Как рассчитать расчетный ток
Перейти к содержимому

Как рассчитать расчетный ток

  • автор:

Выбор номинального тока автоматического выключателя. Расчет автомата.

Правило: Кабель выбирается соответственно нагрузке, а автоматы — соответственно кабелю. Понятно, что раз нагрузка подключается к автоматическому выключателю через кабель, то это накладывает некоторые ограничения на выбор автомата.

Сначала рассчитаем максимальный потребляемый ток нагрузки, для которой выбираем автомат (Iмакс)

Порядок расчета максимального потребляемого тока нагрузки (Iмакс):

1. Определить мощность нагрузки в ваттах. Суммарная мощность нагрузки для группы:

где Р1, Р2. Рn — мощности отдельных электроприёмников в группе, Вт.

2. Вычислить максимальный ток нагрузки (Iмакс) в амперах. Расчётный ток нагрузки:

где U — рабочее напряжение, В.
Обычно для однофазной нагрузки — 220 В, для трёхфазной сосредоточенной нагрузки — 380 В х √3 = 660 В.

Порядок выбора номинального тока автомата.

1. Вычислить номинальный ток автоматического выключателя (Iн), исходя из максимального потребляемого тока нагрузки (Iмакс):

— для осветительных сетей: Iн ≥ Iмакс ;
— для силовых линий к одиночным электроприёмникам: Iн ≥ 1.25Iмакс ;
— для силовых линий к группам электроприёмников: Iн ≥ 1.1Iмакс.

Учтите, что наш примитивный расчёт производится без учёта пусковых токов.

2. Для вычисленного номинального тока автомата (Iн) выбрать ближайшее большее значение номинального тока автомата (Iна) из ряда: 6, 10, 13, 16, 20,25,32,40, 50, 63 А.

3. Сравнить полученное значение выбранного номинального тока автомата (Iна) со значением максимально возможных токов автоматов (Iа макс) для кабеля, идущего от этого автомата к нагрузке (см. таблицу).

Максимально возможные номинальные токи автоматических выключателей для медных кабелей, чаще всего применяемых в быту

Сечение кабеля Sк, мм 2

Допустимый продолжительный ток в проводниках кабеля (Iк), А

Максимально возможный номинальный ток автомата (Iа макс), А

Расчет тока по мощности, онлайн калькулятор

Расчет тока по мощности, онлайн калькулятор позволит вам рассчитать силу постоянного электрического тока через мощность, напряжение и сопротивление.

Расчет электрических цепей

Ток нагрузки, онлайн расчет

Мощность электрического тока, онлайн калькулятор

Цветовая маркировка резисторов, калькулятор резисторов онлайн

Расчет тока

Сколько заряжать аккумулятор, онлайн расчет

Мы в соцсетях Присоединяйтесь!
Нашли ошибку? Есть предложения? Сообщите нам
Этот калькулятор можно вставить на сайт, в блог

Код для вставки без рекламы с прямой ссылкой на сайт

Код для вставки с рекламой без прямой ссылки на сайт

Скопируйте и вставьте этот код на свою страничку в то место, где хотите, чтобы отобразился калькулятор.

Расчет силы тока по мощности, напряжению, сопротивлению

Бесплатный калькулятор расчета силы тока по мощности и напряжению/сопротивлению – рассчитайте силу тока в однофазной или трехфазной сети в ОДИН КЛИК!

Все калькуляторы
Также можно рассчитать

  • Расчёт
  • Сохранить
  • Справка
  • Партнерские скидки
  • Виджет на сайт
  • Комментарии

Калькулятор загружается.
Выберите способ сохранения

Скачать PDF
Скачать расчёт с выбранными параметрами в формате PDF — чертежи + данные.

Поделиться
Поделиться ссылкой на расчёт в Facebook, ВКонтакте, Google+ и т.д.

Сканировать QR-код
Получить ссылку на расчет с параметрами через сканирование QR-кода
Разместите калькулятор у себя на сайте БЕСПЛАТНО

Если вы хотите узнать как рассчитать силу тока в цепи по мощности, напряжению или сопротивлению, то предлагаем воспользоваться данным онлайн-калькулятором. Программа выполняет расчет для сетей постоянного и переменного тока (однофазные 220 В, трехфазные 380 В) по закону Ома. Рекомендуем без необходимости не изменять значение коэффициента мощности (cos φ) и оставлять равным 0.95. Знание величины силы тока позволяет подобрать оптимальный материал и диаметр кабеля, установить надежные предохранители и автоматические выключатели, которые способны защитить квартиру от возможных перегрузок. Нажмите на кнопку, чтобы получить результат.

