поэтому тут одной таблицей сыт не будешь.
Таблица предварительного выбора трансформатора тока по мощности и току
Пройдемся по столбцам: первый столбец это возможная полная мощность нагрузки в кВА (от 5 до 1000). Затем идут три столбца значений токов, соответствующих этим мощностям для трех классов напряжений — 0,4; 6,3; 10,5. И последние три столбца — это разброс возможных коэффициентов трансформаторов тока. Данные коэффициенты проверены по следующим условиям:
- при 100%-ой нагрузке вторичный ток меньше 5А (ток счетчика) и больше 40% от 5А
- при 25%-ой нагрузке вторичный ток больше 5% от 5А
Я рекомендую, если Вы расчетчик или студент, сделать свою табличку. А если Вы попали сюда случайно, то за Вас эти расчеты должны делать такие как мы — инженеры, электрики =)
К сведению тех, кто варится в теме. В последнее время заводы-изготовители предлагают следующую услугу: вы рассчитываете необходимые вам параметра тт, а они по этим параметрам создают модель и производят. Это выгодно, когда при выборе приходится варьировать коэффициент трансформации, длину проводов, что приводит и к удорожанию схемы и увеличению погрешностей. Некоторые изготовители даже пишут, что не сильно и дороже выходит, чем просто серийное производство, но выигрыш очевиден. Интересно, может кто сталкивался с подобным на практике.
Вот так выглядят основные моменты выбора трансформаторов тока. После выбора и монтажа, перед включением, наступает самый ответственный момент, а именно пусковые испытания и измерения.
Простой расчет трансформаторов тока и датчиков тока для схем защиты ИИП
Трансформаторы тока используются в схемах защиты силовых ключей от перегрузки по току в импульсных источниках питания (ИИП). Еще одним фактором применения трансформатора тока в ИИП является необходимость потенциальной развязки цепей схемы управления ИИП и цепей силовой части. Поэтому их расчет является актуальным при создании ИИП. В данной статье мы рассмотрим детально простой расчет трансформаторов тока одно и двухтактных ИИП. Расчет однотактного трансформатора тока. Исходные данные. Амплитуда тока силового ключа Iкл_max=3 А . Напряжение срабатывания защиты схемы управления Uзащ=1 В . Максимальная длительность импульса tимп.макс.=25 мксек . Минимальная длительность импульса tимп.мин.=10 мксек . Частота переключения fп=20 кГц . Рисунок 1. Предлагаемое решение получения сигнала для схемы защиты верхнего силового ключа с помощью трансформатора тока в ШИМ регуляторе тока нагрузки. Решение включает в себя трансформатор тока Т1, датчик тока — резистор R2, фильтр низких частот – резистор R1 и конденсатор C1. Данное решение применимо для так же и для понижающего ИИП. Расчет. Для нормальной работы защиты схемы управления и исключения ложных срабатываний сигнал, подаваемый на вход защиты должен быть уменьшен на 25-30%. Таким образом рабочее напряжение на датчике тока R2 должно быть: Uдт=Uзащ-30%=0,7 В . Для расчета трансформатора тока необходимо задаться коэффициентом трансформации. Рекомендации по выбору коэффициента трансформации основаны на уменьшении тока вторичной обмотки до десятков или сотен миллиампер. Оптимальным является диапазон 50÷100 mА. В нашем случае примем ток вторичной обмотки Iw2_max=100 mA. Тогда коэффициент трансформации Kтр= ( Iкл_max)/(Iw2_max)= 3/0,1=30 . Обычно у трансформаторов тока первичная обмотка делается одним витком. Тогда число витков вторичной обмотки w2= Kтр*w1=30*1=30 витков . Рассчитаем сопротивление датчика тока R2= ( Uдт)/(Iw2_max )= 0,7/0,1=7 Ом . Выберем в соответствии с рядом сопротивлений Е24, R2=7,5 Ом. Тогда рабочее напряжение датчика тока и рабочее напряжение на входе схемы защиты Uдт= Iw2_max*R2=0,1*7,5=0,75 В . Это значение соответствует условиям рекомендаций. Расчет мощности выделяемой на резисторе R2 произведем по формуле PR2=( Iw2_rms) 2 *R2 . В нашем случае для прямоугольной формы тока Iw2_rms=Iw2_max*√((tимп.макс.)/T) . Где T= 1/fп = 1/20000=0,00005=50*10 -6 ,сек. — период частоты переключения. Тогда Iw2_rms=Iw2_max*√((tимп.макс.)/T)=0,1*√((25*10 -6 )/(50*10 -6 ))=0,0707 А . Следовательно PR2= 0,0707 2 *7,5=0,0375 Вт . Мощность выделяемая на резисторе R2 имеет низкое значение. Для выбора сердечника трансформатора тока руководствуемся следующими рекомендациями. Для высокочастотных (десятки-сотни кГц) ИИП в качестве материала сердечника применяются в основном ферриты. Тип сердечника может быть любой, но предпочтение отдается кольцевым сердечникам. Кольцевой сердечник легко можно одеть на силовой провод или на вывод компонента ИИП. Например, в блоках питания персональных компьютеров часто встречается такое конструктивное решение. Трансформатор тока там установлен на выводе разделительного конденсатора. Провод, напрямую пропущенный сквозь кольцо, представляет собой 1 виток. Определяем требуемое сечение сердечника по формуле Sст= (Uдт*tимп.