Аппарат управления в электрике это
Перейти к содержимому

Аппарат управления в электрике это

  • автор:

Автоматические аппараты

Для дистанционного и автоматического управления электрооборудованием применяют контакторы, магнитные пускатели, реле управления.

Контактором называется аппарат, служащий для включения и отключения электрических цепей путем замыкания контактов с помощью электромагнита. Управление электромагнитом может проводиться дистанционно вручную или автоматически с помощью релейной и другой аппаратуры.

Трехполюсный контактор КТ

Рис. 59. Общий вид (две дугогасительные камеры сняты) (а), контакты и дугогасительная камера (б) и электромагнит (в) трехполюсного контактора:
1 — изолирующая плита; 2 — вал подвижных контактов и якоря; 3 — замыкающиеся блок-контакты; 4 — подвижный главный контакт; 5 — неподвижный главный контакт; 6 — дугогасительная камера; 7 — сердечник электромагнита; 8 — якорь; 9 — катушка электромагнита; 10 — размыкающиеся блок-контакты; 11 — пластины дугогасительной камеры; 12 — контактная пружина; 13 — гибкая связь; 14 — короткозамкнутый виток.

Трехполюсный контактор КТ (рис. 59) имеет три пары подвижных 4 и неподвижных 5 контактов, закрытых дугогасительной камерой б, состоящей из двух асбестоцементных щек, внутри которых помещена решетка из стальных обмедненных пластин 11. Пластины расположены перпендикулярно стволу электрической дуги и разбивают ее на несколько коротких дуг, которые охлаждаются при соприкосновении с поверхностью пластин и быстро гаснут. При подаче напряжения на цепь катушки 9 сердечник притягивает якорь 8, который, поворачиваясь вместе с валом 2, прижимает подвижные контакты к неподвижным. Пружина 12 обеспечивает нажатие подвижного контакта, и рабочий ток проходит через гибкий проводник 13. Для устранения вибрации и произвольного отключения контактора при переходе через нулевое значение тока служит короткозамкнутый медный виток 14. При отключении напряжения в цепи катушки ее сердечник размагничивается и перестает удерживать якорь. В результате этого подвижные контакты под действием собственной массы и массы якоря отпадают, разрывая электрическую цепь.

Магнитный пускатель представляет собой контактор переменного тока с тепловыми реле или без них. Тепловые реле, имеющие в цепи управления нормально замкнутые контакты, используются для защиты от перегрузок. Биметаллические элементы реле нагреваются при прохождении через них тока перегрузки, изгибаются и размыкают цепь тока в катушке пускателя, в результате чего отключаются главные контакты. Отключение также может быть выполнено от руки нажатием кнопки «Стоп».

Первая цифра в обозначении пускателя указывает величину пускателя, вторая — исполнение по роду защиты от воздействия окружающей среды (1 — открытое, 2 — защищенное, 3 — пылеводозащищенное), третья — функции пускателя (1 — без теплового реле, нереверсивный; 2 — с тепловым реле, нереверсивный; 3 — без теплового реле, реверсивный; 4 — с тепловым реле, реверсивный). Например, ПА-321 — пускатель серии ПА, третьей величины, в защищенном исполнении, без теплового реле, нереверсивный.

Автоматическим выключателем называют электрический аппарат напряжением до 1000 В, предназначенный для оперативной коммутации и защиты электрооборудования от ненормальных режимов работы, связанных с короткими замыканиями, перегрузкой или с недопустимым снижением напряжения.

Гашение дуги в автоматических выключателях происходит в среде воздуха, поэтому их называют воздушными. Часто для краткости их именуют также воздушными автоматами, или просто автоматами. Автоматы в пластмассовых корпусах на небольшие номинальные токи называют установочными.

По назначению автоматы одновременно могут быть отнесены как к коммутационным, так и к защитным аппаратам. Набор технических характеристик серийно выпускаемых автоматов широк и разнообразен. Автоматы применяют в цепях постоянного и переменного токов при напряжениях от 110 до 660 В, на номинальные токи от 25 до 6300 А с предельной отключающей способностью от 1,0 до 160 кА. Они могут быть оборудованы только ручным, только электромеханическим или обоими типами приводов включения. Электромеханический привод обеспечивает дистанционное и автоматическое управление.

Максимальная токовая защита от перегрузки осуществляется с помощью различных типов расцепите.геи. Например, защиту от коротких замыканий выполняют на расцепителях электромагнитного и полупроводникового типов.

Для защиты от минимального напряжения и для дистанционного отключения в конструкции автоматов предусматривают расцепители напряжения электромагнитного типа, которые состоят из обмотки и подвижного сердечника, снабженного калиброванной пружиной. При достижении током (напряжением) значения установки, определяемого усилием пружины, происходит перемещение сердечника, который при этом механически воздействует на отключающий валик автомата. Тепловые расцепители действуют на термобиметаллическом принципе подобно тепловому реле. Полупроводниковые расцепители имеют более сложную схему и выполняются в виде электронного блока, снабженного контактными зажимами для подключения и регулировочными рукоятками для уставки и времени срабатывания.