Смежные нормативные документы:

  • СП 256.1325800.2016 «Электроустановки жилых и общественных зданий. Правила проектирования и монтажа»
  • СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»
  • СП 76.13330.2016 «Электротехнические устройства»
  • ГОСТ 31565-2012 «Кабельные изделия. Требования пожарной безопасности»
  • ГОСТ 10434-82 «Соединения контактные электрические. Классификация»
  • ГОСТ Р 50571.1-93 «Электроустановки зданий»

Формулы расчета силы тока

Электрический ток — это направленное упорядоченное движение заряженных частиц.
Сила тока (I) — это, количество тока, прошедшего за единицу времени сквозь поперечное сечение проводника. Международная единица измерения — Ампер (А / A).

— Сила тока через мощность и напряжение (постоянный ток): I = P / U
— Сила тока через мощность и напряжение (переменный ток однофазный): I = P / (U × cosφ)
— Сила тока через мощность и напряжение (переменный ток трехфазный): I = P / (U × cosφ × √3)
— Сила тока через мощность и сопротивление: I = √(P / R)
— Сила тока через напряжение и сопротивление: I = U / R

  • P – мощность, Вт;
  • U – напряжение, В;
  • R – сопротивление, Ом;
  • cos φ – коэффициент мощности.

Коэффициент мощности cos φ – относительная скалярная величина, которая характеризует насколько эффективно расходуется электрическая энергия. У бытовых приборов данный коэффициент практически всегда находится в диапазоне от 0.90 до 1.00.

Как правильно рассчитать ток при выборе сечения проводов и кабелей

Для выбора сечений отдельных участков электрической сети но условиям нагревания и экономической плотности тока достаточно знать только токовые нагрузки этих участков сети. Расчет сети по потере напряжения может быть выполнен только в том случае, если известны не только нагрузки, но и длины всех участков сети. В связи с этим, приступая к расчету сети, необходимо прежде всего составить ее расчетную схему, на которой должны быть указаны нагрузки и длины всех участков.

При расчетах трехфазных сетей нагрузки всех трех фазных проводов принимаются одинаковыми. В действительности это условие строго выполняется лишь для силовых сетей с трехфазными электродвигателями. Для сетей с однофазными электроприемниками, например для городских сетей с осветительными лампами и бытовыми приборами, всегда имеется некоторая неравномерность распределения нагрузки по фазам линии. При практических расчетах сетей с однофазными приемниками условно также принимают распределение нагрузок по фазам равномерным.

При условии равномерной нагрузки фаз линии в расчетной схеме нет необходимости указывать все провода сети. Достаточно представить однолинейную схему с указанием всех присоединенных к сети нагрузок и длин всех участков сети. На схеме также должны быть указаны места установки плавких предохранителей или других защитных аппаратов.

При составлении расчетной схемы электропроводки внутри помещения следует пользоваться планами и разрезами здания, на которых должна быть нанесена электропроводка с указанием точек присоединения электроприемников.

Расчетная схема наружной сети составляется по плану поселка или промышленного предприятия, на котором также должна быть нанесена сеть и указаны точки присоединения групп электроприемников (домов или отдельных зданий промышленного предприятия).

Длины всех участков сети измеряются по чертежу с учетом масштаба, в котором он вычерчен. При отсутствии чертежа длины всех участков сети должны быть измерены в натуре.

При составлении расчетной схемы сети соблюдение масштаба для участков сети не требуется. Следует лишь соблюдать правильную последовательность соединения отдельных участков сети между собой.

На рисунке представлен пример расчетной схемы линии наружной сети поселка. Длины участков сети на схеме указаны сверху и слева в метрах, снизу и справа нагрузки представлены стрелками, у которых указаны расчетные мощности в киловаттах. Линия АБВ называется магистралью, участки БД, BE и ВГ — ответвлениями.

Как видно из рисунка, отдельные участки сети представлены без масштаба, что не мешает точности расчета, если длина участков указана правильно.

Расчетная схема участка наружной сети 380/220 В жилого поселка.

Определение расчетных нагрузок электрической сети

Определение расчетных нагрузок (мощностей) является значительно более сложной задачей. Осветительная лампа, нагревательный прибор или телевизор при номинальном напряжении на зажимах потребляет определенную номинальную мощность, которая может быть принята за расчетную мощность этого приемника. Сложнее обстоит дело с электродвигателем, для которого потребляемая из сети мощность зависит от момента вращения связанного с двигателем механизма — станка, вентилятора, транспортера и т. п.

На табличке, прикрепленной к корпусу двигателя, указывается его номинальная мощность. Фактическая мощность, потребляемая двигателем из сети, отличается от номинальной. Например, нагрузка двигателя токарного станка будет меняться в зависимости от размера обрабатываемой детали, толщины снимаемой стружки и т. п.

Двигатель выбирается по наиболее тяжелым условиям работы станка, в связи с чем при других режимах работы двигатель будет недогружен. Таким образом, расчетная мощность двигателя, как правило, меньше его номинальной мощности.

