CAE-система
CAE (англ. Computer-aided engineering) — общее название для программ и программных пакетов, предназначенных для решения различных инженерных задач: расчётов, анализа и симуляции физических процессов. Расчётная часть пакетов чаще всего основана на численных методах решения дифференциальных уравнений (метод конечных элементов, метод конечных объёмов, метод конечных разностей и др.).
Современные системы инженерного анализа (или системы автоматизации инженерных расчётов) (CAE) применяются совместно с CAD-системами (зачастую интегрируются в них, в этом случае получаются гибридные CAD/CAE-системы).
Численные методы
CAE системы могут использовать в своей работе следующие математические методы:
- Метод конечных элементов (МКЭ, Конечно-элементный анализ, КЭ анализ) — численный метод решения дифференциальных уравнений с частными производными, а также интегральных уравнений, возникающих при решении задач прикладной физики. Метод широко используется для решения задач механики деформируемого твёрдого тела, теплообмена, гидродинамики и электродинамики.
- Метод конечных разностей — численный метод решения дифференциальных уравнений, основанный на замене производных разностными схемами. Является сеточным методом.
- Метод конечных объемов (Метод контрольных объемов) — численный метод интегрирования систем дифференциальных уравнений в частных производных.
Примеры CAE
- ABAQUS — универсальная система КЭ анализа с встроенным пре-/постпроцессором;
- ADAMS — система моделирования и расчёта многотельной динамики;
- ANSYS — универсальная система КЭ анализа с встроенным пре-/постпроцессором;
- APM WinMachine 2010 — отечественная универсальная система для проектирования и расчета в области машиностроения, включающая КЭ анализ с встроенным пре-/постпроцессором;
- APM Civil Engineering 2010 — отечественная универсальная система КЭ анализа с встроенным пре-/постпроцессором для проектирования и расчета металлических, железобетонных, армокаменных и деревянных конструкций;
- Autodesk Simulation — комплекс универсальных систем КЭ анализа со встроенными пре-/постпроцессорами (в комплекс входят Autodesk Simulation CFD — программа вычислительной гидрогазодинамики, Autodesk Simulation Mechanical — программа для механического и теплового анализа изделий и конструкций, Autodesk Simulation MoldFlow — программа моделирования процесса литья пластмассовых изделий под давлением);
- ESAComp — программная система конечно-элементных расчетов тонкостенных многослойных пластин и оболочек;
- EULER (Эйлер) — программный комплекс автоматизированного динамического анализа многокомпонентных механических систем;
- FEM-models — программный комплекс для моделирования и анализа методом конечных элементов. Специализация программы — геотехнические расчеты, совместные расчеты систем здание-основание;
- Femap — независимый от САПР пре- и постпроцессор для проведения инженерного анализа методом конечных элементов;
- АСОНИКА — Автоматизированная система обеспечения надёжности и качества аппаратуры (комплекс подсистем моделирования радиоэлектронной аппаратуры методом МКЭ и МКР);
- CAE Fidesys — универсальная система КЭ анализа с встроенным пре-/постпроцессором;
- HyperWorks (HyperMesh, RADIOSS, OptiStruct, AcuSolve и др.) — универсальная программная платформа систем конечно-элементного анализа;
- Moldex3D — программная система конечно-элементного моделирования литья армированных пластмасс под давлением;
- MSC.Nastran — универсальная система КЭ анализа с пре-/постпроцессором MSC.Patran;
- NEiNastran — универсальная программная система конечно-элементного анализа;
- NX Nastran — универсальная система МКЭ анализа;
- OpenFOAM — свободно-распространяемая универсальная система КО пространственного моделирования механики сплошных сред;
- QForm 2D/3D — специализированный программный комплекс для моделирования и оптимизации технологических процессов объёмной штамповки;
- SALOME — платформа для проведения расчётов МСС (подготовка данных — мониторинг расчёта — визуализация и анализ результатов);
- SolidWorks Simulation — семейство расчетных пакетов в среде SolidWorks (прочность, динамика, тепло, частотный анализ, газо-гидродинамика и пр.);
- SAMCEF — универсальная система КЭ анализа с пре-постпроцессором SAMCEF Field;
- Simmakers CAE Platform — программная платформа для выполнения численного моделирования физических и технологических процессов со встроенным пре-/постпроцессором.
- SimulationX — программный комплекс для моделирования и анализа динамики и кинематики автомобилей, индустриального оборудования, электро-, пневмо- и гидроприводов, ДВС, гибридных двигателей и т. д.
- STAR-CD — универсальная система МКО анализа с пре-/постпроцессором;
- STAR-CCM+ — универсальная система МКО анализа с пре-/постпроцессором;
- T-FLEX Анализ — универсальная система КЭ анализа с встроенным пре-/постпроцессором;
- CAElinux — дистрибутив операционной системы Линукс, включающий в себя ряд свободных САЕ-программ, в том числе OpenFOAM и SALOME.
- Универсальный механизм (UM) — программный комплекс предназначен для моделирования динамики и кинематики плоских и пространственных механических систем;
- ФРУНД — комплекс моделирования динамики систем твёрдых и упругих тел;
- MBDyn — система комплексного анализа и расчётов нелинейной динамики твёрдых и упругих тел, физических систем, «умных» материалов, электрических сетей, активного управления, гидравлических сетей, аэродинамики самолётов и вертолётов. * Распространяется на условиях лицензии GNU GPL 2.1.;
Что такое CAD и САМ?
Сегодня для достижения успеха на рынке промышленное предприятие вынуждено работать над сокращением срока выпуска продукции, снижением ее себестоимости и повышением качества. Стремительное развитие компьютерных и информационных технологий привело к появлению CAD/CAM/CAE-систем, которые являются наиболее продуктивными инструментами для решения этих задач.
Под CAD-системами (computer-aided design – компьютерная поддержка проектирования) понимают программное обеспечение, которое автоматизирует труд инженера-конструктора и позволяет решать задачи проектирования изделий и оформления технической документации при помощи персонального компьютера.
САМ-системы (computer-aided manufacturing – компьютерная поддержка изготовления) автоматизируют расчеты траекторий перемещения инструмента для обработки на станках с ЧПУ и обеспечивают выдачу управляющих программ с помощью компьютера.
САЕ-системы (computer-aided engineering – компьютерная поддержка инженерных расчетов) предназначены для решения различных инженерных задач, например для расчетов конструктивной прочности, анализа тепловых процессов, расчетов гидравлических систем и механизмов.
Оглавление
- Основы числового программного управления
- Автоматическое управление
- Особенности устройства и конструкции фрезерного станка с ЧПУ
- Функциональные составляющие (подсистемы) ЧПУ
- Языки для программирования обработки
- Процесс фрезерования
- Режущий инструмент
- Вспомогательный инструмент
- Основные определения и формулы
- Рекомендации по фрезерованию
- Прямоугольная система координат
- Написание простой управляющей программы
- Создание УП на персональном компьютере
- Передача управляющей программы на станок
- Проверка управляющей программы на станке
- Советы по технике безопасности при эксплуатации станков с ЧПУ
- Нулевая точка станка и направления перемещений
- Нулевая точка программы и рабочая система координат
- Компенсация длины инструмента
- Абсолютные и относительные координаты
- Комментарии в УП и карта наладки
- G- и М-коды
- Структура программы
- Слово данных, адрес и число
- Модальные и немодальные коды
- Формат программы
- Строка безопасности
- Ускоренное перемещение – G00
- Линейная интерполяция – G01
- Круговая интерполяция – G02 и G03
- Введение
- Останов выполнения управляющей программы – М00 и М01
- Управление вращением шпинделя – М03, М04, М05
- Управление подачей СОЖ – М07, М08, М09
- Автоматическая смена инструмента – М06
- Завершение программы – М30 и М02
- Основные принципы
- Использование автоматической коррекции на радиус инструмента
- Активация, подвод и отвод
- Подпрограмма
- Работа с осью вращения (4-ой координатой)
- Параметрическое программирование
- Методы программирования
- Что такое CAD и САМ?
- Общая схема работы с CAD/САМ-системой
- Виды моделирования
- Уровни САМ-системы
- Геометрия и траектория
- Алгоритм работы в САМ-системе и постпроцессор
- Ассоциативность
- Пятикоординатное фрезерование и ЗD-коррекция
- Высокоскоростная (ВСО) и высокопроизводительная обработка
- Критерии для оценки, сравнения и выбора CAM-систем
Компьютерный инжиниринг CAE | АСНИ
CAE (сокращение от английского названия Computer-Aided Engineering ) — обширная область современного компьютерного инжиниринга, связанная с расчетным обоснованием проектов в различных областях инженерной деятельности. Расчётная часть компьютерных программ CAE чаще всего основана на численных методах решения дифференциальных уравнений (наиболее известные методы: метод конечных элементов, метод конечных объёмов, метод конечных разностей, метод граничных элементов).
CAE-программы позволяют на этапе проектирования оценить, как поведёт себя создаваемый объект в реальных условиях эксплуатации, а главное — в аварийных режимах. CAE-программы работают совместно с CAD-программами в составе интегрированных систем CAD/CAM/CAE/PDM.
Все многообразие компьютерных программ для моделирования проектируемых объектов можно разделить на два больших класса:
- (1) Программы CAE для расчетного обоснования конструкций;
- (2) Программы CAE для компьютерного моделирования технологических процессов.
Обычно программы CAE ассоциируют с конечно-элементным анализом.
АСНИ (сокращение от названия Автоматизированные Системы Научных Исследований) — российский аналог термина CAE, который вводится стандартом ГОСТ Р 59853—2021 «Автоматизированные системы. Термины и определения».
ОПРЕДЕЛЕНИЕ . Автоматизированные системы научных исследований (АСНИ) — класс программного (программно-аппаратного) обеспечения на базе средств вычислительной техники, предназначенный для проведения научных исследований или комплексных испытаний образцов новой техники на основе получения и использования моделей исследуемых объектов, явлений и процессов.
По определению АСНИ — это инструмент научных исследований, который позволяет
- получать более точные и полные модели исследуемых объектов и явлений;
- изучать сложные объекты и процессы, исследовать которые традиционными методами затруднительно или невозможно.
АСНИ отличаются от других типов автоматизированных систем (САПР, АСУ, АСУТП) характером информации, получаемой на выходе системы. В результате применения АСНИ получают
- обработанные или обобщенные экспериментальные данные;
- виртуальные модели исследуемых объектов, явлений или процессов;
- результаты испытания виртуальных моделей.
Адекватность и точность моделей в АСНИ обеспечивается всем комплексом методических, программных, вычислительных средств системы.
Виртуальные модели в АСНИ создаются на основе математических моделей и используются далее для изучения объектов или симуляции процессов. АСНИ поэтому являются системами для получения, корректировки или исследования моделей, которые затем могут быть использованы в других типах автоматизированных систем для управления, прогнозирования или проектирования.
Основная функция АСНИ состоит в получении результатов научных исследований (комплексных испытаний)
- способами автоматизированной обработки экспериментальных и модельных данных,
- путем получения и исследования моделей объектов, явлений и процессов,
- на основе применения математических методов, автоматизированных процедур, планирования и управления экспериментом.
Обычно программы АСНИ ассоциируют с обработкой экспериментальных данных и управлением измерительным оборудованием.
Программное обеспечение CAE от российских разработчиков
- LVMFlow — моделирование технологий литья
- QForm — моделирование технологий обработки металлов давлением
- Bazis — моделирование технологий сварки
- АРМ WinMachine — автоматизированное рабочее место конструктора, включающее расчеты методом конечных элементов и классические расчеты по нормативным документам
- Fidesys — расчет прочности конструкций и геологических пород
- АСОНИКА — обеспечение надёжности и качества радиоэлектронной аппаратуры
- Универсальный механизм — моделирование динамики и кинематики плоских и пространственных механических систем
- FlowVision — решение задач газо- гидродинамики и теплообмена
- EULER — динамический анализ многокомпонентных механических систем
- FEM-models — геотехнические расчеты, совместные расчеты систем здание-основание
- ФРУНД — моделирование динамики систем твёрдых и упругих тел
- Сударушка — расчет прочности методом конечных элементов
- ИСПА — расчет прочности методом конечных элементов
Создано / Изменено: 3 июля 2015 / 13 января 2024
Системы инженерного анализа
CAE — Computer-Aided EngineeringКомплекс программных продуктов, которые способны дать пользователю характеристику того, как будет вести себя в реальности разработанная на компьютере модель изделия. По-другому CAE можно назвать системами инженерного анализа. В своей работе они используют различные математические расчеты: метод конечных элементов, метод конечных разностей, метод конечных объемов. При помощи CAE инженер может оценить работоспособность изделия, не прибегая к значительным временным и денежным затратам.
Смотрите также: Каталог САПР/CAD-систем и проектов, CAD, PLM, PDM.
САЕ-системами (Computer-Aided Engineering) называется программное обеспечение, предназначенное для расчётов, анализа и симуляции физических процессов в решении инженерных задач. Данные системы востребованы в авиастроении, ракетостроении, машиностроении, энергетике, индустрии новых материалов, строительстве крупных инфраструктурных объектов и пр. Они позволяют при помощи расчётных методов моделировать «поведение» промышленных изделий в реальных условиях эксплуатации.
История
CAE неразрывно связаны с CAD и CAM. Развитие этих программных продуктов шло параллельно. В начале 80-х годов XX столетия первые пользователи CAD/CAM/CAE применяли для работы графические терминалы, которые были компонентами мейнфреймов IBM и Control Data. Основными поставщиками аппаратного и программного обеспечения CAD/CAM/CAE были компании Applicon, Auto-Trol Technology, Calma, Computervision и Intergraph. Поскольку мейнфреймы того времени были несовершенными, то появлялись определенные трудности. Интерактивный режим работы был практически недоступен из-за большой нагрузки на центральный процессор. Стоимость одной CAD/CAM/CAE системы составляла порядка $90000. С развитием прогресса аппаратные платформы CAD/CAM/CAE систем перешли с мейнфреймов на персональные компьютеры. Это было связано с меньшей стоимостью и большей производительностью ПК по сравнению с мейнфреймами. Закономерно снизилась и цена на CAD/CAM/CAE до $20000. На базе ПК создавались рабочие станции для CAD, которые поддерживали архитектуру IBM PC или Motorola. В середине 80-х годов появились архитектуры микропроцессоров с усеченным набором команд RISC (Reduced Instruction Set Computing). На их основе были разработаны более производительные рабочие станции, опиравшиеся на операционную систему Unix. С середины 90-х годов конкуренцию системам RISC/Unix составили технологии, разработанные компанией Intel на основе операционных систем MS Windows NT и MS Windows 2000. В настоящее время стоимость CAD/CAM/CAE систем снизилась и составляет не более $10000.
Классификация
- Системы полнофункционального инженерного анализа, обладающие мощными средствами, большими хранилищами типов для сеток конечных элементов, а также всевозможных физических процессов. В них предусмотрены собственные средства моделирования геометрии. Кроме того, есть возможность импорта через промышленные стандарты Parasolid, ACIS. Полнофункциональные САЕ-системы лишены ассоциативной связи с CAD. Поэтому, если в процессе подсчета появляется необходимость изменить геометрию, то пользователю придется заново производить импорт геометрии и вводить данные для расчета. Самыми известными подобными системами считаются ANSYS/Multiphysics, AI*NASTRAN и MSC.NASTRAN.
- Системы инженерного анализа, встроенные в тяжелые САПР, имеют значительно менее мощные средства анализа, но они ассоциативны с геометрией, поэтому отслеживают изменения модели. Расчетные данные структурированы и интегрированы в общую систему проектирования тяжелой САПР. К ним относятся Pro/MECHANICA для Pro/ENGINEER, Unigraphics NX CAE для Unigraphics NX, Extensive Digital Validation (CAE) для I-deas, Catia CAE для CATIA;
- Системы инженерного анализа среднего уровня не имеют мощных расчетных возможностей и хранят данные в собственных форматах. Некоторые их них включают в состав встраиваемый интерфейс в CAD-системы, другие считывают геометрию из CAD. К первым относятся COSMOS/Works, COSMOS/Motion, COSMOS/FloWorks для SolidWorks Трехмерная проектная среда, ко вторым — visualNastran, Procision.
Возможности САЕ
С помощью САЕ можно проводить:
- Прочностной анализ компонентов и узлов на основе метода конечных элементов;
- Термический и гидродинамический анализ;
- Кинематические исследования;
- Моделирование таких процессов, как литье под давлением;
- Оптимизацию продуктов или процессов.
Этапы работы с САЕ
- Предварительная обработка — определение характеристик модели и факторов внешней среды, которые будут на нее воздействовать;
- Анализ и принятие решения;
- Обработка результатов.
Отрасли применения
Наибольшей популярностью САЕ пользуются в следующих отраслях производства: машиностроение и станкостроение, оборонная и аэрокосмическая промышленность, энергетика, судостроение, производство полупроводников, телекоммуникации, химическая, фармацевтическая и медицинская промышленность, строительство, производство систем отопления, кондиционирования, вентиляции.
Опыт использования САЕ в автомобильной промышленности
Преимущество систем САЕ состоит в том, что автопроизводители могут проводить компьютерное тестирование разрабатываемых моделей. Это позволяет сосредоточить максимум внимания на повышении безопасности, комфортности и долговечности автомобилей, не затрачивая при этом финансовых средств. Безопасность пассажиров при столкновениях может быть оценена при помощи таких программных продуктов, как RADIOSS, LS-DYNA, PAM-CRASH.
Основные направления в развитии САЕ
В процессе развития САЕ разработчики стремятся увеличить их возможности и расширить сферы внедрения. Преследуются следующие цели:
- Совершенствование методов решения междисциплинарных задач моделирования;
- Разработка новых платформ для интеграции различных систем САЕ, а также для интеграции САЕ-систем в PLM-решения;
- Повышение интероперабельности САЕ и CAD систем;
- Совершенствование методов построения расчетных сеток, описания граничных условий, параллельных вычисление и т.д;
- Улучшение характеристик моделей, которые применяются для описания свойсв материалов;
- Оптимизация систем САЕ для компьютерных платформ с 64-битными и многоядерными процессорами, а тем самым улучшение условий для моделирования сложных конструкций с большим количеством степеней свободы.
Мировой рынок
По прогнозу TechNavio (весна 2013 года), рынок CAE в ближайшие пять лет будет ежегодно расти на 11,18% и к 2016-му достигнет 3,4 млрд. долл. Этот рост обусловлен целым рядом факторов, главный из которых — необходимость ускорения выпуска продукции на рынок. А основным тормозом, как и в случае CAD, является рост популярности систем с открытым исходным кодом, обусловленный высокой стоимостью лицензий на коммерческие CAE-системы.
Из географических регионов самым большим с точки зрения востребованности CAE в 2012-м стала Северная Америка, а по темпам роста первое место занял Азиатско-Тихоокеанский регион, в котором активно развивается промышленность. Российские платформы для интеграции данных и приложений. Рейтинг TAdviser
Наибольшее распространение CAE-системы получили в автомобиле- и самолетостроении, электротехнике и электронике, тяжелом машиностроении и оборонной отрасли. Самый высокий рост спроса на CAE ожидается в автомобильной промышленности, а наименьший — в тяжелом машиностроении.
Ведущие позиции на рынке CAE занимают Ansys, MSC Software, Dassault Systemes, CD-adapco Group и LMS International. Кроме них в этой области работает немало менее крупных компаний, но число фирм, сосредоточенных только на CAE, сокращается, так как их покупают более крупные игроки ради их технологий.
В своем комментарии аналитики из TechNavio отметили, что некоторые крупные глобальные поставщики CAE и PLM начали продвигать `глобализованные` лицензии, которые позволяют купившим их заказчикам использовать CAE-системы в любой точке мира и обращаться за услугами поддержки в офис поставщика в любой стране. Это позволяет вендорам устранить разницу в стоимости своих продуктов в различных странах и продавать их по одной цене по всему миру. Аналитики ожидают, что данный подход будет применять все больше поставщиков CAE и PLM, и тогда на рынке произойдут значительные перемены с точки зрения ценовой политики вендоров.