макс.)/(w2*dB) мм 2 . Где: Sст – сечение сердечника в квадратных миллиметрах. Uдт – рабочее напряжение на датчике тока, вольт. tимп.макс. – максимальная длительность импульса в микросекундах. w2 — число витков вторичной обмотки, витков. dB – перепад магнитной индукции за время импульса, Тесла. Рекомендация по выбору dB. Для однотактных применений dB не должно превышать значения 0,05 Тл. Иначе сердечник может войти в насыщение и форма импульса на датчике тока будет далека от реальной. Тогда: Sст= (Uдт*tимп.макс.)/(w2*dB)= (0,7*25)/(30*0,05)= 11,7 мм 2 . Выбираем сердечник из феррита марки 2000НМ1 типоразмер К16×10×4,5 с сечением сердечника Sст=13,5 мм 2 . Сечение выбранного сердечника должно быть обязательно больше расчетного. Выбор сердечника обязательно должен учитывать способ крепления трансформатора тока. Например, если трансформатор тока крепится винтом, то внутренний диаметр сердечника должен позволить поместить обмотки, винт, изоляцию. При таком способе крепления винт можно использовать в качестве витка первичной обмотки. Фильтр низких частот R1 – C2 предназначен для фильтрования высокочастотных помех, неизбежно появляющихся при переключении силового ключа. Рекомендация по выбору: постоянная времени фильтра должна быть гораздо меньше минимальной длительности импульса τ=R1*C2≪ tимп.мин. . Делается это для того чтобы избежать искажения формы импульса. Примем τ=(1/20)*tимп.мин.= (1/20)*10*10 -6 =0,5 мксек . Зададимся значением емкости конденсатора из ряда Е24, С2=470 pF . Тогда R1= τ/C2= (0,5*10 -6 )/(470*10 -12 )=1064 Ом . Выбираем значение резистора R1 из ряда Е24 1,1 кОм. Еще одной из главных причин применения трансформаторов тока является выделение большой мощности на датчике тока при бес трансформаторной схеме. В сильноточных ИИП применение в качестве датчика тока просто резистора приводит к выделению мощности на нем в несколько ватт. В качестве примера рассмотрим случай, когда ток ключа составляет 10 А и в качестве датчика тока применяется просто резистор. Остальные исходные данные такие же, как в нашем расчете приведенном выше. Тогда для обеспечения Uдт=0,7 В датчик тока должен иметь сопротивление Rдт= Uдт/Iкл_max = 0,7/10=0,07 Ом . Тогда Iкл_rms=Iкл_max*√(tимп.мкса./T)=10*√(25*10 -6 )/(50*10 -6 )=7,07 А . Мощность выделяемая на датчике тока составит PR_дт = (7,07 2 )*0,07=3,5 Вт. Для надежной работы ИИП придётся установить резистор мощностью не менее 5 ватт. Применение в этом случае трансформатора тока приведет к сокращению мощности выделяемой на датчике тока в десятки раз. Расчет окончен. Моделирование работы однотактного трансформатора тока в программе Multisim. Рисунок 2 . Модель ключа с трансформатором тока. Как видно из скриншота, Пробник 1 (подключен к нагрузке) показывает амплитуду тока через нагрузку 3,01 А. Пробник 2 (подключен к датчику тока) показывает амплитудное значение тока через датчик тока 100 mА. Действующее значение тока 70,8 mА. Амплитуда напряжения на датчике тока 751 mВ. Частота 20 кГц. Ваттметр, подключенный к датчику тока, показывает мощность 37,4 милливатт. Все значения подтверждают расчет. Рисунок 3. Осциллограммы напряжения на датчике тока и конденсаторе фильтра. Как видно из осциллограмм амплитуда напряжения на датчике тока составляет 751 mВ и соответствует расчету. Осциллограмма напряжения на конденсаторе фильтра показывает небольшие завалы фронта и спада импульса, обусловленные зарядом и разрядом емкости фильтра. При этом существенных изменений формы импульса не наблюдается, а амплитуда импульса остается неизменной. Окончательное решение по значениям резистора и конденсатора фильтра принимается при настройке ИИП. ВАЖНО! При установке трансформатора тока в однотактных ИИП необходимо соблюдать фазировку обмоток! Иначе импульс напряжения на датчике тока будет иметь минусовую полярность, и схема защиты работать не будет. Расчет двухтактного трансформатора тока. Исходные данные. Максимальный ток силовых ключей Iкл_max=2 А . Напряжение срабатывания схемы защиты Uзащ=1 В . Максимальная длительность импульса tимп.макс.=10 мксек . Минимальная длительность импульса tимп.мин.=5 мксек . Частота переключения fп=40 кГц . Рисунок 4. Предлагаемое решение получения сигнала для схемы защиты силовых ключей с помощью трансформатора тока в полу мостовом ИИП. Решение включает в себя трансформатор тока Т1, датчик тока — резистор R1, выпрямитель VD3 – VD6, регулировочный резистор R3, фильтр низких частот – резистор R2 и конденсатор C4. Расчет. Поскольку в схеме применен регулировочный резистор R3, для обеспечения входного сигнала схемы защиты на уровне 0,75 В при 50% регулировке R3, напряжение подаваемое на R3 должно быть равным UR3=1,5 В . Рабочее напряжение на датчике тока должно учитывать падение напряжения на двух диодах выпрямителя. Для быстродействующих импульсных диодов падение напряжения в открытом состоянии при малых токах составляет около 0,7 В. Тогда: Uдт=UR3+ 2*UVD=1,5+2*0,7=2,9 В . Примем ток вторичной обмотки Iw2_max=100 mA. Тогда коэффициент трансформации Kтр= Iкл_max/Iw2_max = 2/0,1=20 . Тогда число витков вторичной обмотки w2= Kтр*w1=20*1=20 витков . Рассчитаем сопротивление датчика тока R1= Uдт/Iw2_max = 2,9/0,1=29 Ом . Выберем в соответствии с рядом сопротивлений Е24, R1=30 Ом. Расчет мощности выделяемой на резисторе R1 произведем по формуле PR1= (Iw2_rms) 2 *R1 . В нашем случае для прямоугольной формы тока Iw2_rms=Iw2_max*√((2*tимп.макс.)/T) . Где T= 1/fп = 1/40000=0,000025=25*10 -6 ,сек. — период частоты переключения. Тогда Iw2_rms=Iw2_max*√((2*tимп.макс.)/T)=0,1*√(2*10*10 -6 )/(25*10 -6 )=0,089 А . Следовательно PR1= 0,089 2 *30=0,24 Вт . Мощность выделяемая на резисторе R1 имеет низкое значение. Для нормальной работы необходимо выбрать резистор с мощностью рассеяния не менее 0,5 Вт. Определяем требуемое сечение сердечника. Рекомендация по выбору dB. У феррита марки 2000НМ1 значение магнитной индукции насыщения составляет 0,34 Тл. Максимальное рабочее значение магнитной индукции составляет 0,31 Тл. Однако при таком значении индукции и высокой частоте переключения потери в сердечнике значительны. Производители ферритов нормируют значение потерь при максимальной индукции 0,2 Тл и частоте 16 кГц. При этом считается, что потери в сердечнике приемлемы и не вызывают сильного перегрева сердечника. Поскольку у нас частота переключения составляет 40 кГц, необходимо максимальное рабочее значение индукции снизить еще. Поэтому выбираем максимальное рабочее значение магнитной индукции Вмакс=0,1 Тл. Тогда dB=2*Вмакс=2*0,1=0,2 Тл . Тогда: Sст= (Uдт*tимп.макс.)/(w2*dB)= (3*10)/(20*0,2)= 7,5 мм 2 . Выбираем сердечник из феррита марки 2000НМ1 типоразмер К10×6×4,5 с сечением сердечника Sст=9 мм 2 . Конструктивно трансформатор тока располагаем на печатной плате, причем один из выводов разделительного конденсатора проходит через окно сердечника и является витком первичной обмотки. Количество витков вторичной обмотки не велико и позволит разместить обмотку в один слой. Исходя из вышеизложенного типоразмер сердечника не изменяем.
Регулировочный резистор R3 позволит произвести настройку порога срабатывания. Номинал резистора R3 должен быть много больше номинала резистора датчика тока. Это необходимо для исключения влияния сопротивления резистора R3 на формирование падение напряжения на датчике тока R1. Поэтому выбираем номинал резистора R3 – 1 кОм, что много больше номинала R1. Примем τ=(1/20)*tимп.мин.= ( 1/20)*5*10 -6 =0,25 мксек . Зададимся значением емкости конденсатора из ряда Е24, С4=240 pF . Тогда R1= τ/C2= (0,25*10 -6 )/(240*10 -12 )=1041 Ом . Но! Поскольку мы ведем расчет на 50% движка резистора R3, значит, резистор R3 будет оказывать влияние на заряд конденсатора C2. При 50% установке движка соответственно это 500 Ом. Тогда значение сопротивления резистора R1 = 1041 – 500 = 541 Ом. Выбираем значение резистора R1=510 Ом. Фазировку обмоток при установке трансформатора тока в двухтактных ИИП соблюдать нет необходимости. Расчет окончен. Моделирование работы двухтактного трансформатора тока в программе Multisim. Рисунок 5 . Модель полумостового ИИП с трансформатором тока. Как видно из скриншота, Пробник 1 (подключен к коллектору верхнего транзистора) показывает амплитуду тока через ключ 2,02 А. Ваттметр, подключенный к датчику тока, показывает мощность 236 милливатт. Эти значения соответствуют исходным данным и расчету. Рисунок 6 . Осциллограммы напряжения на датчике тока. Как видно из осциллограммы амплитуда напряжения на датчике тока составляет 3,049 В и соответствует расчету. Небольшое падение амплитуды напряжения на датчике тока к концу импульса обусловлено частичным зарядом разделительного конденсатора. Рисунок 7 . Осциллограммы напряжения на регулировочном резисторе и конденсаторе фильтра. Осциллограмма напряжения на регулировочном резисторе полностью повторяет форму тока обеих ключей. Амплитуда напряжения на регулировочном резисторе составляет 1,657 В. Это значение немного выше расчетного в 1,5 В. Амплитуда напряжения на конденсаторе фильтра составляет 788 mВ, что очень близко к расчету. Осциллограмма напряжения на конденсаторе фильтра показывает небольшие завалы фронта и спада импульса, обусловленные зарядом и разрядом емкости фильтра. При этом существенных изменений формы импульса не наблюдается, а амплитуда импульса остается неизменной. Окончательное решение по значениям резистора и конденсатора фильтра принимается при настройке ИИП. Существует еще одно схемное решение получения сигнала для схемы защиты силовых ключей с помощью трансформатора тока в двухтактном ИИП. Оно связано с применением выпрямителя со средней точкой. Для этого вторичную обмотку трансформатора тока необходимо намотать со средней точкой. Этот прием сократит количество диодов до двух. Рисунок 8. Предлагаемое решение получения сигнала для схемы защиты силовых ключей с помощью трансформатора тока со средней точкой в полу мостовом ИИП. В этом случае меняется расчет датчика тока. Аналогично вышеизложенному. Резистор датчика тока R1 в схеме трансформатора тока со средней точкой подключен параллельно двум последовательно соединенным полу обмоткам. Тогда напряжение одной полу обмотки будет составлять половину падения напряжения на резисторе R1. После выпрямления получим амплитуду сигнала равную напряжению одной полу обмотки минус падение напряжения на диоде. Т.е. в половину меньше, чем требуется. Поскольку в схеме применен регулировочный резистор R3, для обеспечения входного сигнала схемы защиты на уровне 0,75 В при 50% регулировке R3, напряжение подаваемое на R3 должно быть равным UR3=1,5 В . Таким образом для получения требуемого уровня сигнала для схемы защиты напряжение на датчике тока должно быть равно Uдт=2*(UR3+ UVD)=2*(1,5+0,7)=4,4 В При токе вторичной обмотки 0,1 А, действующее значение тока вторичной обмотки составит 0,089 А. А мощность рассеиваемая на резисторе R1 равна PR1=Iw2_rms*Uдт=0,089*4,4=0,392 Вт. Это достаточно много. Для уменьшения мощности рассеиваемой на резисторе R1, примем ток вторичной обмотки Iw2_max=50 mA. Тогда коэффициент трансформации Kтр= (Iкл_max)/(Iw2_max) = 2/0,05=40 . Тогда число витков вторичной обмотки w2= Kтр*w1=40*1=40 витков . Число витков одной полу обмотки соответственно – 20 витков. Т.е. обмотка состоит из двух полу обмоток 20 + 20 витков. Рассчитаем сопротивление датчика тока R1= Uдт/Iw2_max = 4,4/0,05=88 Ом . Выберем в соответствии с рядом сопротивлений Е24, R1=91 Ом. Действующее значение тока Iw2_rms=Iw2_max*√((2*tимп.макс.)/T)=0,05*√(2*10*10 -6 )/(25*10 -6 )=0,045 А Мощность выделяемой на резисторе R1 PR1= (Iw2_rms) 2 *R1=(0,045 2 )*91=0,184 Вт . Это вполне приемлемо. Моделирование работы двухтактного трансформатора тока со средней точкой в программе Multisim . Моделирование проведем по упрощенной схеме. Рисунок 9. Модель с трансформатором тока со средней точкой. Полумостовой ИИП заменен на биполярный источник тока с амплитудой 2 ампера. Ваттметр, подключенный к датчику тока, показывает мощность 179 милливатт. Это значение очень близко к расчетному. Рисунок 10 . Осциллограммы напряжения на датчике тока. Как видно из осциллограммы амплитуда напряжения на датчике тока составляет 4,51 В и соответствует расчету. Рисунок 11 . Осциллограммы напряжения на регулировочном резисторе и конденсаторе фильтра. Амплитуда напряжения на регулировочном резисторе составляет 1,607 В. Это значение чуть выше расчетного в 1,5 В. Осциллограмма напряжения на конденсаторе фильтра показывает небольшие завалы фронта и спада импульса, обусловленные зарядом и разрядом емкости фильтра. При этом существенных изменений формы импульса не наблюдается, а амплитуда импульса остается неизменной. Амплитуда напряжения на конденсаторе фильтра при 50% повороте движка R3 составляет 0,803 В. Это чуть выше расчетного значения. Окончательное решение по значениям резистора и конденсатора фильтра принимается при настройке ИИП.
Теги:
SERGR Опубликована: 16.02.2021 0 2
Вознаградить Я собрал 0 2
Формулы расчета мощности, uk, тока силового трансформатора
Силовой трансформатор представляет собой сложную систему, которая состоит из большого числа других сложных систем. И для описания трансформатора придумали определенные параметры, которые разнятся от машины к машине и служат для классификации и упорядочивания.
Разберем основные параметры, которые могут пригодиться при расчетах, связанных с силовыми трансформаторами. Данные параметры должны быть указаны в технических условиях или стандартах на тип или группу трансформаторов (требование ГОСТ 11677-85). Сами определения этих параметров приведены в ГОСТ 16110.
Номинальная мощность трансформатора
указанное на паспортной табличке трансформатора значение полной мощности на основном ответвлении, которое гарантируется производителем при установке в номинальном месте, охлаждающей среды и при работе при номинальной частоте и напряжении обмотки.
Числовое значение мощности в кВА изначально выбирается из ряда по ГОСТ 9680-77. На изображении ниже приведен этот ряд.
0,010 | 0,100 | 1,00 | 10,0 | 100 | 1000 | 10000 | 100000 | 1000000 |
(0,012) | (0,125) | (1,25) | (12,5) | (125) | (1250) | (12500) | (125000) | (1250000) |
0,016 | 0,160 | 1,60 | 16,0 | 160 | 1000 | 16000 | 160000 | 1600000 |
(0,020) | (0,200) | (2,00) | (20,0) | (200) | (2000) | (20000) | (200000) | (2000000) |
0,025 | 0,250 | 2,50 | 25,0 | 250 | 2500 | 25000 | 250000 | 2500000 |
— | — | — | — | 320 | 3200 | 32000 | — | — |
(0,032) | (0,315) | (3,15) | (31,5) | (315) | (3150) | (31500) | (315000) | (3150000) |
0,040 | 0,400 | 4,00 | 40,0 | 400 | 4000 | 40000 | 400000 | 4000000 |
(0,050) | (0,500) | (5,00) | (50,0) | (500) | (5000) | (50000) | (500000) | (5000000) |
0,063 | 0,630 | 6,30 | 63,0 | 630 | 6300 | 63000 | 630000 | 6300000 |
(0,080) | (0,800) | (8,00) | (80,0) | (800) | (8000) | (80000) | (800000) | (8000000) |
Значения в скобках принимаются для экспортных или специальных трансформаторов.
Если по своим характеристикам оборудование может работать при разных значениях мощностей (например, при различных системах охлаждения), то за номинальное значение мощности принимается наибольшее из них.
К силовым трансформаторам относятся:
- трехфазные и многофазные мощностью более 6,3 кВА
- однофазные — более 5 кВА
Номинальное напряжение обмотки — напряжение между зажимами трансформатора, указанное на паспортной табличке, на холостом ходу.
Номинальный ток обмотки — ток, определяемый мощностью, напряжением обмотки и множителем, учитывающим число фаз. То есть если трансформатор двухобмоточный, то мы будем иметь ток с низкой стороны и ток с высокой стороны. Или же ток, приведенный к низкой или высокой стороне.
Напряжение короткого замыкания
Дадим два определения.
Приведенное к расчетной температуре линейное напряжение, которое нужно подвести при номинальной частоте к линейным зажимам одной из обмоток пары, чтобы в этой обмотке установился ток, соответствующий меньшей из номинальных мощностей обмоток пары при замкнутой накоротко второй обмотке пары и остальных основных обмотках, не замкнутых на внешние цепи
Взято из ГОСТ 16110
Напряжение короткого замыкания uk — это напряжение, при подведении которого к одной из обмоток трансформатора при замкнутой накоротко другой обмотке в ней проходит ток, равный номинальному
Источник — Электрооборудование станций и подстанций
Пример расчета мощности силового трансформатора
Определились с основными терминами, далее разберем как определить мощность, ток и сопротивление трансформатора на примере:
ТМ-750/10 с номинальными напряжениями 6 кВ и 0,4 кВ. Ток с высокой стороны будет 72,2 А, напряжение короткого замыкания — 5,4%. Определим ток из формулы определения полной мощности:
\[ S \approx \sqrt \cdot U_1 \cdot I_1 = \sqrt \cdot U_2 \cdot I_2 \] \[ I_2 = \frac \approx \frac \approx 1083 \, \text \]
Так что, если недобрали данных для расчетов, всегда можно досчитать. Но это рассмотрен случай двухобмоточного Т.
Чтобы определить сопротивление двухобмоточного трансформатора в именованных единицах (Ом), например, для расчета тока короткого замыкания, воспользуемся следующими выражениями:
- x — искомое сопротивление в именованных единицах, Ом
- xT% — относительное сопротивление, определяемое через uk% (в случае двухобмоточных эти числа равны), отн.ед.
- Uб — базисное напряжение, относительно которого мы ведем наш расчет (более подробно будет рассмотрено в статье про расчет токов КЗ), кВ
- Sном — номинальная мощность, МВА
В формуле выше важно следить за единицами измерения, не спутать вольты и киловольты, мегавольтамперы с киловольтамперами. Будьте начеку.
Формулы для расчета относительных сопротивлений обмоток (xT%)
В двухобмоточном трансформаторе все просто и uk=xt.
Трехобмоточный и автотрансформаторы
В данном случае схема эквивалентируется в три сопротивления (по секрету, одно из них частенько бывает равно нулю, что упрощает дальнейшее сворачивание).
Трехфазный у которого НН расщепленная
Частенько в схемах ТЭЦ встречаются данные трансформаторы с двумя ногами.
В данном случае всё зависит от исходных данных. Если Uk дано только для в-н, то считаем по верхней формуле, если для в-н и н1-н2, то нижней. Схема замещения представляет собой звезду.
Группа двухобмоточных однофазных трансформаторов с обмоткой низшего напряжения, разделенной на две или на три ветви
Хоть внешне и похоже на описанные выше, и схемы замещения подобны, однако, формулы будут немного разные.
Расчет трансформатора
Как рассчитать силовой трансформатор и намотать самому.
Можно подобрать готовый трансформатор из числа унифицированных типа ТН, ТА, ТНА, ТПП и других. А если Вам необходимо намотать или перемотать трансформатор под нужное напряжение, что тогда делать?
Тогда необходимо подобрать подходящий по мощности силовой трансформатор от старого телевизора, к примеру, трансформатор ТС-180 и ему подобные.
Надо четко понимать, что чем больше количества витков в первичной обмотке тем больше её сопротивление и поэтому меньше нагрев и второе, чем толще провод, тем больше можно получить силу тока, но это зависит от размеров сердечника — сможете ли разместить обмотку.
Что делаем далее, если неизвестно количество витков на вольт? Для этого необходим ЛАТР, мультиметр (тестер) и прибор измеряющий переменный ток — амперметр. Наматываем по вашему усмотрению обмотку поверх имеющейся, диаметр провода любой, для удобства можем намотать и просто монтажным проводом в изоляции.
Формула для расчета витков трансформатора
Сопутствующие формулы: P=U2*I2 Sсерд(см2)= √ P(ва) N=50/S I1(a)=P/220 W1=220*N W2=U*N D1=0,02*√i1(ma) D2=0,02*√i2(ma) K=Sокна/(W1*s1+W2*s2)
50/S — это эмпирическая формула, где S — площадь сердечника трансформатора в см2 (ширину х толщину), считается, что она справедлива до мощности порядка 1кВт.
Измерив площадь сердечника, прикидываем сколько надо витков намотать на 10 вольт, если это не очень трудно, не разбирая трансформатора наматываем контрольную обмотку через свободное пространство (щель). Подключаем лабораторный автотрансформатор к первичной обмотке и подаёте на неё напряжение, последовательно включаем контрольный амперметр, постепенно повышаем напряжение ЛАТР-ом, до начала появления тока холостого хода.
Если вы планируете намотать трансформатор с достаточно «жёсткой» характеристикой, к примеру, это может быть усилитель мощности передатчика в режиме SSB, телеграфном, где происходят довольно резкие броски тока нагрузки при высоком напряжении ( 2500 -3000 в), например, тогда ток холостого хода трансформатора устанавливаем порядка 10% от максимального тока, при максимальной нагрузке трансформатора. Замерив полученное напряжение, намотанной вторичной контрольной обмотки, делаем расчет количества витков на вольт.
Пример: входное напряжение 220вольт, измеренное напряжение вторичной обмотки 7,8 вольта, количество витков 14.
Рассчитываем количества витков на вольт
14/7,8=1,8 витка на вольт.
Если нет под рукой амперметра, то вместо него можно использовать вольтметр, замеряя падение напряжение на резисторе, включенного в разрыв подачи напряжения к первичной обмотке, потом рассчитать ток из полученных измерений.
Вариант 2 расчета трансформатора.
Зная необходимое напряжение на вторичной обмотке (U2) и максимальный ток нагрузки (Iн), трансформатор рассчитывают в такой последовательности:
1. Определяют значение тока, протекающего через вторичную обмотку трансформатора:
I2 = 1,5 Iн ,
где: I2 — ток через обмотку II трансформатора, А;
Iн — максимальный ток нагрузки, А.
2. Определяем мощность, потребляемую выпрямителем от вторичной обмотки трансформатора:
P2 = U2 * I2 ,
где: P2 — максимальная мощность, потребляемая от вторичной обмотки, Вт;
U2 — напряжение на вторичной обмотке, В;
I2 — максимальный ток через вторичную обмотку трансформатора, А.
3. Подсчитываем мощность трансформатора:
Pтр = 1,25 P2 ,
где: Pтр — мощность трансформатора, Вт;
P2 — максимальная мощность, потребляемая от вторичной обмотки трансформатора, Вт.
Если трансформатор должен иметь несколько вторичных обмоток, то сначала подсчитывают их суммарную мощность, а затем мощность самого трансформатора.
4. Определяют значение тока, текущего в первичной обмотке:
I1 = Pтр / U1 ,
где: I1 — ток через обмотку I, А;
Ртр — подсчитанная мощность трансформатора, Вт;
U1 — напряжение на первичной обмотке трансформатора (сетевое напряжение).
5. Рассчитываем необходимую площадь сечения сердечника магнитопровода:
S = 1,3 Pтр ,
где: S — сечение сердечника магнитопровода, см2;
Ртр — мощность трансформатора, Вт.
6. Определяем число витков первичной (сетевой) обмотки:
w1 = 50 U1 / S ,
где: w1 — число витков обмотки;
U1 — напряжение на первичной обмотке, В;
S — сечение сердечника магнитопровода, см2.
7. Подсчитывают число витков вторичной обмотки:
w2 = 55 U2 / S ,
где: w2 — число витков вторичной обмотки;
U2 — напряжение на вторичной обмотке, В;
S-сечение сердечника магнитопровода, см2.
8. Высчитываем диаметр проводов обмоток трансформатора:
d = 0,02 I ,
где: d-диаметр провода, мм;
I-ток через обмотку, мА.
Ориентировочный диаметр провода для намотки обмоток трансформатора в таблице 1.
После выполнения расчетов, приступаем к выбору самого трансформаторного железа, провода для намотки и изготовление каркаса на которой намотаем обмотки. Для прокладки изоляции между слоями обмоток приготовим лакоткань, суровые нитки, лак, фторопластовую ленту. Учитываем тот факт, что Ш — образный сердечник имеют разную площадь окна, поэтому будет не лишним провести расчет проверки: войдут ли они на выбранный сердечник. Перед намоткой производим расчет — поместится ли обмотки на выбранный сердечник.
Для расчета определения возможности размещения нужного количества обмоток:
1. Ширину окна намотки делим на диаметр наматываемого провода, получаем количество витков наматываемый
на один слой — N¹.
2. Рассчитываем сколько необходимо слоев для намотки первичной обмотки, для этого разделим W1 (количество витков первичной обмотки) на N¹.
3. Рассчитаем толщину намотки слоев первичной обмотки. Зная количество слоев для намотки первичной обмотки умножаем на диаметр наматываемого провода, учитываем толщину изоляции между слоями.
4. Подобным образом считаем и для всех вторичных обмоток.
5. После сложения толщин обмоток делаем вывод: сможем ли мы разместить нужное количество витков всех обмоток на каркасе трансформатора.
Еще один способ расчета мощности трансформатора по габаритам.
Ориентировочно посчитать мощность трансформатора можно используя формулу:
P = 0.022 * S * С * H * Bm * F * J * Кcu * КПД;
P — мощность трансформатора, В*А;
S — сечение сердечника, см²
L, W — размеры окна сердечника, см;
Bm — максимальная магнитная индукция в сердечнике, Тл;
F — частота, Гц;
Кcu — коэффициент заполнения окна сердечника медью;
КПД — коэффициент полезного действия трансформатора;
Имея в виду что для железа максимальная индукция составляет 1 Тл.
Варианты значений для подсчета мощности трансформатора КПД = 0,9, f =50, B = 1 — магнитная индукция [T], j =2.5 — плотность тока в проводе обмоток [A/кв.мм] для непрерывной работы, KПД =0,45 — 0,33.
Если вы располагаете достаточно распространенным железом — трансформатор ОСМ-0,63 У3 и им подобным, можно его перемотать?
Расшифровка обозначений ОСМ: О — однофазный, С — сухой, М — многоцелевого назначения.
По техническим характеристикам он не подходит в для включения однофазную сеть 220 вольт т.к. рассчитан на напряжение первичной обмотки 380 вольт.
Что же в этом случае делать?
Имеется два пути решения.
1. Смотать все обмотки и намотать заново.
2. Смотать только вторичные обмотки и оставить первичную обмотку, но так как она рассчитана на 380В, то с нее необходимо смотать только часть обмотки оставив на напряжение 220в.
При сматывании первичной обмотки получается примерно 440 витков (380В) когда сердечник Ш-образной формы, а когда сердечник трансформатора ОСМ намотан на ШЛ данные другие — количество витков меньше.
Данные первичных обмоток на 220в трансформаторов ОСМ Минского электротехнического завода 1980 год.
- 0,063 — 998 витков, диаметр провода 0,33 мм
- 0,1 — 616 витков, диаметр провода 0,41 мм
- 0,16 — 490 витков, диаметр провода 0,59 мм
- 0,25 — 393 витка, диаметр провода 0,77 мм
- 0,4 — 316 витков, диаметр провода 1,04 мм
- 0,63 — 255 витков, диаметр провода 1,56 мм
- 1,0 — 160 витков, диаметр провода 1,88 мм
ОСМ 1,0 (мощность 1 кВт), вес 14,4кг. Сердечник 50х80мм. Iхх-300ма
Подключение обмоток трансформаторов ТПП
Рассмотрим на примере ТПП-312-127/220-50 броневой конструкции, параллельное включение вторичных обмоток.
В зависимости от напряжения в сети подавать напряжение на первичную обмотку можно на выводы 2-7, соединив между собой выводы 3-9, если повышенное — то на 1-7 (3-9 соединить) и т.д. На схеме подключение показано случае пониженного напряжение в сети.
Часто возникает необходимость применять унифицированные трансформаторы типа ТАН, ТН, ТА, ТПП на нужное напряжение и для получения необходимой нагрузочной способности, а простым языком нам надо подобрать, к примеру, трансформатор со вторичной обмоткой 36 вольт и чтобы он отдавал 4 ампера под нагрузкой, первичная конечно 220 вольт.
Как подобрать трансформатор?
С начало определяем необходимую мощность трансформатора, нам необходим трансформатор мощностью 150 Вт.
Входное напряжение однофазное 220 вольт, выходное напряжение 36 вольт.
После подбора по техническим данным определяем, что в данном случае нам больше всего подходит трансформатор марки ТПП-312-127/220-50 с габаритной мощностью 160 Вт (ближайшее значение в большую сторону ), трансформаторы марки ТН и ТАН в данном случае не подходят.
Вторичные обмотки ТПП-312 имеют по три раздельные обмотки напряжением 10,1в 20,2в и 5,05в, если соединить их последовательно 10,1+20,2+5,05=35,35 вольт, то получаем напряжение на выходе почти 36 вольт. Ток вторичных обмоток по паспорту составляет 2,29А, если соединить две одинаковые обмотки параллельно, то получим нагрузочную способность 4,58А (2,29+2,29).
После выбора нам только остается правильно соединить выходные обмотки параллельно и последовательно.
Последовательно соединяем обмотки для включения в сеть 220 вольт. Последовательно включаем вторичные обмотки, набирая нужное напряжение по 36В на обеих половинках трансформатора и соединяем их параллельно для получения удвоенного значения нагрузочной способности.
Самое важное, правильно соединить обмотки при параллельном и последовательном включении, как первичной так и вторичной обмоток.
Если неправильно включить обмотки трансформатора, то он будет гудеть и перегреваться, что потом приведет его к преждевременному выходу из строя.
По такому же принципу можно подобрать готовый трансформатор на практически любое напряжение и ток, на мощность до 200 Вт, конечно, если напряжение и ток имеют более или менее стандартные величины.
Разные вопросы и советы.
1. Проверяем готовый трансформатор, а у него ток первичной обмотки оказывается завышенным, что делать? Чтобы не перематывать и не тратить лишнее время домотайте поверх еще одну обмотку, включив ее последовательно с первичной.
2. При намотке первичной обмотки когда мы делаем большой запас, чтобы уменьшить ток холостого хода, то учитывайте, что соответственно уменьшается и КПД транса.
3. Для качественной намотки, если применен провод диаметром от 0,6 и выше , то его обязательно надо выпрямить, чтоб он не имел малейшего изгиба и плотно ложился при намотке, зажмите один конец провода в тиски и протяните его с усилием через сухую тряпку, далее наматывайте с нужным усилием, постепенно наматывая слой за слоем. Если приходится делать перерыв, то предусмотрите фиксацию катушки и провода, иначе придется делать все заново. Порой подготовительные работы занимают много времени, но это того стоит для получения качественного результата.
4. Для практического определения количества витков на вольт, для попавшегося железа в сарае, можно намотать на сердечник проводом обмотку. Для удобства лучше наматывать кратное 10, т.е. 10 витков, 20 витков или 30 витков, больше наматывать не имеет большого смысла. Далее от ЛАТРа постепенно подаем напряжение его увеличивая от 0 и пока не начнет гудеть испытываемый сердечник, вот это и является пределом. Далее делим полученное напряжение подаваемое от ЛАТРа на количество намотанных витков и получаем число витков на вольт, но это значение немного увеличиваем. На практике лучше домотать дополнительную обмотку с отводами для подбора напряжения и тока холостого хода.
5. При разборке — сборке броневых сердечников обязательно помечайте половинки, как они прилегают друг к другу и собирайте их в обратном порядке, иначе гудение и дребезжание вам обеспечено. Иногда гудения избежать не удается даже при правильной сборке, поэтому рекомендуется собрать сердечник и скрепить чем либо (или собрать на столе, а сверху через кусок доски приложить тяжелый груз), подать напряжение и попробовать найти удачное положение половинок и только потом окончательно закрепить. Помогает и такой совет, поместить готовый собранный трансформатор в лак и потом хорошо просушить при температуре до полного высыхания (иногда используют эпоксидную смолу, склеивая торцы и просушка до полной полимеризации под тяжестью).
Соединение обмоток отдельных трансформаторов
Иногда необходимо получить напряжение нужной величины или ток большей величины, а в наличии имеются готовые отдельные унифицированные трансформаторы, но на меньшее напряжение чем нужно, встает вопрос: а можно ли отдельные трансформаторы включать вместе, чтобы получить нужный ток или величину напряжения?
Для того чтобы получить от двух трансформаторов постоянное напряжение (после выпрямления и сглаживания), к примеру 600 вольт постоянного тока, то необходимо иметь два трансформатора которые бы после выпрямителя выдавали бы 300 вольт и после соединив их последовательно два источника постоянного напряжения получим на выходе 600 вольт. Учитывать в расчетах придется и то что постоянное напряжение после выпрямления будет на 1,41 больше (корень из двух), но при нагрузке на номинальный ток оно просядет.
Напряжение холостого хода на вторичной обмотке трансформатора
Порой мы не обращаем внимания на такой важный параметр — напряжение вторичной обмотке без нагрузки. На что это влияет, да это очень просто, возмем трансформатор ОСМ-0,063 в качестве понижающего трансформатора, к примеру 400/230 в. Если мы слабо нагрузим его, к примеру контроллером Овен ПЛК-63, то что может произойти? Таблица 2.
Смотрим значение напряжения на обмотке — 254,0-264,0 вольт, в характеристике контроллера указано входное напряжение от 90 до 264 (номинальное 120/230)в, т.е. значение выходного 264в трансформатора находится на предельном значении напряжения питания, что может быть опасно для оборудования, небольшой скачок напряжения и контроллер выйдет из строя, таким образом необходимо трансформатор нагружать хотя-бы до 0.5 номинала по мощности.
На фото видно, что при измерении прибором входного и выходного напряжений, на вход трансформатора подается 395,6 вольт, на вход контроллера поступает 260,3 вольта, мощность потребляемая контроллером 18 ВА.
Ниже приведена часть таблицы напряжений вторичной обмотки при холостом ходе, выпускаемых трансформаторов типа ОСМ (данные завода производителя).
Пределы допустимых значений напряжения вторичной обмотки в режиме холостого хода, В, при номинальных напряжениях вторичной обмотки, В