Механизм свободного расцепления

Рис. 60. Механизм свободного расцепления:
а — при включении; б — при отключении: в — при взводе
1, 4 — звенья; 2 — упор: 3, 5, 6, 8 — оси; 7 — расцепитель; 9 — неподвижный контакт; 10 — подвижный контакт; 11 — пружина; 12 — рукоятка.

В полупроводниковый расцепитель (рис. 60) входит механизм свободного расцепления, который является обязательным, для автоматического выключателя. Главным назначением этого механизма является предотвращение включения автомата на уже имеющееся в электроустановке короткое замыкание. При достаточной продолжительности такого включения ток короткого замыкания может быть причиной сварки между собой контактов автомата. Тогда произойдет в лучшем случае срабатывание защиты электроустановки, а в худшем случае — авария.

Механизм свободного расцепления содержит систему «ломающихся» звеньев 1 и 4, шарнирно связанных между собой, а также с подвижным контактом 10, рукояткой 12 и осями 8 —3 — 5 —6. При отсутствии воздействия на «ломающийся» рычаг отключающего усилия от расцепителя 7 (или отключающего валика) звенья 1 — 4, благодаря наличию упора 2, образуют продольно жесткую систему. Передавая усилие от рукоятки на подвижный контакт, они позволяют растянуть отключающую пружину 11 и замкнуть контакты 10 — 9 (рис. 60, а). Установка звеньев 1—4 в положение жесткости происходит либо под действием собственных масс, либо с помощью специальной пружины (рис. 60, о). Однако звенья 1 и 4 не сохранят положения жесткости, если в момент включения сработают расцепители: шток расцепителя 7 ударит в среднюю точку «ломающегося» рычага под осью 3 и повернет оба звена относительно этой оси. Рычаг потеряет жесткость и пружина 11 немедленно разомкнет контакты (рис. 60, в).

Отечественная промышленность серийно выпускает автоматические выключатели широкой номенклатуры:

  • установочные автоматы серий ACT, АЕ. А, АК, АП, А3700;
  • быстродействующие автоматы серии Э («Электрон»);
  • выдвижные автоматы серии АВМ.

Несмотря на значительные конструктивные различия, принципы устройства всех автоматов аналогичны.

Автомат А3100

Рис. 61. Автомат А3100:
а — устройство (автомат отключен автоматически); б — при взводе; в — при отключении:
1 — пластина дугогасительной камеры; 2 — обойма; 3 — перекидная пружина; 4 — ломающиеся звенья; 5 — рычаг; 6 — собачка; 7 — пластина теплового расцепителя; 8 — рейка; 9 — якорь электромагнитного расцепителя; 10 — сердечник электромагнитного расцепителя; 11 — зуб; 12 — неподвижная ось; 13 — контактодержатель; 14, 15 — контакты; 16 — впадина рычага; 17, 18, 19 — подвижные оси.

Взвод автоматического выключателя А3100 (рис. 61) перед включением осуществляется поворотом рукоятки вниз до упора. При этом фигурный рычаг 5 устанавливается на защелку собачки 6. При включении рукоятка движется вверх вместе с закрепленными на ней концами перекидных пружин 3. После пересечения осью симметрии рукоятки оси 18 рычага 5 пружины 3 перекидывают ось 17 «ломающихся» рычагов вверх, где она попадает во впадину 16 рычага 5. Звенья 4. сжатые между осями 18, 19 и впадиной 16, становятся продольно-жесткими и передают усилие от рукоятки на контактодержатель 13, поворачивая его относительно оси 12 вплоть до замыкания контактов 14 и 15. Рычаг 5 при этом поворачивается относительно точки фиксации его собачкой 6 (рис. 61, б).

Когда автомат включен, механизм автомата фиксируется, так как оси пружин 3, по которым направлены их усилия, лежат выше оси 18. Пружины 3 стремятся повернуть рукоятку вверх, но это движение ограничено корпусом. Звенья 4 с рычагом 5 образуют в этом положении жесткую систему, подвижность которой ограничена в точках 19, 16, 18 и в точке фиксации рычага 5 собачкой 6 (рис. 61, в). Тепловой 7 и максимальный электромагнитный расцепители (на рис. 61 поз. 9 — якорь, 10 — сердечник) воздействуют при срабатывании на рейку 8. поворачивая ее по часовой стрелке. При этом зуб 11 рейки 8 освобождает защелку собачки 6, которая отпускает рычаг 5.

Поворачиваясь под действием пружин 3 вокруг оси 18, этот рычаг своей впадиной 16 «ломает» звенья 4, которые освобождают контактодержатель 13. Пружины 3 моментально размыкают контакты 14, 15 и одновременно несколько опускают рукоятку до зацепления ею рычага 5 (рис. 61, а). Гашение дуги, возникающей при размыкании контактов 14 и 15, происходит в деионной решетке из стальных омедненных пластин 1, укрепленных в фибровой обойме 2.

Реле управления — это такое устройство, которое при воздействии на него электрических импульсов малой мощности управляет цепями или аппаратами электроустановок большой мощности. Реле вообще классифицируются по назначению (для управления и защиты); по принципу действия (электромагнитные, магнитоэлектрические, индукционные, тепловые, полупроводниковые и т. д.); по виду контролируемой величины (времени, тока, напряжения, мощности, уровня и т. д.); по характеру воздействия на выходную цепь (контактные, бесконтактные) и др.

Реле времени используется в схемах защиты с выдержкой времени. Наиболее широкое распространение получили в схемах устройств защиты и автоматики реле тока (рис. 62).

Токовое реле РТ-80

Рис. 62. Токовое реле РТ-80:
1 — алюминиевый диск; 2 — сектор; 3 — червяк; 4 — поворотная рама; 5 — планка; 6 — контакты; 7 — пластина; 8 — регулировочный винт; 9 — якорь; 10 — штепсельное устройство; 11 — катушка; 12 — магнитопровод; 13 — шкала; 14 — пружина.

Их включают в цепь последовательно защищаемому оборудованию, они реагируют на увеличение тока в катушке. Реле срабатывает в случае, когда проходящий через него ток достигнет заранее установленного значение называемого током срабатывания Iср.

Мгновенное срабатывание реле обеспечивает электромагнитная система, по катушке 11 которой проходит ток, превышающий в несколько раз установленный на шкале реле ток срабатывания. При прохождении тока по катушке поворотный якорь 9 притягивается правым плечом к магнитопроводу 12 и поднимает левое плечо с пластиной 7, в результате чего замыкаются пружинные контакты 6. Винт 8 служит для регулирования тока срабатывания — отсечки. При вывертывании винта 8 воздушный зазор между правым плечом якоря и магнитопроводом увеличивается и отсечка срабатывает при большем токе.

Выдержка времени при срабатывании реле обеспечивается индукционной системой реле, которая состоит из алюминиевого диска 1, помешенного в поворотной раме 4, пружины 14, удерживающей раму в таком положении, что укрепленный на оси диска червяк 3 не сцеплен с сектором 2. При прохождении тока, равного 20-40% от тока срабатывания, по катушке реле в зазорах магнитопровода образуются два магнитных потока, под действием которых диск начинает вращаться. При вращении диска возникают силы, стремящиеся повернуть рамку по часовой стрелке, а пружина 14 препятствует этому вращению. При увеличении тока до значения тока срабатывания возросшие силы преодолевают сопротивление пружины 14 и поворачивают рамку, червяк 3 входит в зацепление с сектором, который переместится вверх и своим рычагом поднимает планку 5, укрепленную на левом плече поворотного якоря 9, и пластина 7 замкнет контакты реле. Настройка выдержки времени реле производится по шкале 13 посредством изменения положения сектора 2: чем выше поднят сектор, тем меньше выдержка времени. Выдержка времени срабатывания реле зависит от тока — чем больше ток, тем меньше время выдержки. Ток срабатывания реле регулируется штепсельным устройством 10.

Реле минимального напряжения включается параллельно защищаемому оборудованию и реагирует на изменение напряжения. Если в сети нормальное напряжение, то контакты реле разомкнуты. При снижении уровня напряжения ниже установленного якорь реле поворачивается против часовой стрелки и контакты реле замыкаются.

Промежуточное реле служит для выполнения различных электрических блокировок, его применяют в схемах управления для размножения одного импульса по нескольким вспомогательным цепям. Наиболее широкое применение в качестве промежуточных в схемах управления нашли малогабаритные реле МКУ-48 и РПТ-100 (рис. 63).

Промежуточное реле РПТ-100

Рис. 63. Промежуточное реле РПТ-100:
1 — контактные мостики; 2 — обмотка: 3 — якорь.

Регулировок тока и времени срабатывания реле не имеют.

При протекании тока по обмотке 2 возникает магнитный поток, который притягивает якорь 3 к магнитопроводу. Тяга, связанная с якорем, перемещает контактные мостики 1, посредством которых происходит замыкание разомкнутых и размыкание замкнутых контактов.

Токовые катушки реле управления и различных измерительных и контрольных приборов подсоединяются к вторичным обмоткам трансформаторов тока. При протекании тока по первичной обмотке трансформатора тока его вторичная обмотка должна быть постоянно замкнута через катушки приборов или реле. В тех случаях, когда возникает необходимость отключения катушки реле или прибора от вторичных цепей трансформатора тока, обмотки предварительно надежно закорачивают. Это выполняется для предотвращения повреждения изоляции обмоток и исключения поражения электрическим током работающих, так как в разомкнутой вторичной обмотке индуцируется опасное напряжение: если произойдет пробой изоляции обмотки, то при прикосновении к ним человека может произойти несчастный случай.

Герметический контакт — геркон (рис. 64) — применяется в реле, логических, суммирующих и других элементах вычислительной техники и представляет собой консольный пружинящий контакт, запаянный в стеклянную трубку диаметром до 6,25 мм, длиной 50 мм.

Схема реле с магнитоуправляемым герконом

Рис. 64. Схема реле с магнитоуправляемым герконом:
1 — стеклянный корпус; 2 — контакт; 3 — катушка.

Замыкание контактов геркона происходит под действием магнитного поля определенной напряженности. образованного обмоткой постоянного тока или постоянным магнитом. При уменьшении напряженности пружины возвращаются в исходное положение и контакт размыкается. Переключаемая мощность геркона от 4 до 60 Вг. Они выпускаются на определенные действия контактов: на замыкание, переключение и размыкание электрической цепи. Геркон надежен в работе в интервале температур от -100 до + 200°С.

Серии герконов РПГ, РМГ, РЭС выпускаются на напряжение 3 — 24 В и 48 — 220 В.

  • Основы устройства электроаппаратов
  • Ручные аппараты
  • Аппараты защиты
  • Выключатели напряжением выше 1000 В
  • Обслуживание электрических аппаратов
  • Ремонт электрических аппаратов до 1000 В
  • Особенности ремонта отдельных электроаппаратов напряжением выше 1000 В
  • Испытания и наладка электроаппаратов

Классификация электрических аппаратов

1. Основные определения и классификация электрических аппаратов
1.1. Основные определения
Электрическими аппаратами (ЭА) называются электро технические устройства для управления. потоками энергии и информации, режимами работы, контроля и защиты технических систем и их компонентов [1].
Электрические аппараты служат для коммутации, сигнализации и защиты электрических сетей и электроприемников, а также управления электротехническими и технологическими установками и находят исключительно широкое применение в различных областях народного хозяйства: в электроэнергетике, в промышленности и транспорте, в аэрокосмических системах и оборонных отраслях, в телекоммуникациях, в коммунальном хозяйстве, в бытовой технике и т. д. При этом в каждой из областей диапазон используемой номенклатуры аппаратов очень широкий. Можно определенно сказать, что не существует области, связанной с использованием электрической энергии, где бы не применялись электрические аппараты.
В основе функционирования большинства видов электрических аппаратов лежат процессы коммутации (включения и отключения) электрических цепей. К основным явлениям, сопровождающим работу всякого электрического аппарата, относятся: процессы коммутации электрических цепей, электромагнитные и тепловые процессы. Под электромагнитными процессами понимают электромеханические и индукционные явления, электромагнитные взаимодействия элементов аппарата и др.
Тепловые процессы оказывают непосредственное влияние на работу аппарата и зависят от режима работы аппарата. Установлены для электрических аппаратов три вида режимов работы:
— длительный (в этом режиме при длительном прохождения тока аппарат нагревается до установившегося значения температуры);
— кратковременный (в этом режиме при отключенном состоянии между отдельными включениями температура нагрева аппарата снижается практически до температуры окружающей среды);
— повторно-кратковременный (температура нагрева за время паузы тока не успевает снизиться до температуры окружающей среды).
Два последних режима характеризуются относительной продолжительностью включения ПВ, %. Стандартные значения ПВ: 15; 25; 40; 60%.
1.2. Классификация электрических аппаратов
Исключительно широкий диапазон областей применения электрических аппаратов определяет многообразие видов их классификации.
Электрические аппараты классифицируют по признакам:
1) по величине рабочего напряжения — низковольтные (до 1000 В) и высоковольтные (более 1000 В);
2) по величине рабочего или коммутируемого тока — слаботочные (аппараты управления, защиты, сигнализации) и сильноточные, используемые в силовых цепях;
3) по выполняемой функции:
— коммутирующие аппараты: выключатели, разъединители, контакторы, магнитные пускатели;
— управления, защиты, сигнализации: реле различного типа, путевые и конечные выключатели (контактные и бесконтакные);
— командные: кнопки управления, ключи, командоконтроллеры и командоаппараты;
— аппараты защиты: разрядники, плавкие предохранители. К электрическим аппаратам относят также пускорегулиро вочные сопротивления.
По признаку коммутации и элементной базы электрические аппараты разделяются на:
— электромеханические
— статические
— гибридные.
Электромеханические аппараты отличаются наличием в них подвижных частей. Электромеханические аппараты имеют подвижную и неподвижную контактные системы, осуществляющие коммутацию электрических цепей.
Статические аппараты выполняются на основе силовых полупроводниковых приборов: диодов, тиристоров, транзисторов, а также управляемых электромагнитных устройств: магнитных усилителей, дросселей насыщения и др. Аппараты этого вида обычно относятся к силовым электронным устройствам, так как используются для управления потоками электрической энергии.
Гибридные электрические аппараты представляют со бой комбинацию электромеханических и статических аппаратов.
По функциональному назначению различают:
— аппараты управления НИ и ВН;
— аппараты распределительных устройств низкого напряжения;
аппараты автоматики.
Электрические аппараты классифицируют также:
по напряжению: аппараты НН — низкого (до 1000 В) И аппараты ВН — высокого (от единиц до тысяч киловольт) напряжения;
ПО значению коммутируемого тока: слаботочные аппараты (до 5 А) и сильноточные (от 5 А до сотен кило-ампер);
по роду тока: постоянного и переменного;
по частоте источника питания: аппараты с нормальной (до 50 Гц) и аппараты с повышенной (от 400 Гц до 10 кГц) частотой;
по роду выполняемых функций: коммутирующие, регулирующие, контролирующие, измеряющие, ограничивающие ПО току или напряжению, стабилизирующие;
— по исполнению коммутирующего органа: контактные и бесконтактные (статические), гибридные, синхронные, без дуговые.
1.3. Аппараты высокого напряжения
Аппараты высокого напряжения по функциональному признаку делятся на следующие виды:
— коммутационные аппараты (выключатели, выключатели нагрузки, разъединители);
— измерительные аппараты (трансформаторы тока и напряжения, делители напряжения);
— ограничивающие аппараты (предохранители, реакторы, разрядники, нелинейные ограничители перенапряжений);
— компенсирующие аппараты (управляемые и неуправляемые шунтирующие реакторы);
— комплектные распределительные устройства.
К электрическим аппаратам относят также различные виды датчиков, имеющих законченное конструктивное исполнение. Назначением большинства датчиков, относящихся к электрическим аппаратам, является преобразование параметров раз личных по природе физических величин в электрические сигналы информационного характера. Такие датчики широко ис пользуются в различных системах автоматического управления.
1.4. Электрические аппараты управления
Электрические аппараты управления предназначены для управления режимом работы электрооборудования и подразделяются на следующие виды:
— контакторы;
— пускатели;
— контроллеры;
— электрические реле управления;
— командоаппараты;
— рубильники;
— электромагниты управления
— электроуправляемые муфты.
Контакторы служат для многократных включений и отключений электрической цепи при токах нагрузки, не превышающих номинальный, а также для редких отключений при токах перегрузки (обычно 7—10-кратных по отношению к номинальному). Род тока определяет конструктивные особенности контакторов. Поэтому контакторы переменного и постоянного токов обычно не взаимозаменяемые. Однако имеются контакторы, совмещающие в себе возможности коммутации как постоянного, так и переменного токов.
Пускатели предназначены для включения и отключения двигателей и отличаются от контакторов в основном наличием встроенной системы, осуществляющей защиту двигателей от токов перегрузки.
Контроллер — это электрический аппарат с ручным управлением, предназначенный для изменения схемы подключения электродвигателя к системе электропитания, а также для коммутации обмоток трансформаторов.
Электрические реле управления работают в схемах автоматического управления электроприводами. Коммутируемые токи не превышают 10 А, и поэтому дугогасительные устройства в них не применяются.
Командоаппараты предназначены для переключений в цепях управления силовых электрических аппаратов (контакторов, пускателей).
Рубильники рассчитаны практически на весь диапазон номинальных токов. Отключение электрической цепи рубильником обычно производится в обесточенном состоянии или при небольших токах.
Электромагниты управления применяются в исполнительных механизмах различного промышленного назначения, а также в качестве самостоятельного функционального блока.
Электроуправляемые муфты предназначены для передачи потока механической энергии или крутящего момента
ог ведущей части муфты к ее ведомой части.
В зависимости от рода связи между ведущей и ведомой
частями муфты подразделяются на три основных вида:
— электромагнитные муфты с механической связью;
— электромагнитные порошковые муфты;
— индукционные муфты.
1.5. Аппараты распределительных устройств
Аппараты распределительных устройств низкого напряжения (до 1000 В) предназначены для защиты электрооборудования от различных аварийных режимов, связанных с появлением токов перегрузки и короткого замыкания, недопустимого снижения напряжения, появлением токов утечки на землю при повреждении изоляции, обратных токов и т. п.). Эти аппараты подразделяются на автоматические выключатели и низковольтные предохранители.
Автоматические выключатели (автоматы) включают ся и отключаются относительно редко. Автоматы на разные номинальные токи способны отключать большие токи короткого замыкания (до 150 кА). При этом отключение происходит с выраженным токоограничивающим эффектом. Автоматы имеют обычно сложные контактно-дугогасительные устройства.
Низковольтные предохранители служат для защиты электрооборудования от больших токов перегрузки и токов короткого замыкания. Различают предохранители с открытой плавкой вставкой, закрытые (плавкая вставка размещена в патроне) и предохранители с наполнителем, в качестве которого используется кварцевый песок, мел и др.
1.6. Электрические аппараты автоматики
Электрические аппараты автоматики — это технические средства, с помощью которых выполняются различные операции с сигналами (получение и сбор, считывание, формирование, обработка, преобразование, адресование, сравнение, хранение, размножение, изменение уровня, логические операции и т. п.), если хотя бы один из сигналов (на входе или выходе аппарата) электрический [1].
Соответствующие операции с неэлектрическими или электрическими сигналами выполняются в тракте переработки информации.
Сигналом называется воспринимаемая или передаваемая аппаратом информация о вещественном или энергетическом параметре. Под вещественным параметром понимают размер, плотность, цвет и т. п. Под энергетическим параметром — скорость, давление, температура, напряжение, ток, сокр, КПД.
Сигналы могут быть периодическими и непериодическими, непрерывными и дискретными.
Тракт переработки информации включает, как правило, следующие устройства:
— первичные преобразователи (датчики), преобразующие контролируемую (входную, как правило, неэлектрическую) величину в выходной электрический сигнал;
— распределители (коммутаторы), распределяющие информацию в виде электрических сигналов по различным каналам связи;
— сумматоры, логические элементы, регулирующие органы, обрабатывающие информацию, поступающую по различным каналам (входам) в виде электрических сигналов и вырабатывающие команду (сигнал) для исполнительных устройств;
— исполнительные аппараты.
К последнему типу устройств относятся собственно электрические реле автоматики, электрогидровентили, электрогидрокраны, электроклапаны, магнитные опоры и подвесы, задвижки и др.
Электрические реле автоматики — это устройства для защиты электрических систем, сетей и цепей, а также других объектов от несанкционированных режимов работы; для выработки сигналов, оповещающих о приближении нештатных ситуаций и об их наступлении; для усиления, размножения, обработки, кодирования и запоминания поступающей информации.
К разновидностям электрических реле автоматики относятся герконовые реле, основу которых составляют герметизированные магнитоуправляемые контакты (герконы), а также релейные аппараты с механическим управлением (входом) и электрическим выходом: кнопки, ключи, клавиатуры, тумблеры, микровыключатели.

Электрические аппараты защиты и управления

Электрические аппараты защиты используются в силовых электрических цепях для защиты и управления.

электрические аппараты защиты

К устройствам защиты можно отнести устройства плавного пуска электродвигателей. Они предназначены для плавного запуска асинхронных короткозамкнутых электродвигателей методом постепенного повышения напряжения на статоре двигателя. Посмотреть устройства плавного пуска можно на сайте https://instart-info.ru/.

Предохранитель с плавкой вставкой

Данный вид электрического аппарата, относится к самым простым. Назначение плавкого предохранителя в защите электрической цепи от сверхтоков коротких замыканий и перегрузки.

Конструкция предохранителя очень проста. В корпусе предохранителя есть проволока их металла с маленьким удельным сопротивлением и низкой температурой плавления.

В рабочем режиме ток свободно протекает через плавкую вставку. При возникновении сверхтоков в цепи, температура проводника увеличивается и вставка расплавляется. Расплавление вставки приводит к отключению электропитания, и цепь переходит в безопасный режим.

При сверхтоках, в месте разрыва цепи, обычно, появляется электрическая дуга. Чтобы дугу погасить, вокруг плавкой вставки создается специальная камера, называемая, дугогасительной. В предохранителях больших токов, эту камеру наполняют кварцевым песком. В цепях малых токов песка в камере нет, а гашение дуги производится давлением газа.

Для подбора плавкого предохранителя используют следующие расчёты:

  • Расчёт по напряжению цепи. Ном. напряжение предохранителя должно быть равным ном. напряжению цепи.
  • Вычисляют длительный расчётный ток цепи. Ток предохранителя должен быть равен или больше тока цепи;
  • Особый расчёт по условиям запуска асинхронного двигателя. Асинхронный двигатель это электродвигатель с коротко замкнутым ротором.

Электрические аппараты: автомат защиты

Этот электрический аппарат правильно называть автоматический выключатель или автомат защиты. Он, также, защищает электрическую проводку цепи от сверхтоков.

Конструкция автоматов защиты более сложная и об неё лучше почитать отдельные статьи:

  • Выбор автомата защиты
  • Примеры расчета автоматических выключателей в электрической цепи
  • Расчет автоматов защиты

Статьи по теме: Какая электротехническая продукция нужна для вашего дома

Реле максимального тока

Альтернативой плавким предохранителям является реле максимального тока. Это электрический аппарат, реагирующий на увеличение тока защищаемой электро цепи. С помощью РМТ можно создать максимальную защиту по току от сверхтоков перегрузки и короткого замыкания.

Контакторы

Название контактор, происходит от простого слова контакт. Контакторы предназначены для частого (!) дистанционного отключения/включение силовых электроцепей напряжением до 1000 Вольт.

В зависимости от привода различают следующие типы контакторов:

  • электро-магнитные контакторы. Контакты отключений приводит в действие электрический магнит;
  • пневматические, работают от сжатого воздуха;
  • гидравлические, работают от давления жидкости.

Конструкция контакторов включает следующие элементы:

  • Основная группа контактов. Служит для включения выключения электрической цепи;
  • Дуго-гасительная камора. Гасит электродугу при работе контактов;
  • Электрический магнит. Обеспечивают движение контактов;
  • Вспомогательные клеммы. Для подключения других электрических аппаратов.

В нормальном положении основные контакты могут быть:

  • Замкнуты;
  • Разомкнуты;
  • Находиться в смешанном положении.

Под нормальным положением, понимают положение основных контактов, при котором на втягивающую электромагнитную катушку не подается напряжение, а все механические защелки аппарата свободны.

Работа контакторов

Работу контакторов можно описать так:

  • Напряжение подается на обмотку электрического магнита контактора, от чего якорь притягивается;
  • Якорь приводит в движение основные контакты, которые либо замыкают, либо размыкают цепь;
  • Дугогасительная камора гасит дугу замыкания/размыкания;
  • К вспомогательным контактам подключаются другие электрические аппараты.

Электрические аппараты: Пускатели

Это вид контактора, который используется в сетях переменного тока. С его помощью, дистанционно, через кнопки управления, можно безопасно включать/отключать электропитание установок.

Рабочим узлом пускателя служит электромагнит. Он приводит в действие, обычно, 3-х полюсную контактную группу. Кроме основной контактной группы пускатели оборудованы группой вспомогательных контактов.

Выбор магнитных пускателей осуществляется по:

  • Ном. напряжению цепи;
  • Ном. току нагрузки;
  • Мощности асинхронного двигателя;
  • Режиму работы;
  • Количеству включений в единицу времени;
  • Времени срабатывания.

Статьи по теме: Электрические аппараты и уровни защиты электрики квартиры и дома

Реле задержки

Это электрические аппараты для создания временной задержки в срабатывании других электрических аппаратов цепи.

Это очень полезные электрические аппараты, которые обеспечивают временную выдержку для срабатывания 2-х и более аппаратов, а также, при необходимости, обеспечении их очерёдности срабатывания.

Реле задержки бывают:

Электромагнитные. Очень практичный тип реле, который не боятся ударов, вибраций, имеют отличную износоустойчивость. Они могут обеспечить 600-650 включений в час, с погрешностью задержки не более 10 %. Однако, на них можно установить задержку не более 10 секунд.

Полупроводниковые. Очень популярные реле из-за возможности выставить задержки срабатывания от 0,1 секунды до 100 часов.

Цифровые.

Тепловое реле

Этот электрический аппарат, защищает электрическое оборудование от перегрева из-за длительных, но незначительных перегрузках механики асинхронного двигателя.

Рабочий элемент аппарата биметаллическая пластина, состоящая из 2-х металлов с различными коэффициентами линейного расширения.

Ток, протекая через биметаллическую платину, нагревает её. В нормальном режиме этот нагрев не значителен. Повышение тока приводит к дополнительному нагреву пластины. Один металл пластины расширяется сильнее второго металла. Это приводит к резкому прогибу пластины. Прогиб пластины «щелкает» по контактной группе рели и ТР размыкает электрическую цепь.

В ТР могут использоваться дополнительные нагреватели биметаллической пластины.

Тиристорный регулятор напряжений

ТРН сложный электрический аппарат, предназначенный для управления значением напряжения нагрузки, как следствие управление тока нагрузки за счёт управления углом отпирания тиристоров схемы аппарата.

Магнитный усилитель

Очень простой электрический аппарат для увеличения мощности нагрузки для повышения мощности нагрузки малыми мощностями управлений. Эти аппараты отличает высокая надёжность, высокая прочность, большой срок эксплуатации.

Не используется в силовых сетях, только в автоматике, вычислительной техники, бортовых устройствах.

Вывод про электрические аппараты защиты

В этой статье я показал основные электрические аппараты защиты и управления силовых электрических цепей, используемые в быту и промышленности, в жилых и офисных помещениях.

Статьи по теме: Быстровозводимые модульные здания из контейнеров

Еще статьи

  • Электрические аппараты и уровни защиты электрики квартиры и дома
  • System pro M широкий ассортимент модульных устройств ABB
  • Щиты автоматики и управления
  • Разводка электропроводки в квартире
  • Какая электротехническая продукция нужна для вашего дома

Электрические аппараты

электрические аппараты

Электрический аппарат – это электротехническое устройство, которое используется для включения и отключения электрических цепей, контроля, измерения, защиты, управления и регулирования установок, предназначенных для передачи, преобразования, распределения и потребления электроэнергии.
Понятие «электрический аппарат» охватывает очень большой круг бытовых и промышленных устройств. Многообразие самих аппаратов и выполняемых ими функций, совмещение в одном аппарате нескольких функций не позволяют строго классифицировать их по одному какому-то признаку. Представляется целесообразным рассмотреть их по назначению – основной функции, выполняемой аппаратом.

В этом случае они могут быть подразделены на следующие группы:

  • Коммутационные – предназначены для включения и отключения

электрической цепи. (К ним можно отнести – разъединители, выключатели высокого и низкого напряжения, рубильники, переключатели и т.д.).

  • Аппараты защиты – для защиты электрических цепей от ненормальных

режимов работы (к.з., перегрузка). Сюда относятся предохранители высокого и низкого напряжения, различного рода реле.

  • Пускорегулирующие аппараты – для управления электроприводами и

другими промышленными потребителями электроэнергии (двигатели – пуск, остановка, регулирование скорости вращения). Это контакторы, пускатели, реостаты и т.д.

  • Ограничивающие аппараты – для ограничения токов к.з. (реакторы) и перенапряжений (разрядники).
  • Контролирующие аппараты – для контроля заданных электрических и

неэлектрических параметров. Сюда о тносятся различного рода реле и датчики.

  • Регулирующие аппараты – для автоматической и непрерывной

стабилизации и регулирования заданных параметров. Это различные стабилизаторы и регуляторы.

  • Измерительные аппараты – для изоляции цепей первичной коммутации от цепей измерительных приборов и релейной защиты. (Измерительные трансформаторы тока и напряжения).
  • Аппараты, предназначенные для выполнения механической работы – подъемные и удерживающие электромагниты, электромагнитные тормоза, муфты.

Любой аппарат состоит из трех элементов: воспринимающего, преобразующего и исполнительного.
По принципу действия воспринимающего элемента:
Электромагнитные, магнитоэлектрические, индукционные, электродинамические, поляризованные, полупроводниковые, тепловые, электронные, магнитные и т.д.
По принципу действия исполнительного элемента:

  • контактные
  • бесконтактные

В пределах одной группы или типа аппараты различаются:

  • по напряжению: — высокого напряжения (свыше 1000 В)

— низкого напряжения (до 1000 В)

  • по роду тока: — постоянного тока,

— переменного тока промышленной частоты,
— переменного тока повышенной частоты

  • по величине тока: — слаботочные (до 5А)

— сильноточные (свыше 5А)

  • по режиму работы: — продолжительного
  • по времени срабатывания: — безынерционные (до 3 мс) быстродействующие (3-50 мс), нормального исполнения (50-150 мс)

замедленные (150 мс-1 с), реле времени (свыше 1 с)

  • по способу управления: — автоматические

— неавтоматические (ручного управления)

  • по роду защиты от окружающей среды: в исполнении открытом, защищенном, водозащищенном, взрывозащищенном и т.д

ОСНОВНЫЕ ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ЭЛЕКТРИЧЕСКИМ АППАРАТАМ

  • При нормальном режиме работы температура токоведущих частей (элементов) не должна превышать допустимую (значений, рекомендуемых соответствующим ГОСТ или другими нормативными документами).
  • Аппараты должны выдерживать в течении определенного времени термическое воздействие токов К.З. без каких-либо деформаций, препятствующих их дальнейшему использованию (высокая износостойкость).
  • Изоляция аппарата должна быть рассчитана с учетом возможных перенапряжений, возникающих в процессе эксплуатации, с некоторым запасом, учитывающим её «старение».
  • Контакты электрических аппаратов должны быть способны многократно включать и отключать токи рабочих режимов.
  • Аппараты должны иметь высокую надежность и точность, необходимое быстродействие, минимум массы, малые габариты, дешевизну, удобство в эксплуатации.

НАГРЕВ ЭЛЕКТРИЧЕСКИХ АППАРАТОВ
ИСТОЧНИКИ НАГРЕВА:

  • Джоулево тело, выделяющееся в обмотках аппарата. (Это количество тепла, выделяемое в приемнике, которое пропорционально его R, t и I2, Вт*с=Дж).
  • Нагрев магнитопровода за счет потерь на перемагничивание и гистерезис.
  • Диэлектрические потери в изоляционных материалах.

НАПРАВЛЕНИЯ ИСПОЛЬЗОВАНИЯ ТЕПЛОВЫХ ЯВЛЕНИЙ В
ЭЛЕКТРИЧЕСКИХ АППАРАТАХ

Расширение тел при нагреве — (биметалические тепловые реле – электроутюг).
Создание неблагоприятных тепловых условий в одном аппарате, его разрушение и в результате защита других аппаратов (плавкие предохранители).
Преобразование электрической энергии отключаемой цепи в тепловую энергию и рассеивание этого тепла с помощью дугогасительного устройства в окружающую среду.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *