ПРИНЦИП ДЕЙСТВИЯ ЭЛЕКТРОДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА
Работа электрических машин основана на физических законах электромагнитной индукции и действия электромагнитных сил. Согласно этим законам на проводник с током, помещенный в магнитное поле, будет действовать сила, стремящаяся вытолкнуть его из магнитного поля.
Для работы любого электродвигателя является необходимым наличие взаимодействия магнитного поля и проводников, по которым проходит ток. Момент электромагнитных сил, приводящий в движение якорь электродвигателя, пропорционален магнитной индукции, длине проводника и проходящему по нему току; направление момента легко определить по правилу левой руки.
На рисунке выше приведена схема, показывающая принцип действия электродвигателя постоянного тока. Два неподвижных полюса магнита 1 создают магнитный поток, направленный от северного полюса N к южному S. В пространстве между полюсами расположена вращающаяся часть двигателя, называемая якорем, с обмоткой из одного витка 2. Концы витка присоединены к переключающему устройству — коллектору 3, выполненному в виде двух полуколец, на которые через щетки 5 подается напряжение от источника постоянного тока 4. При подключении щеток двигателя к источнику тока в витке обмотки, помещенном в магнитное поле, начинает идти ток I. С возникновением тока в витке возникают электромагнитные силы F, стремящиеся повернуть виток относительно оси ОIО. При повороте витка с полукольцами па 90° ток в витке изменит направление на противоположное. Следовательно, при вращении витка ток в проводнике через каждые пол-оборота изменяет свое направление, что позволяет сохранить постоянное направление вращения якоря. Вращающий момент (н • см) можно определить по формуле:
где Р — мощность на валу электродвигателя, вт
n — скорость вращения якоря, об/мин.
Потребляемый электрическим двигателем ток зависит от режима работы. Так, при неподвижном якоре ток, потребляемый электродвигателем, определяется по закону Ома и зависит от напряжения источника тока и суммы сопротивлений обмоток и щеточно-коллекторного перехода:
где U — напряжение источника тока, в;
R — сопротивление двигателя, ом
I — потребляемый электрическим двигателем ток, а.
Этот режим называют режимом короткого замыкания электродвигателя.
Режим короткого замыкания возникает в первый момент включения двигателя, затем ток начинает уменьшаться до некоторой величины, достигая своего наименьшего значения при отсутствии на валу нагрузки. Режим работы электродвигателя, при котором вал не нагружен, называют режимом холостого хода.
Уменьшение потребляемого электродвигателем тока при переходе от режима короткого замыкания к режиму холостого хода объясняется тем, что при вращении якоря в магнитном поле в витках его обмотки наводится э.д.с, направленная против напряжения источника тока, питающего двигатель. Потребляемый электродвигателем ток определяется по формуле:
где Е — э. д. с, наводимая в витках обмотки якоря при его вращении, в.
Электродвигатель постоянного тока легко заставить вращаться в противоположную сторону, для чего обычно достаточно изменить полярность подключения источника тока к обмотке якоря.
На рисунке выше показана схема, обеспечивающая при помощи трехпозиционного тумблера остановку и включение вращения якоря в двух направлениях, то есть реверсирование электродвигателя.
Развитие полупроводниковой техники создало предпосылки для создания двигателей постоянного тока без коллектора и щеток. Функции механического переключателя — коллектора со щетками — выполняют в этом случае транзисторные переключатели. Такой электрический двигатель получил название бесколлекторного двигателя постоянного тока. Бесколлекторные двигатели постоянного тока имеют ряд преимуществ перед обычными электродвигателями постоянного тока. Эти преимущества выражаются увеличением времени работы двигателей, повышением их надежности, отсутствием износа щеток, искрения и радиопомех. И хотя бесколлекторные двигатели постоянного тока имеют несколько большие габариты и массу за счет полупроводникового переключателя, они находят широкое применение в системах автоматики и в качестве основного двигателя — на авто- и судомоделях.
Материал взят из книги «Модельные двигатели» Зуев. В.П
Похожие материалы:
- Вы здесь:
- Главная
- Технологии
- Словарь терминов
- Принцип действия электродвигателей постоянного тока
Устройство и принцип работы двигателя постоянного тока
В повседневной жизни нас окружает множество электроприборов. Основным элементом некоторых из них является двигатель. В одной из наших статей мы уже рассказывали о том, как устроен и работает двигатель переменного тока. Сегодня в нашей статье мы рассмотрим устройство и принцип действия двигателя постоянного тока.
Устройство (схема) двигателя постоянного тока
Конструкция электродвигателя постоянного тока состоит из следующих элементов:
1. вал электродвигателя, на который устанавливаются остальные детали.
2. якорь (ротор) двигателя, который включает в себя:
2.1. сердечник якоря, представленный в виде набора пластин из специальной электротехнической стали;
2.2. якорная обмотка;
2.3. коллектор;
2.4. главный полюс, представляющий собой набор пластин из электротехнической стали. Для двигателей малых размеров полюсы изготавливаются из постоянных магнитов;
2.5. обмотка возбуждения;
2.6. монолитные добавочные полюса (в двигателях малых размеров не применяются) предназначены для улучшения коммутации и располагаются между главными полюсами;
2.7. обмотка из эмалированных проводов добавочного полюса;
3. корпус электродвигателя, который чаще всего выполняется из чугуна, так как данный материал обеспечивает возможность эксплуатации электродвигателя в местах с агрессивной средой и обладает высоким уровнем устойчивости к износам. Также для улучшения корпус двигателя может изготавливаться со специальными ребрами, которые обеспечивают термический баланс электродвигателя. Полюсы, образующие индуктор, а также якорь, устанавливаются в корпус двигателя.
4. клеммная коробка. Концы обмоток полюсов двигателя выводятся в клеммную коробку, в которой установлены клеммы с подключенными концами обмоток индуктора и клеммы для подключения щеток якоря. Также предусмотрено одно-два отверстия для установки сальников, через которые заводятся силовые кабели для подключения питания. В машинах малой мощности выводы обмоток размещаются в клеммной коробке, при этом один из зажимов добавочных полюсов и один из зажимов якоря (щеточная траверса) соединены наглухо внутри машины, а в клеммную коробку выведены другие зажимы якоря и добавочных полюсов. В крупных машинах с высоким номинальным током клеммная коробка отсутствует, а выводные концы размещаются в нижней части станины машины. При этом выводные концы параллельной цепи выполняются в виде жил кабелей с наконечниками, последовательной — в виде шин.
Также в конструкции присутствуют такие элементы:
• передний и задний подшипниковые щиты, а также внутренние подшипниковые крышки, которые прикручиваются к подшипниковым щитам;
• щеточный узел, который состоит из кронштейна, щеткодержателей и щеток (графитовых или металло-графитовых). Данный узел крепится на выпуклой части подшипниковой крышки заднего подшипникового щита. Он предназначен для подвода «питания» к катушкам на вращающемся роторе и переключения тока в обмотках якоря;
• вентилятор охлаждения, обеспечивающий поддержание низкой рабочей температуры;
• подшипниковые щиты;
• подшипники;
• наружные подшипниковые крышки, закрывающие подшипники;
• проушины или рым-болты, которые упрощают погрузочно-разгрузочные работы и монтаж двигателя;
• лапы, которые обеспечивают низкий уровень вибрации электродвигателя во время работы;
• защитный кожух вентилятора и кожух выхода воздуха обдува;
• шильдик, на котором указывается основные характеристики двигателя.
Способы подключения электродвигателя постоянного тока
Двигатели постоянного тока производятся зачастую с параллельным, последовательным и независимым типом возбуждения. В зависимости от типа возбуждения маркировка контактов в клеммной коробке различается. Исходя из вида возбуждения, выполняется различное подключение питающего кабеля.
Для начала рассмотрим подключение кабеля к клеммам электродвигателя с независимым возбуждением обмоток.
В кабельный ввод заводим два двухжильных кабеля с жилами серого и синего цветов. Выполняем зачистку кабеля и жил, после чего надеваем на них кабельные наконечники.
После оконцевания производим подключение жил согласно схеме на внутренней стороне крышки клеммной коробки. Для данного подключения используем схему для двигателей с независимым возбуждением, когда напряжение на обмотки возбуждения и якорь двигателя подаются от независимых источников.
Приводы и двигатели постоянного тока
На статоре находится индукторная обмотка (обмотка возбуждения), на которую подаётся постоянный ток — в результате создаётся постоянное магнитное поле (поле возбуждения). В двигателях с постоянными магнитами поле возбуждения создаётся постоянными магнитами.
В обмотку ротора (якорная обмотка) также подаётся постоянный ток, на который со стороны магнитного поля статора действует сила Ампера — создаётся вращающий момент, который поворачивает ротор на 90 электрических градусов, после чего щёточно-коллекторный узел коммутирует обмотки ротора – вращение продолжается.
По способу возбуждения двигатели постоянного тока делятся на четыре группы:
- С независимым возбуждением — обмотка возбуждения питается от независимого источника
- С параллельным возбуждением — обмотка возбуждения включается параллельно источнику питания обмотки якоря
- С последовательным возбуждением — обмотка возбуждения включена последовательно с обмоткой якоря
- Со смешанным возбуждением — у двигателя есть две обмотки: параллельная и последовательная.
Пуск двигателя постоянного тока
При прямом пуске ток якоря может на порядок превышать номинальный, поэтому при пуске в цепь якоря вводится пусковое сопротивление пусковой реостат. Для плавного пуска реостат делают ступенчатым — в первый момент включаются все ступени (максимальное сопротивление), по мере разгона двигателя растёт противо-ЭДС, ток якоря уменьшается — ступени выключаются одна за другой.
Регулирование скорости вращения двигателя постоянного тока
- Скорость ниже номинальной регулируется напряжением на якоре (мощность при этом пропорциональна скорости, момент неизменен)
- Скорость выше номинальной регулируется током обмотки возбуждения — чем слабее поле возбуждения, тем выше скорость (момент падает при постоянной мощности)
Регулирование питания якоря и обмотки возбуждения осуществляется с помощью тиристорных преобразователей (приводов постоянного тока).
Преимущества и недостатки двигателей постоянного тока
Преимущества:
- Практически линейные характеристики двигателя:
- механическая характеристика (зависимость частоты от момента)
- регулировочная характеристика (зависимость частоты от напряжения якоря)
Недостатки:
- Дополнительные расходы на профилактическое обслуживание коллекторно-щёточных узлов
- Ограниченный срок службы из-за износа коллектора
- Дороже асинхронных двигателей.
Как выбрать
Выбор двигателя постоянного тока
- Высота оси
- Номинальное напряжение якоря
- Номинальное напряжение возбуждения
- Номинальная частота вращения
- Номинальная мощность
- Номинальный момент
- Номинальный ток якоря
- Мощность возбуждения
- Максимальная частота вращения при понижении поля (выше этой скорости падает мощность)
- Предельно допустимая рабочая скорость (выше этой скорости начинается механическое разрушение)
- КПД
- Момент инерции
- Степень защиты IP
- Степень виброустойчивости (прессы и т.п.)
- Класс изоляции (для работы от преобразователя не ниже F)
- Температура окружающей среды (для работы при отрицательных температурах в условиях русской зимы требуется специальное исполнение: смазка, вал из специальной стали и т.п.)
- Высота установки над уровнем моря (выше 1000 метров падают характеристики)
- Конструктивное исполнение по способу монтажа электродвигателей
- Маслоуплотнённый фланец для присоединения редуктора
- Конвекционное: воздушный фильтр, контроль расхода воздуха, встроенный (направление обдува) или внешний (подключение труб) вентилятор
- Через теплообменник
- Качения (радиально-упорные)
- Усиленные подшипники для повышенных радиальных нагрузок на валу
- С пополнением смазки
- Для подключения редуктора
- Со шпоночным пазом
- Тахогенератор
- Энкодер
- Окошко для визуального контроля
- Микропереключатель ограничения остаточной длины щёток
- Термисторная защита – контроль граничных значений (предупреждение, отключение)
- Непрерывный контроль температуры при помощи датчика KTY
Выбор преобразователя постоянного тока
- Режим работы:
- Одноквадрантный (1Q) — нереверсивный
- Четырёхквадрантный (4Q) — реверсивный.
Вход:
- Вентилятора
- Блока управления (электроники)
- Возбуждения
Принцип действия и устройство электродвигателя постоянного тока
Сейчас невозможно представить нашу жизнь без электродвигателей. Они приводят в действие станки, бытовую технику и инструменты, поезда, трамваи и троллейбусы, компьютеры, игрушки и разные подвижные механизмы, устанавливаются на производственных станках, если частоту вращения рабочего вала требуется регулировать в широком диапазоне. Агрегаты для преобразования электрической энергии в механическую представлены множеством видов и моделей (синхронные, асинхронные, коллекторные и т.д.). Из этой статьи вы узнаете, что такое электродвигатель постоянного тока, его устройство и принцип действия.
Краткая история создания
Разные ученые пытались создать экономичный и мощный двигатель еще с первой половины 19 века. Основой послужило открытие М.Фарадея, сделанное в 1821 г. Он обнаружил, что помещенный в магнитное поле проводник вращается. Отталкиваясь от этого, в 1833 г изобретатель Томас Дэвенпорт смог сконструировать двигатель постоянного тока, а позже, в 1834 г, ученый Б.С.Якоби придумал прообраз современной модели двигателя с вращающимся валом. Устройство, более похожее на современные агрегаты, появилось в 1886 г, и до сегодняшнего дня электродвигатель продолжает совершенствоваться.
Принцип действия электродвигателя постоянного тока
На мысль о создании двигателя ученых натолкнуто следующее открытие. Помещенная в магнитное поле проволочная рамка с пропущенным по ней током начинает вращаться, создавая механическую энергию. Принцип действия электродвигателя постоянного тока основывается на взаимодействии магнитных полей рамки и самого магнита. Но одна рамка после определенного количества вращений замирает в положении, параллельном внешнему магнитному полю. Для продолжения движения необходимо добавить вторую рамку и в определенный момент переключить направление тока.
Вместо рамок в двигателе используется набор проводников, на которые подается ток, и якорь. При запуске вокруг него возбуждается магнитное поле, взаимодействующее с полем обмотки. Это заставляет якорь повернуться на определенный угол. Подача тока на следующие проводники приводит к следующему повороту якоря, и далее процесс продолжается.
Магнитное поле создается либо с помощью постоянного магнита (в маломощных агрегатах), либо с помощью индуктора/обмотки возбуждения (в более мощных устройствах).
Попеременную зарядку проводников якоря обеспечивают щетки, сделанные из графита или сплава графита и меди. Они служат контактами, замыкающими электрическую сеть на выводы пар проводников. Изолированные друг от друга выводы представляют собой кольцо из нескольких ламелей, которое находится на оси вала якоря и называется коллекторным узлом. Благодаря поочередному замыканию ламелей щетками двигатель вращается равномерно. Степень равномерности работы двигателя зависит от количества проводников (чем больше, тем равномернее).
Устройство электродвигателя постоянного тока
Теперь, когда вы знаете, как работает электродвигатель постоянного тока, пора ознакомиться с его конструкцией.
Как и у других моделей, основу двигателя составляют статор (индуктор) – неподвижная часть, и якорь вкупе с щеточноколлекторным узлом – подвижная часть. Обе части разделены воздушным зазором.
В состав статора входят станина, являющаяся элементом магнитной цепи, а также главные и добавочные полюса. Обмотки возбуждения, необходимые для создания магнитного поля, находятся на главных полюсах. Специальная обмотка, улучшающая условия коммутации, расположена на добавочных полюсах.
Якорь представляет собой узел, состоящий из магнитной системы (она собрана из нескольких листов), набора обмоток (проводников), уложенных в пазы, и коллектора, который подводит постоянный ток к рабочей обмотке.
Коллектор имеет вид цилиндра, собранного из изолированных медных пластин. Он насажен на вал двигателя и имеет выступы, к которым подходят концы секций обмотки якоря. Щетки снимают ток с коллектора, входя с ним в скользящий контакт. Удержание щеток в нужном положении и обеспечение их нажатия на коллектор с определенной силой осуществляется щеткодержателями.
Многие модели двигателей оснащены вентилятором, задача которого – охлаждение агрегата и увеличение продолжительности рабочего периода.
Особенности и характеристики электродвигателя постоянного тока
Эксплуатационные характеристики электродвигателя постоянного тока позволяют широко использовать это устройство в самых разных сферах – от бытовых приборов до транспорта. К его преимуществам можно отнести:
- Экологичность. При работе не выделяются вредные вещества и отходы.
- Надежность. Благодаря довольно простой конструкции он редко ломается и служит долго.
- Универсальность. Он может использоваться в качестве как двигателя, так и генератора.
- Простота управления.
- Возможность регулирования частоты и скорости вращения вала – достаточно подключить агрегат в цепь переменного сопротивления.
- Легкость запуска.
- Небольшие размеры.
- Возможность менять направление вращения вала. В двигателе с последовательным возбуждением нужно изменить направление тока в обмотке возбуждения, во всех остальных типах – в якоре.
Как и любое устройство, электродвигатели постоянного тока имеют и «слабые стороны»:
- Их себестоимость, следовательно, и цена достаточно высока.
- Для подключения к сети необходим выпрямитель тока.
- Самая уязвимая и быстроизнашивающаяся деталь – щетки – требует периодической замены.
- При сильной перегрузке может случиться возгорание. Если соблюдать правила эксплуатации, такая возможность исключена.
Но, как видите, достоинства явно перевешивают, поэтому на данный момент электродвигатель является одним из наиболее экономичных и эффективных устройств. Зная устройство и принцип работы электродвигателя постоянного тока, вы сможете самостоятельно собрать и разобрать его для техосмотра, чистки или устранения неисправностей.