Определение расчетной мощности для группы электроприемников еще более усложняется, так как в этом случае приходится учитывать возможное число включенных приемников.

Представим себе, что нужно определить расчетную нагрузку для линии, питающей мастерскую, в которой установлено 30 электродвигателей. Из них только некоторые будут работать непрерывно (например, двигатели, соединенные с вентиляторами).

Двигатели станков работают с перерывами на время установки новой детали для обработки. Часть двигателей может работать с неполной нагрузкой или вхолостую и т. д. При этом нагрузка линии, питающей мастерскую, не будет оставаться постоянной. Понятно, что за расчетную нагрузку линии следует принять наибольшую возможную нагрузку, как наиболее тяжелую для проводников линии.

Под наибольшей нагрузкой понимается не кратковременный ее толчок, а наибольшее среднее значение за получасовой период времени.

Расчетная нагрузка (кВт) группы электроприемников может быть определена по формуле

где Кс — коэффициент спроса для режима наибольшей нагрузки, учитывающий наибольшее возможное число включенных приемников группы. Для двигателей коэффициент слроса должен учитывать также величину их загрузки;

Ру — установленная мощность группы приемников, равная сумме их номинальных мощностей, кВт. Вы всегда можете более подробно ознакомиться с методами определения расчетных нагрузок по специальной литературе.

Определение расчетного тока линии для одного электроприемника и группы электроприемников

При выборе сечения проводников по условию нагревания или по экономической плотности тока необходимо определить величину расчетного тока линии. Для трехфазного электроприемника величина расчетного тока (А) определяется по формуле

где Р — расчетная мощность приемника, кВт; U н — номинальное напряжение на зажимах приемника, равное междуфазному (линейному) напряжению сети, к которой он присоединяется, В; cos ф — коэффициент мощности приемника.

Этой формулой можно также пользоваться для определения расчетного тока группы трехфазных или однофазных приемников при условии, что однофазные приемники присоединены поровну ко всем трем фазам линии. Величина расчетного тока (А) для однофазного приемника или для группы приемников, присоединенных к одной фазе сети трехфазного тока, определяется по формуле

где U н.ф — номинальное напряжение приемников, равное фазному напряжению сети, к которой они присоединяются, В.

Величина расчетного тока для группы приемников, присоединенных к линии однофазного тока, также определяется по этой формуле.

Для ламп накаливания и нагревательных приборов коэффициент мощности cosфи = 1. В этом случае формулы для определения расчетного тока соответственно упрощаются.

Определение тока по расчетной схеме электрической сети

Вернемся к расчетной схеме наружной сети жилого поселка, представленной на рисунке. На этой схеме расчетные нагрузки присоединенных к линии домов указаны в киловаттах у концов соответствующих стрелок. Для выбора сечения проводов линии необходимо знать нагрузку всех участков.

Эта нагрузка определяется на основании первого закона Кирхгофа, по которому для любой точки сети сумма приходящих токов должна быть равна сумме выходящих токов. Этот закон справедлив также для нагрузок, выраженных в киловаттах.

Найдем распределение нагрузок по участкам линии. В конце линии на участке длиной 80 м, примыкающем к точке Г, нагрузка 9 кВт равна расчетной нагрузке присоединенного к линии в точке Г дома. На участке ответвления длиной 40 м, примыкающем к точке В, нагрузка равна сумме нагрузок домов, присоединенных на участке ВГ ответвления: 9+6=15 кВт. На участке магистрали длиной 50 м, примыкающем к точке В, нагрузка составляет 15 + 4+5=24 кВт.

Подобным же образом определяются нагрузки всех остальных участков линии. Для того чтобы не снабжать все указанные на схеме числа обозначениями соответствующих единиц (м, кВт), длины и нагрузки на схеме должны быть расположены в определенном порядке. На расчетной схеме рисунка длины участков линии указаны сверху и слева, нагрузки этих же участков — снизу и справа.

Пример. Четырехпроводная линия номинальным напряжением 380/220 В питает мастерскую, в которой установлено 30 электродвигателей, суммарная установленная мощность Py1 = 48 кВт. Суммарная мощность ламп освещения мастерской составляет Ру2 = 2 кВт, коэффициент спроса для силовой нагрузки Кс1=0,35 и для осветительной нагрузки Кс2=0,9. Средний коэффициент мощности для всей установки cos ф=0,75. Определить расчетный ток линии.

Решение. Определяем расчетную нагрузку электродвигателей: P1 = 0,35 х 48 =16,8 кВт и расчетную нагрузку освещения Р2=0,9 х 2=1,8 кВт. Суммарная расчетная нагрузка Р= 16,8 + 1,8= 18,6 кВт.
Определяем расчетный ток:

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *