Если направления токов одинаковы то параллельные проводники
Перейти к содержимому

Если направления токов одинаковы то параллельные проводники

  • автор:

Ток в двух параллельных проводниках

Два проводника с током взаимодействуют друг с другом, поскольку каждый из них находится в магнитном поле другого.

Ток в двух параллельных проводниках

Ток в двух параллельных проводниках

Если направления токов одинаковы, то параллельные проводники притягиваются, если же направления токов противоположны — отталкиваются.

F сила, действующая между параллельными проводниками, Ньютон
μа = μ0μ абсолютная магнитная проницаемость,
μ0 магнитная постоянная, 1.257 · 10 -6 Гн/м
μ относительная магнитная проницаемость
I1 сила тока в первом проводнике, Ампер
I2 сила тока во втором проводнике, Ампер
l длина проводников, метр
r расстояние между проводниками, метр

то на второй проводник, находящийся в поле первого проводника, действует сила

\[ F = B_ <1>I_ <1>l_ <1>\]

Поскольку напряженность магнитного поля $Н_$ на расстоянии r от проводника дается выражением

получаем следующую формулу для силы, действующей между проводниками:

\[ F = \frac I_ l> \]Из этой формулы следует определение единицы силы тока ампер (А): При $ I_ = I_ = 1A $ , $ μ = 1 $ , $ r = l = 1м $ , $ μ_ = 4π \cdot 10^ B \cdot c/(A \cdot м) $ имеем $ F = 2 \cdot 10^H $ .

Вычислить, найти силу взаимодействия двух параллельных проводников с током

Copyright © FXYZ.ru, 2007 — 2024.
Мобильная β версия | полная

Взаимодействие параллельных проводников с током (параллельных токов)

Взаимодействие параллельных проводников с током (параллельных токов) — это явление, при котором два проводника, по которым течет электрический ток, притягиваются или отталкиваются друг от друга в зависимости от направления тока. Это взаимодействие объясняется действием магнитного поля, создаваемого токами в проводниках. Это явление называется законом Ампера.

Знание того как взаимодействуют параллельные проводники с током имеет важное значение для понимания и применения магнитных явлений в электротехнике, электронике, связи, медицине и других областях. Например, взаимодействие параллельных проводников с током используется для создания электромагнитов, генераторов, трансформаторов, электродвигателей, динамиков, микрофонов и т.д.

Определить в некоторой точке пространства вектор индукции магнитного поля B, порождаемого постоянным электрическим током I, можно с помощью Закона Био-Савара. Это делается путем суммирования всех вкладов в магнитное поле от отдельных элементов тока.

Жан Батист Био и Феликс Савар — французские физики, которые совместно открыли и сформулировали закон, связывающий электрический ток и магнитное поле. Закон Био-Савара позволяет рассчитывать магнитное поле в любой точке пространства, если известно распределение токов в проводниках.

Этот закон был получен на основе экспериментальных данных в 1820 году, вскоре после открытия Эрстеда о влиянии тока на магнитную стрелку. Закон Био-Савара является одним из основных законов магнитостатики и электромагнетизма.

Магнитное поле элемента тока dI, в точке, заданной вектором r, по Закону Био-Савара находится так (в системе СИ):

Одна из типичных задач состоит в том, чтобы далее определить силу взаимодействия двух параллельных токов. Ведь токи, как известно, порождают собственные магнитные поля, а ток, находящийся в магнитном поле (другого тока) испытывает на себе действие силы Ампера.

Французский физик Андре-Мари Ампер считается одним из основателей электродинамики. Его именем названа единица измерения силы электрического тока в Международной системе единиц.

ОРУ трансформаторной подстанции

Сила Ампера — это сила, действующая на проводник с током со стороны магнитного поля. Она зависит от индукции магнитного поля, от направления этой индукции, от тока в проводнике и длины проводника.

Под действием силы Ампера, противоположно направленные токи взаимно отталкиваются, а токи направленные в одну сторону — взаимно притягиваются.

Прежде всего для прямого тока I нам необходимо найти магнитное поле B на некотором расстоянии R от него.

Для этого вводится элемент длины тока dl (по направлению тока), и рассматривается вклад от тока в месте расположения данного элемента длины — в общую индукцию магнитного поля применительно к выбранной точке пространства.

Сначала будем записывать выражения в системе СГС, то есть появится коэффициент 1/с, а в конце приведем запись в системе СИ, где появится магнитная постоянная.

По правилу нахождения векторного произведения, вектор dB — результат векторного произведения dl на r для любого элемента dl, в каком бы месте рассматриваемого проводника он не находился, всегда будет направлен за плоскость рисунка. Результат будет равен:

Произведение косинуса на dl можно выразить через r и угол:

Значит выражение для dB примет вид:

Далее выразим r через R и косинус угла:

И выражение для dB примет вид:

Далее необходимо это выражение проинтегрировать в пределах от -пи/2 до +пи/2, и в результате получим для B в точке на расстоянии R от тока следующее выражение:

Определение B

Можно сказать, что вектор B найденной величины, для выбранной окружности радиуса R, через центр которой перпендикулярно проходит данный ток I, всегда будет направлен по касательной к данной окружности, какую бы точку окружности мы ни выбрали. Здесь присутствует осевая симметрия, так что вектор B в любой точке окружности получается одной и той же длины.

Теперь рассмотрим параллельные постоянные токи и решим задачу нахождения сил их взаимодействия. Допустим, что параллельные токи направлены в одну и ту же сторону.

Изобразим магнитную силовую линию в форме окружности радиуса R (о которой речь шла выше). И пусть второй проводник расположен параллельно первому в какой-то точке данной силовой линии, то есть в месте с индукцией, значение которой (в зависимости от R) мы только что научились находить.

Магнитное поле в этом месте направлено за плоскость рисунка, и оно действует на ток I2. Выделим элемент длины тока l2, равный одному сантиметру (единица длины в системе СГС). Далее рассмотрим силы, действующие на него. Будем использовать Закон Ампера. Индукцию в месте расположения элемента длины dl2 тока I2 мы нашли выше, она равна:

Следовательно сила, действующая со стороны всего тока I1 на единицу длины тока I2 будет равна:

Это и есть сила взаимодействия двух параллельных токов. Поскольку токи однонаправленные и они притягиваются, то сила F12 со стороны тока I1 направлена так, что она тянет ток I2 в сторону тока I1. Со стороны же тока I2 на единицу длины тока I1 действует сила F21 равной величины, но направленная в сторону противоположную силе F12, в соответствии с третьим законом Ньютона.

В системе СИ, сила взаимодействия двух постоянных параллельных токов находится по следующей формуле, где коэффициент пропорциональности включает в себя магнитную постоянную:

Взаимодействие параллельных проводников с током

Эта формула была получена Ампером на основе экспериментальных данных.

Она показывает, что сила взаимодействия прямо пропорциональна силам токов и длине проводников, а обратно пропорциональна расстоянию между ними.

Также из формулы следует, что если токи текут в одном направлении, то сила взаимодействия положительна, то есть проводники притягиваются, а если токи текут в противоположных направлениях, то сила взаимодействия отрицательна, то есть проводники отталкиваются. Это соответствует наблюдаемому явлению взаимодействия параллельных токов.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Физика. 10 класс

§ 27. Действие магнитного поля на проводник с током. Взаимодействие проводников с током

Взаимодействие проводников с током. Открытие Эрстеда активизировало исследования по установлению связи между электрическими и магнитными явлениями. Ампер в 1820 г. провёл ряд экспериментов по изучению взаимодействия двух гибких первоначально расположенных прямолинейно и параллельно проводников с током. Он установил, что когда ток в проводниках проходит в противоположных направлениях, они отталкиваются ( рис. 140 , а), а когда в одинаковых направлениях – притягиваются ( рис. 140 , б). При отсутствии тока в проводниках они не проявляют магнитного взаимодействия ( рис. 140 , в).

Рис.

Магнитное поле одного проводника с током взаимодействует с током другого проводника посредством магнитной силы.

Магнитное взаимодействие двух параллельных проводников с током используют в СИ для определения единицы силы тока — ампера.

1 ампер — это сила неизменяющегося тока, который при прохождении по каждому из двух параллельных прямолинейных проводников бесконечной длины и ничтожно малого кругового сечения, расположенных на расстоянии 1 м один от другого в вакууме, вызвал бы между этими проводниками силу магнитного взаимодействия, модуль которой равен 2 · 10 –7 Н на каждый метр длины.

Интересно знать

Если рассматривать взаимодействие проводников с током более детально, то надо отметить, что оно имеет как магнитный, так и электрический компонент. Электрическое взаимодействие обусловлено зарядами, которые находятся на поверхности проводников с током. Утверждение, что проводники с током одного направления притягиваются, является верным только в том случае, когда электрическое взаимодействие между проводниками значительно слабее, чем магнитное, т. е. если сопротивление проводников мало, а сила тока в них достаточна велика.

Если направления токов одинаковы то параллельные проводники

ЭЛЕКТРОМАГНЕТИЗМ

Два параллельных проводника с одинаковыми по величине токами, находящиеся на расстоянии 8,7 см друг от друга, притягиваются с силой 2,5·10 –2 Н. Определите силу тока в проводниках, если длина каждого из них 320 см.

Дано:

l = 320 см = 3,2 м

Решение:

Расстояние между проводниками значительно меньше длины проводников, поэтому проводники можно рассматривать как бесконечно длинные.

Сила взаимодействия параллельных бесконечно длинных проводников

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *