Подключение трехфазного двигателя-советы специалистов
Статьи об энергетике
Автор Марк Соболев На чтение 5 мин.
Те, кто на постоянной основе работает с электрикой, знают, что трехфазные двигатели являются более удобными, чем однофазные на 220 Вт. Если в обычном гараже при этом есть питающий кабель на 3 фазы, то разумней выгодней всего поставить станок на 380 Вт.
Особенности двигателя
Перед тем, как подключить трехфазный двигатель, стоит разобраться с его конструктивными особенностями. В основе устройства две крупные детали: подвижный ротор и статический статор.
У второй части есть выемка, куда ложится обмотка. При ее расположении продумывают все моменты, чтобы она не мешала остальным деталям. Угловое расстояние при этом оставляют примерно в 120 градусов. Благодаря обмотке появляется две пары полюсов. От их количества меняется частота вращения ротора, а также его мощность и КПД.
Когда происходит подключение трехфазного двигателя, по обмоткам идет ток. За счет этого появляется магнитное поле, которое контактирует с обмоткой и приводит элемент в действие. За счет этих процессов появляется усилие, оно запускает подвижную часть, влияя на нее через разные промежутки времени.
Если схема подключения электродвигателя предполагает наличие только одной фазы и при этом не проводится дополнительная подготовка, то ток пройдет через одну обмотку. Силы воздействия окажется недостаточно для смещения ротора и поддерживания оборотов. По этой причине используют разные виды конденсаторов, которые поддерживают 3х-фазный двигатель на стабильной динамике.
Определение схемы
Если не разобраться с тем, как соединяются между собой фазы обмоток, то включить устройство не удастся. В электродвигателях на 3 фазы соединение происходит в треугольник или звезду, иногда эти методы комбинируют между собой.
Все основные параметры устройства указаны на шильде, поэтому по ней чаще всего определяют возможности мотора. Помимо технических параметров там есть номинал рабочего напряжения. Среди обозначений есть параметры подключения двигателя на 220/380 В. Многое здесь зависит от производителя, иногда указывают обозначения сразу для треугольника и звезды, это предпочтительный вариант.
Шильд есть не на всех двигателях, иногда подключение электродвигателя на 380 В невозможно только потому, что информация с таблички стерлась. В этом случае схему узнают после открытия блока. Когда под крышкой находятся 6 выводов с клеммными соединениями, тип обмотки определить проще всего. Модели с тремя выводами и внутренним способом подключения доставляют больше проблем. Тут для получения информации придется полностью разобрать мотор.
Как подключить электродвигатель с 380 на 220 В?
Схема подключения трехфазного двигателя зависит от конструкции устройства, требуемых характеристик, имеющихся нагрузок. Обычно для этого используют конденсаторы, но определить их количество удается не всем, поэтому мы перечислим несколько доступных вариантов.
Конденсаторы
Для запуска устройства потребуется пусковой и рабочий конденсатор. Первый используется редко, поскольку за счет емкости увеличивается напряжение в обмотке и создается большое усилие.
На рисунке показано, что создается однофазное напряжение, которое концентрируется между несколькими конечными элементами. Двигатель соединяется с двумя обмотками, а третья проходит через переключатели, которые воздействуют на конденсаторы.
Включение двигателя с 380 на 220 В происходит в несколько этапов:
- После запуска устройства контакты SA1 и SA2 двигаются, поэтому по обмотке проходит ток.
- Если отпустить кнопку пуска, то другой контакт замкнется. Фаза сместится на конденсатор С1. Первый контакт разомкнется и С2 перестанет работать.
- Характеристики вернутся к номинальным значениям и двигатель заработает в обычном темпе.
В этом случае ротор вращается только в одну сторону, если используется сеть на 220 В. Для реверсивных движений придется поработать над точками подключения или выбрать другой метод.
Пускатель
При создании высокой пусковой и рабочей нагрузки лучше использовать контактор. Он защитит двигатель на 380 В от поломки и при этом зафиксирует требуемые показатели.
Включение происходит после нажатия пусковой кнопки. Она замыкает цепь и напряжение идет на основной конденсатор. Когда ток идет по катушке, то контакты К 1.1 и К 1.2 замыкаются. Первая пара используется для отключения электролинии, а вторая влияет на пусковую кнопку. После этого она отключается и цепь размыкается.
Реверс
В некоторых ситуациях используется не только прямое, но и обратное вращение двигателя, чтобы при подключении сохранялась последовательность смены напряжения. Некоторые вручную влияют на деталь, но это подходит только для единичных случаев. Когда менять направление требуется по несколько раз в час, проще всего предусмотреть автоматический реверс.
Для этого используется коммутатор с несколькими контактами, которые имеют обратную логику. Схему подбирают в зависимости от технических особенностей устройства. Некоторые используют для этого поворотный переключатель или тумблер, который ставят на место пусковой кнопки.
Схема остается такой же, как при включении конденсаторов. Разница заключается только в наличии двух положений у переключателя (SA). В дном из них напряжение передается с фазы на конденсатор, а во втором оно переходит от проводника. При использовании тумблера происходит чередование обмоток, за счет этого быстро появляется противоположное направление.
Без конденсаторов
Некоторые предпочитают подключать двигатель без каких-либо емкостных элементов. Для этого просто разводят полупроводниковые ключи транзистором, чтобы мощность оставалась стабильной.
После этого напряжение подключается к двум точкам мотора. Затем напряжение идет на третью точку и переходит на времязадающую цепочку. Интервал сдвига регулирует магазин сопротивления обычным бегунком, затем конденсатор пропускает сигнал на симистор. Если работа проходит на высоких оборотах, то используется два симистора и несколько времязадающих элементов.
Независимо от выбранного метода пусковая кнопка иногда перестает работать. Проблемы с ней возникают в 70% случаев, но для их решения достаточно почистить контакты, поскольку они подгорают при появлении высокого напряжения.
Подключения трехфазного двигателя к однофазной сети
Бывают ситуации, когда мы вынуждены использовать двигатель, который не адаптирован к данному источнику питания. Примером этого является подключение трехфазного двигателя к однофазной сети. Может быть, не все знают, но это возможно и даже и не так сложно осуществить. Но стоит учитывать, что трехфазный двигатель в однофазной сети теряет около 30-50% своей мощности. В сети 220 В двигатели мощностью более 3 кВт включать не имеет смысла – бытовая электропроводка не выдержит нагрузки.
Подключение с помощью фазосдвигающего конденсатора (искусственный фазовый метод)
Наиболее распространённый и простой способ подключения трехфазного электродвигателя в однофазную сеть – это способ с применением фазосдвигающего конденсатора, через который запитывается третья обмотка электродвигателя.
Существуют пусковые и так называемые рабочие конденсаторы, которые постоянно задействованы во время работы двигателя. Основной задачей рабочих конденсаторов является обеспечение оптимальной нагрузочной способности двигателя. Нормальная работа трехфазного электродвигателя во многом зависит от правильного выбора конденсатора.
Как правильно подобрать конденсаторы
Теоретически предполагается осуществлять расчет необходимой емкости путем деления силы тока на напряжение и полученную величину умножить на коэффициент. Для разного типа соединений обмоток коэффициент составляет:
- звездой – 2800
- треугольником — 4800
Недостатком этого метода является то, что не всегда на электродвигателе сохранилась табличка с данными. Невозможно точно знать коэффициент мощности и мощность двигателя, а следовательно и силу тока. К тому же на силу тока могут действовать такие факторы как отклонения напряжения в сети и величина нагрузки на двигатель.
Поэтому следует применять упрощенный расчет емкости рабочих конденсаторов. Просто учесть, что на каждые 100 ватт мощности необходимо 7 микрофарад емкости. Удобнее использовать несколько параллельно соединенных конденсаторов малой, желательно одинаковой емкости, чем один большой. Просто суммируя емкость собранных конденсаторов, можно легко определить и подобрать оптимальное значение. Для начала лучше процентов на десять занизить суммарную емкость.
Таких схем несколько, это и самодельные пусковые устройства на тиристорах с транзисторным управлением и подключение двигателя через индукционные катушки или сопротивления. На практике, эти способы сложнореализуемые и малоэффективные.
Подключение трехфазного асинхронного двигателя через преобразователь частоты
Для подключения трехфазных двигателей к сети 220В применяются однофазные ПЧ. Хотя, это не самый бюджетный вариант, но частотник позволяет преобразовывать переменное напряжение частотой 50 Гц в напряжение с частотой от 0 Гц до 1 кГц, к тому же импульсное. Благодаря этому появляется возможность осуществить плавный пуск двигателя и регулировать частоту оборотов.
В некоторых ПЧ есть функция построения модели двигателя и преобразователь сам выставляет нужные параметры для работы.
Для подключения частотного преобразователля к двигателю применяют экранированные кабели, рекомендованным производителем марок, сечением, отвечающем мощности выбранного ПЧ. Подключение осуществляется через емкостные входы преобразователя, внешние конденсаторы при этом не нужны.
Заключение
При включении трехфазного двигателя в однофазную сеть существенно изменяются характеристики агрегата. Из-за значительных недостатков такой метод в массово в промышленности не применяется, и допускается только как исключительная мера. Такое подключение допустимо только для маломощных электродвигателей.
Схема подключения электродвигателя
Существует несколько схем подключения электродвигателей 220/380/660 Вольт – Звезда, Треугольник, Звезда-треугольник. Разные схемы соединения обмоток источников питания используются что б увеличить мощности передачи без потерь напряжения сети, снизить в блоках питания пульсации напряжения, уменьшить при подключении нагрузки к питанию число проводов. Данные схемы имеют между собой отличия и разницу в нагрузке по току. Однофазные двигатели подключаются по схеме с пусковой обмоткой и с конденсатором в цепи питания пусковой обмотки. Перед приводом двигателей в работу, необходимо выяснить нужный вариант подключения.
Схема подключения электродвигателя 380/660 Вольт
Основные способы подключения асинхронных двигатели 380/660 — «подключение звезда» и «подключение треугольник». При правильном подключении и приводе в действие – не перегреваются, работают долго и надежно. Рассмотрим возможные схемы подключения:
Схема подключения «Звезда»
При соединении трёхфазного электродвигателя по схеме подключения — звезда, на начала обмоток подаётся трехфазное напряжение, а концы статорных обмоток соединяются в одной точке, которая называется нейтральной (нулевой).
За счет более высокого напряжения питания — 660В для двигателей 380/660 и 380В для двигателей 220/380, рабочие и пусковые токи будут ниже.
Схема подключения «Треугольник»
Схема «треугольник» в клеммной коробке значит, что концы одной обмотки последовательно соединены с началом следующей обмотки и так один за одним. Токи данного подключения выше. Для электромоторов 220/380 треугольник предполагает подключение к однофазной сети 220 Вольт с использованием фазосдвигающего конденсатора.
Комбинированный тип
Комбинированный тип подключения — это когда на электродвигатель 380/660В подключенный по схеме Звезда подают напряжение от треугольника — 380В. Данный режим не способен выдать паспортную мощность привода, но имеет эффект маломощного плавного пуска за счет низкого напряжения и тока в обмотках. Далее следует переключение выводов в схему треугольник 380В для работы в номинальном эффективном режиме. – Звезда-треугольник, используется для снижения пусковых токов. УЧТИТЕ! Данный режим актуален для техпроцессов с пропорциональным возрастанием нагрузки на вал — насосы, вентиляторы, пилы. Ослабленный вращающий момент при комбинированном подключении может «не потянуть» и привести к выходу из строя мотора.
Подключение трехфазного двигателя в однофазную сеть 220 Вольт
На сегодняшний день, выпускаются двигатели как для трехфазной сети, так и для однофазной сети 220 Вольт.
Однако, что делать если у вас есть двигатель 380 вольт, и вам нужно подключить его в розетку?
Использования таких приборов в домашних условиях, требуют изменения в схеме сборки и в подключении конденсаторов. Рассмотрим принцип действия электродвигателя:
При подаче трёхфазного напряжения на обмотки в статоре, появляется вращающееся магнитное поле, которое приводит в движение ротор двигателя. Подключая такой механизм к однофазной сети 220 вольт вращающееся поля преобразуется в пульсирующее.
Справка. В оборудовании, изготовленного для работы от 220 В, для этого предназначены пусковые обмотки либо особенности конструкции статора.
Схема подключения трехфазного электродвигателя в однофазную сеть (220 В) включает фазосдвигающий конденсатор. Его значение в микрофарадах (мкФ) для электродвигателей с мощностью до 2,5 кВт, определяется умножением мощности на 100.
Ниже представлены 2-е основные схемы подключения:
Подключение трехфазного двигателя к однофазной сети через конденсатор
Схема подключения трехфазного двигателя к 220В через конденсатор представлена на Рис 1.
Направление вращения электродвигателя меняется в зависимости от положения SB1 – переключателя. Подключение к сети выполняется автоматическим либо механическим выключателем F.
После включения, необходимо сразу подключить дополнительный конденсатор Сдоп, емкость которого в 2-3 раза большей Сраб. Для этого после нажатия кнопки SB2, ее нужно сразу же после набора оборотов отпустить.
Резистор R предназначен для разряда Сдоп — конденсатора, после его отключения. Значение резистора должно быть порядка 100 — 500 кОм.
Данная схема предназначена для подключения двигателя треугольником и звездой.
Подключение трехфазного двигателя к однофазной сети через пускатель
С помощью схемы подключения электродвигателя через пускатель Рис 2, включение мотора можно производить в одно нажатие.
Нажав кнопку «пуск» срабатывает КМ1 – пускатель. Одними контактами подключается Сдоп — конденсатор , иными — включает КМ2 — пускатель, который подает на двигатель напряжение (КМ2.1 — контактная группа) и одновременно блокируются КМ1.1 — контакты первого пускателя.
Кнопку — пуск отпускаем после набора оборотов, КМ1 — пускатель отключается вместе с Cдоп. На КМ2 – пускатель, подается им самим же напряжение, и до нажатия на кнопку «стоп», которая размыкает цепь питания, он находится в замкнутом состоянии.
Катушки пускателей рассчитаны на напряжение 220В.
Таблица общепромышленных электродвигателей АИР
В таблице перечислены часто запрашиваемые общепромышленные двигатели АИР. Основными критериями в подборе электродвигателя являются мощность и обороты в минуту. Технические характеристики, размеры, вес, прописаны на каждый двигатель отдельно.
Каталог мощности, кВт |
Обороты и модель электродвигателя АИР | |||
3000 об/мин | 1500 об/мин | 1000 об/мин | 750 об/мин | |
2.2 | АИР80В2 | АИР90L4 | АИР100L6 | АИР112МА8 |
3 | АИР90L2 | АИР100S4 | АИР112МА6 | АИР112МВ8 |
4 | АИР100S2 | АИР100L4 | АИР112МВ6 | АИР132S8 |
5.5 | АИР100L2 | АИР112М4 | АИР132S6 | АИР132М8 |
7.5 | АИР112M2 | АИР132S4 | АИР132М6 | АИР160S8 |
11 | АИР132M2 | АИР132М4 | АИР160S6 | АИР160М8 |
15 | АИР160S2 | АИР160S4 | АИР160М6 | АИР180М8 |
18.5 | АИР160M2 | АИР160M4 | АИР180М6 | АИР200М8 |
22 | АИР180S2 | АИР180S4 | АИР200М6 | АИР200L8 |
30 | АИР180M2 | АИР180M4 | АИР200L6 | АИР225М8 |
37 | АИР200M2 | АИР200M4 | АИР225М6 | АИР250S8 |
45 | АИР200L2 | АИР200L4 | АИР250S6 | АИР250M8 |
55 | АИР225M2 | АИР225M4 | АИР250M6 | АИР280S8 |
75 | АИР250S2 | АИР250S4 | АИР280S6 | АИР280M8 |
90 | АИР250М2 | АИР250M4 | АИР280M6 | АИР 315 S8 |
110 | АИР280S2 | АИР280S4 | АИР 315 S6 | АИР 315 M8 |
132 | АИР280M2 | АИР280M4 | АИР 315 M6 | АИР 355 S8 |
160 | АИР 315 S2 | АИР 315 S4 | АИР 355 S6 |
Как включить трехфазный электродвигатель в однофазную сеть без перемотки
Трехфазный асинхронный двигатель может работать от однофазной сети как однофазный с пусковым элементом или как однофазный конденсаторный с постоянно включенной рабочей емкостью. Применение двигателя в качестве конденсаторного предпочтительнее.
В этом случае при пуске двигателя в ход для образования вращающегося магнитного поля (в общем случае эллиптического) используются обмотки всех трех фаз, в которых с помощью активного сопротивления R, индуктивности L или емкости С создается трехфазная несимметричная система токов.
По окончании пуска в большинстве случаев одна из фаз вместе со вспомогательным сопротивлением (R, L или С) отключается и двигатель переводится в однофазный режим, при котором обмотки статора создают не вращающееся, а пульсирующее магнитное поле.
Использование трехфазных двигателей для работы от однофазной сети
На рисунках 1 и 2 представлены различные схемы пуска в ход трехфазных асинхронных двигателей при их работе от однофазной сети.
Рис. 1. Схемы включения в однофазную сеть трехфазных двигателей с тремя выводами:
а — схема с пусковым сопротивлением, б, в — схемы с рабочей емкостью
Если принять за 100 % мощность трехфазного двигателя, обозначенную на его щитке, то при однофазном включении двигатель может развить 50-70 % этой мощности, а при использовании в качестве конденсаторного — 70-85 % и более. Еще одно преимущество конденсаторного двигателя заключается в том, что отсутствует специальное пусковое устройство, которое необходимо при однофазной схеме для отключения пусковой обмотки после разгона двигателя.
Рис. 2. Схемы включения в однофазную сеть трехфазных двигателей с шестью выводами:
а — схема с пусковым сопротивлением, б, в — схемы с рабочей емкостью
Схему включения на рисунках надо выбирать с учетом напряжения сети и номинального напряжения двигателя. Например, при трех выведенных концах обмотки статора (рис. 1) двигатель может быть использован в сети, напряжение которой равно номинальному напряжению двигателя.
При шести выводных концах обмотки двигатель имеет два номинальных напряжения: 127/220 В, 220/380 В. Если напряжение сети равно большему номинальному напряжению двигателя, т.е. Uc = 220 В при номинальном напряжении 127/220 В или UC = 380 В при номинальном напряжении 220/380 В и т.д., то надо пользоваться схемами, приведенными на рис. 1, а, б. При напряжении сети, равном меньшему номинальному напряжению двигателя, следует применять схему, показанную на рис. 1, в. В этом случае при однофазном включении значительно уменьшается мощность двигателя, поэтому целесообразно применять схемы с рабочей емкостью.
Подбор конденсаторов при подключении трехфазных двигателей к сети
Расчет пусковых элементов при использовании трехфазных двигателей в качестве однофазных требует знания параметров схемы замещения двигателя, причем, будучи сложным, он в то же время не позволяет для большинства схем достаточно точно определить искомые величины, поэтому для двигателей малой мощности на практике чаще всего величину пусковых элементов определяют экспериментально. Критерием правильности подбора пусковых элементов служат величины пусковых момента и тока.
Рабочая емкость СР(мкФ) для каждой схемы должна иметь определенное значение и может быть подсчитана, исходя из напряжения однофазной сети Uc и номинального тока Iф в фазе трехфазного двигателя: Ср=kIф/Uc где k — коэффициент, зависящий от схемы включения. При частоте 50 Гц для схем по рис. 1, б и 2, б можно принять k=2800; для схемы по рис. 1, в — k=4800; для схемы по рис. 2, в — k=1600.
Напряжение на конденсаторе Uk также зависит от схемы включения и напряжения сети. Для схем по рис. 1, б, в оно может быть принято равным напряжению сети; для схемы по рис. 2, б — Uk = 1,15Uc; для схемы по рис. 2, e-Uk=2Uc.
Номинальное напряжение конденсатора должно быть равно или несколько больше расчетного значения.
Необходимо помнить, что конденсаторы после отключения длительное время сохраняют напряжение на своих зажимах и создают при прикосновении к ним опасность поражения человека электрическим током. Опасность поражения тем выше, чем больше емкость и выше напряжение на включенном в схему конденсаторе. При ремонте или отладке двигателя необходимо после каждого отключения конденсатор разрядить. Для защиты от случайного прикосновения в процессе эксплуатации двигателя конденсаторы должны быть жестко закреплены и ограждены.
Пусковое сопротивление Rn определяют опытным путем, используя регулируемое сопротивление (реостат).
Если необходимо получить увеличенный момент при пуске двигателя, то параллельно рабочему конденсатору включают пусковой. Его емкость обычно подсчитывают по формуле Сп=(от 2,5 до 3)Ср, где Ср — емкость рабочего конденсатора. Пусковой момент при этом получается близким к номинальному моменту трехфазного двигателя.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика