Источники электроэнергии
Основным источником электроэнергии в мире являются, как известно, различного рода электростанции – тепловые электростанции, гидроэлектростанции и электростанции атомные. Тепловые электростанции (ТЭС), работающие на органическом топливе (уголь, мазут, газ, сланцы, торф), являются на сегодня основным видом используемых в России энергопроизводителей.
Выбор места размещения тепловых электростанций определяется в основном наличием в данном регионе природных и топливных ресурсов. Мощные ТЭС строятся, как правило, в местах добычи топливных ресурсов или недалеко от крупных центров нефтеперерабатывающей промышленности. Тепловые электростанции, на которых в качестве топлива используются местные виды горючего (сланец, торф, низкокалорийные и многозольные угли), стараются размещать согласно потребности в электроэнергии и, в тоже время, с учётом наличия тех или иных видов топливных ресурсов.
Электростанции, работающие на высококалорийном топливе, доставка которого к месту использования экономически целесообразна, размещаются обычно с учётом потребительского спроса на электроэнергию. Гидроэлектростанции представляют собой специальные сооружения, возведённые в местах перекрытия больших рек плотиной и использующие энергию падающей воды для вращения турбин электрогенератора. Этот способ получения электроэнергии является наиболее экологичным, поскольку обходится без сжигания тех или иных видов топлива и не оставляет никаких вредных отходов после себя. Атомные электростанции (АЭС) отличаются от тепловых лишь тем, что, если в ТЭС для нагрева воды и получения пара используется горючее топливо, то в АЭС источником нагрева воды служит энергия тепла, выделяемого в процессе ядерной реакции. В настоящее время большую часть всей вырабатываемой в мире электроэнергии дают тепловые электростанции, мощность которых может составлять сотни тысяч и миллионы киловатт.
Для совместного и согласованного производства электроэнергии электростанции различного типа объединяют в энергосистемы. Объединение электростанций, а также самих энергосистем между собой позволяет снизить стоимость электроэнергии и гарантирует бесперебойность режима электроснабжения потребителя. Объясняется это тем, что производство и расходование электроэнергии происходят одновременно, и невозможно аккумулировать всю вырабатываемую энергию в каком-либо виде. Поэтому электростанции обязаны иметь определённый резерв по рабочей мощности, необходимый для того, чтобы быть способными в любой момент удовлетворить возросший спрос на электроэнергию со стороны потребителя (на возросшую нагрузку). А величина потребления (спроса на энергию) может резко колебаться при изменении режимов и условий работы потребителей. В городах в зимний период, например, потребление электроэнергии резко возрастает, а летом — снижается. В сельском хозяйстве, напротив, электрические подстанции больше загружены именно летом, когда производятся сезонные полевые работы. Кроме того, максимальные нагрузки электростанций, расположенных на востоке и западе страны обычно не совпадают из-за разницы во времени. При коллективной работе электростанций они подпитывают друг друга, что обеспечивает их более равномерную загрузку и повышение КПД работы. На электростанциях, не входящих в состав энергосистемы, не допускается применение мощных узлов по транспортировке и преобразованию электроэнергии. Объясняется это тем, что выход подобного узла из строя моментально парализует работу промышленных предприятий, обесточивает целые районы и грозит аварийной остановкой систем водоснабжения и т. п. При объединении энергопроизводителей в энергосистемы нет оснований отказываться от таких мощных агрегатных узлов, поскольку нагрузку вышедшего из строя участка линии мгновенно подхватят оставшиеся в рабочем состоянии системы. Наряду с традиционным способом получения электроэнергии с помощью электростанций всё большую популярность приобретают в последнее время альтернативные источники электроэнергии. К подобным источникам можно отнести, например, ветряные электрогенераторы, которые преобразуют природную силу ветра в электрический ток. Всё большей популярностью в наше время пользуются и солнечные батареи, которые, в отличие от электрогенератора, используют принцип прямого преобразования энергии солнечных лучей в электрическую энергию (фотоэффект).
none Опубликована: 2011 г. 0 0
Вознаградить Я собрал 0 0
Оценить статью
- Техническая грамотность
Оценить Сбросить
Средний балл статьи: 0 Проголосовало: 0 чел.
Комментарии (0) | Я собрал ( 0 ) | Подписаться
Для добавления Вашей сборки необходима регистрация
Статью еще никто не комментировал. Вы можете стать первым.
200 Вт усилитель класса D на IRS2092
1999-2024 Сайт-ПАЯЛЬНИК ‘cxem.net’
При использовании материалов сайта, обязательна
ссылка на сайт ПАЯЛЬНИК и первоисточник
Как работает АЭС
Интенсивное развитие ядерной энергетики можно считать одним из средств борьбы с глобальным потеплением. К примеру, по подсчетам экспертов, атомные станции в Европе ежегодно позволяют избежать эмиссии около 700 миллионов тонн СО2. Действующие АЭС России ежегодно предотвращают выброс в атмосферу около 210 млн тонн углекислого газа. Таким образом, ядерная энергетика, являясь мощным базовым источником электрогенерации, вносит свой вклад в декарбонизацию.
КАК РАБОТАЕТ АЭС
Атомная электростанция – это комплекс необходимых зданий, систем, устройств, оборудования и сооружений, предназначенных для производства электроэнергии. В качестве топлива станция использует уран-235. Наличие ядерного реактора отличает АЭС от других электростанций.
На АЭС происходит три взаимных преобразования форм энергии:
- ядерная энергия переходит в тепловую,
- тепловая энергия переходит в механическую,
- механическая энергия преобразуется в электрическую.
Основой атомной станции является реактор, который располагается в реакторном зале, в основном корпусе. Это конструктивно выделенный объем, куда загружается ядерное топливо и где протекает управляемая цепная реакция. Уран-235 делится медленными (тепловыми) нейтронами. В результате выделяется огромное количество тепла.
Основным элементом реактора является активная зона. Она размещена в бетонной шахте. Обязательными компонентами любого реактора являются система управления и защиты, позволяющая осуществлять выбранный режим протекания управляемой цепной реакции деления, а также система аварийной защиты – для быстрого прекращения реакции при возникновении аварийной ситуации. Все это смонтировано в главном корпусе.
Тепло отводится из активной зоны реактора теплоносителем – жидким или газообразным веществом, проходящим через ее объем. Эта тепловая энергия используется для получения водяного пара в парогенераторе. Механическая энергия пара направляется к турбогенератору, где она превращается в электрическую и дальше по проводам поступает к потребителям.
Парогенератор и сама турбина располагаются в турбинном зале.
На территории площадки также обычно находятся корпус для перегрузки и хранения в специальных бассейнах отработавшего ядерного топлива. Кроме того, станции комплектуются элементами оборотной системы охлаждения – градирнями, прудом-охладителем (естественный водоем, либо искусственно созданный) и брызгальными бассейнами.
Также в технологической цепочке есть конденсаторы и высоковольтные линии электропередач (ЛЭП), уходящие за пределы площадки станции.
КАКИЕ АЭС БЫВАЮТ
В зависимости от типа реактора на атомной станции могут быть 1, 2 или 3 контура теплоносителя. В России наибольшее распространение получили двухконтурные АЭС с реакторами типа ВВЭР (водо-водяной энергетический реактор).
Одноконтурная схема применяется на атомных станциях с реакторами типа РБМК-1000. Реактор работает в блоке с двумя конденсационными турбинами и двумя генераторами. При этом кипящий реактор сам является парогенератором, что и обеспечивает возможность применения одноконтурной схемы. Одноконтурная схема относительно проста, но радиоактивность в этом случае распространяется на все элементы блока, что усложняет биологическую защиту.
Двухконтурную схему применяют на атомных станциях с в водо-водяными реакторами типа ВВЭР. В активную зону реактора подается под давлением вода, которая нагревается. Энергия теплоносителя используется в парогенераторе для образования насыщенного пара. Второй контур нерадиоактивен. Блок состоит из одной конденсационной турбины мощностью 1000 МВт или двух турбин мощностью по 500 МВт с соответствующими генераторами.
Трехконтурную схему применяют на АЭС с реакторами на быстрых нейтронах с натриевым теплоносителем типа БН. Чтобы исключить контакт радиоактивного натрия с водой, сооружают второй контур с нерадиоактивным натрием. Таким образом схема получается трехконтурной.
Как работает атомная электростанция (АЭС)
Одним из путей борьбы с загрязнением окружающей среды является переход на более чистые источники электроэнергии. К числу таких источников сегодня по праву относятся атомные электростанции (АЭС). В одной только Европе, благодаря атомным электростанциям, в атмосферу НЕ выбрасывается более чем полмиллиарда тонн углекислого газа каждый год, которые непременно стали бы серьезным источником загрязнения, если бы энергия получалась путем сжигания углеводородов.
Именно благодаря работающим круглые сутки, семь дней в неделю, атомным электростанциям, многие жилища и предприятия по всему миру непрерывно обеспечиваются электроэнергией. Плюс ко всему на станциях работают многочисленные специалисты, а это — достойно оплачиваемые рабочие места.
Диспетчерская атомной электростанции
Что же такое атомная электростанция? Давайте узнаем, как она устроена и работает.
Атомные электростанции (АЭС) являются разновидностью тепловых электростанций.
Источником тепловой энергии этих станций является процесс деления ядер атомов урана и плутония, являющихся первоисточником ядерного топлива, осуществляемый в ядерных реакторах. В качестве теплоносителя используют воду или газы, прокачиваемые через каналы реактора и парогенераторы. Получающийся пар поступает в паровые турбины, приводящие в движение генераторы, как и на обычных тепловых станциях.
Первая в мире атомная станция была построена в СССР в 1954 г.
Любая атомная электростанция — это сложный комплекс оборудования, устройств и сооружений, назначение которого — генерировать электрическую энергию, причем топливом здесь служит особое вещество — уран-235. В процессе деления ядер урана-235, выделяется огромное количество ядерной энергии, которая легко преобразуется в тепло, а тепло — в электричество.
Ядерный ректор — сердце атомной электростанции, ведь в него загружается ядерное топливо, и именно внутри реактора протекает управляемая цепная реакция расщепления урана-235. Нейтроны воздействуют на неустойчивые ядра урана-235, приводя к их распаду и выделению энергии.
Суть в том, что в ядре используемого в реакторе изотопа урана-235 не хватает для устойчивости трех нейтронов, поэтому ядро данного элемента очень нестабильно, и легко развалится на две части, стоит летящему с определенной скоростью нейтрону попасть в него.
Как только такой нейтрон попадает в неустойчивое ядро, оно распадается выделяя энергию, но при этом из уже развалившегося ядра опять же вылетают 2-3 новых нейтрона, они раскалывают другие ядра и т. д. — так идет цепная реакция деления ядер урана-235. А чтобы не случилось взрыва, нейтроны, служащие запалом, нужно контролировать, — слишком много нейтронов к топливу не подавать.
В ядерных реакторах, которыми оснащены работающие электростанции, энергия генерируется в тепловыделяющих элементах (твэлах). В простейшем случае твэл можно представить как стержень (сердечник), содержащий ядерное горючее (например, двуокись урана) и заключенный в оболочку из конструкционных материалов.
При делении ядер урана его осколки разлетаются с огромными скоростями, но практически не покидают сердечник, так как тормозятся внутри него, передавая атомам свою энергию и разогревая сердечник.
Именно тепло, выделяемое в сердечнике твэла, и есть та энергия, которая затем в сложном процессе ее преобразования в системе теплообменник — пар — турбина — генератор преобразуется в электроэнергию.
Движущиеся в сердечнике твэла осколки деления «сдвигают» атомы, нарушают кристаллическую структуру материалов, из которых он сделан, приводят к изменению их физических свойств. Чем дольше работает твэл в реакторе, тем больше изменяются свойства сердечника, тем больше накапливается в нем радиоактивных осколков.
Топливо в рабочую зону реактора заносится в специальных трубках, которые помещают в замедлитель, способный преобразовывать энергию нейтронов в тепло. В замедлитель погружают стержни, изготовленные из поглощающего нейтроны материала, чтобы очень точно контролировать скорость реакции. Чем выше подняты стержни — тем больше нейтронов действует на топливо, соответственно чем ниже стержни в реактор опускают — тем менее интенсивно протекает реакция.
Схема работы атомной электростанции на двухконтурном водо-водяном энергетическом реакторе (ВВЭР)
Территориально реактор размещен в реакторном зале главного корпуса АЭС, здесь же находится бассейн выдержки ядерного топлива, а также погрузочная машина. Рабочая зона, в которой собственно и протекает реакция, возведена в специальной бетонной шахте, оборудованной системой управления (для выбора рабочего режима) и защиты, чтобы в случае аварии можно было бы быстро прекратить реакцию.
Тепло из рабочей зоны ядерного реактора отводится с помощью жидкого или газообразного теплоносителя, который пропускается прямо через рабочую зону реактора. Тепло, которое накапливает теплоноситель, затем передается воде в парогенераторе, где образуется пар.
Пар под огромным давлением передает свою механическую энергию турбогенератору, который вырабатывает электричество, передаваемое затем по линиям электропередач (ЛЭП) — к потребителям. Турбина вместе с парогенератором установлены в турбинном зале, из которого по проводам электроэнергия отправляется на трансформатор, и затем — на ЛЭП.
На территории АЭС также находится корпус, где в бассейнах хранится отработанное топливо. А большие трубы в форме башен, суженных сверху, — это градирни — элементы оборотной системы охлаждения, включающей в себя еще и пруд-охладитель (естественный или искусственный водоем) и брызгальные бассейны.
Кстати, отходы, образуемые после реакции, частично перерабатываются, а оставшиеся — хранятся в специальных контейнерах, защищающих содержимое от проникновения в окружающую среду. Таким образом, на сегодня ядерная энергия является экологически чистой. А сами АЭС не производят вредных выбросов в атмосферу, при этом довольно компактны и безопасны.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Откуда берется ядерная энергия? Научные основы ядерной энергетики
×
Хотите узнать больше о деятельности МАГАТЭ? Подпишитесь на нашу ежемесячную электронную рассылку, чтобы быть в курсе самых важных новостей, получать аудио- и видеоматериалы и многое другое.
Что есть что в ядерной сфере
Андреа Галиндо , Бюро общественной информации и коммуникации МАГАТЭ
Ядерная энергия представляет собой разновидность энергии, которая высвобождается из ядра — центральной части атомов, состоящей из протонов и нейтронов. Источником этой энергии могут являться два физических процесса: деление, когда ядра атомов распадаются на несколько частей, и синтез, когда ядра сливаются вместе.
Ядерная энергия, используемая сегодня во всем мире для производства электроэнергии, вырабатывается посредством деления ядра, в то время как технология производства электроэнергии на основе синтеза пока еще находится на этапе исследований и экспериментальных разработок. В этой статье мы подробнее остановимся на делении ядра. Узнать больше о ядерном синтезе вы можете из этой статьи.
Что такое ядерное деление?
Ядерное деление — это реакция, в ходе которой ядро атома расщепляется на два или более меньших ядра, при этом происходит высвобождение энергии.
Например, ядро атома урана-235, при попадании в него нейтрона, расщепляется на ядро бария и ядро криптона и еще два или три нейтрона. Эти дополнительные нейтроны соударяются с другими находящимися вокруг ядрами урана-235, которые также расщепляются и порождают дополнительные нейтроны с эффектом многократного увеличения, в результате чего за долю секунды формируется цепная реакция.
Каждый раз такая реакция сопровождается высвобождением энергии в виде тепла и излучения. Подобно тому, как для получения электроэнергии используется тепло от ископаемых видов топлива, таких как уголь, газ и нефть, на атомной электростанции эта тепловая энергия может быть преобразована в электроэнергию.
Ядерная реакция деления (Графика: А. Варгас/МАГАТЭ)
Как работает атомная электростанция?
В реакторе атомной электростанции с помощью соответствующего оборудования локализуется и контролируется цепная ядерная реакция, чаще всего с использованием топлива на основе урана-235, в результате деления которого вырабатывается тепло. Это тепло используется для нагрева теплоносителя реактора, как правило, воды, чтобы получить пар. Затем пар направляется на турбины, заставляя их вращаться и активируя электрический генератор, что позволяет вырабатывать электроэнергию без выбросов углекислого газа.
Подробнее о различных типах ядерных энергетических реакторов читайте на этой странице.
Наибольшее распространение в мире получили реакторы с водой под давлением (PWR). (Графика: А. Варгас/МАГАТЭ)
Добыча, обогащение и утилизация урана
Уран — это металл, который встречается в горных породах по всему миру. Уран имеет несколько природных изотопов, которые представляют собой формы элемента, отличающиеся по массе и физическим свойствам, но с одинаковыми химическими свойствами. Уран имеет два первичных изотопа: уран-238 и уран-235. На уран-238 приходится большая часть урана в мире, но он не способен вступать в цепную реакцию деления, в то время как уран-235 может использоваться для получения энергии в результате деления, но составляет менее 1 процента от мировых запасов урана.
Чтобы повысить вероятность деления природного урана, необходимо увеличить содержащееся в нем количество урана-235 с помощью процесса, называемого обогащением урана. После обогащения урана он может эффективно использоваться на протяжении трех-пяти лет в качестве ядерного топлива на АЭС, после чего он все еще остается радиоактивным и должен утилизироваться в соответствии со строгими нормативными требованиями по защите людей и окружающей среды. Использованное топливо, так называемое отработавшее топливо, может также быть переработано в другие виды топлива, которые могут применяться в качестве нового топлива для специальных АЭС.
Что такое ядерный топливный цикл?
Ядерный топливный цикл — это включающий несколько этапов производственный процесс, необходимый для выработки электроэнергии с использованием урана в ядерных энергетических реакторах. Этот цикл начинается с добычи урана и завершается захоронением радиоактивных отходов.
Ядерные отходы
В процессе эксплуатации АЭС образуются отходы с различным уровнем радиоактивности. В зависимости от уровня радиоактивности и конечной цели применяются разные стратегии обращения с ними. Более подробную информацию по этой теме вы найдете в представленном ниже анимированном ролике.
Обращение с радиоактивными отходами
На радиоактивные отходы приходится небольшая доля общего объема отходов. Это побочный продукт миллионов медицинских процедур, проводимых каждый год, промышленных и сельскохозяйственных применений излучения и работы ядерных реакторов, которые производят около 10 процентов электричества в мире. В анимационном видео рассказывается о том, как осуществляется обращение с радиоактивными отходами, чтобы обеспечить защиту людей и окружающей среды от излучения сегодня и в будущем.
При работе следующего поколения АЭС на основе так называемых инновационных усовершенствованных реакторов будет образовываться гораздо меньше ядерных отходов, чем от сегодняшних реакторов. Ожидается, что строительство таких станций начнется ближе к 2030 году.
Ядерная энергетика и изменение климата
Ядерная энергия является низкоуглеродным источником энергии, поскольку, в отличие от электростанций, работающих на угле, нефтепродуктах или природном газе, атомные электростанции во время своей работы практически не производят CO2. Атомные электростанции используются для генерации почти трети мировой безуглеродной электроэнергии и имеют решающее значение для достижения целей в области борьбы с изменением климата.
Какую роль играет МАГАТЭ?
- МАГАТЭ устанавливает международные нормы и руководящие принципы безопасного и надежного использования ядерной энергии для защиты людей и окружающей среды и способствует проведению их в жизнь.
- МАГАТЭ поддерживает существующие и новые ядерно-энергетические программы по всему миру, предлагая техническую помощь и услуги по управлению знаниями. Следуя веховому подходу, МАГАТЭ предоставляет необходимые технические знания и рекомендации странам, которые выводят свои ядерные объекты из эксплуатации.
- В рамках своей деятельности в области гарантий и проверки МАГАТЭ следит за тем, чтобы не происходило переключения ядерных материалов и технологий с мирного использования на другие цели.
- Методическую основу для организации необходимой деятельности в течение всего жизненного цикла производства ядерной энергии, от добычи урана до сооружения, технического обслуживания и вывода из эксплуатации атомных электростанций и обращения с ядерными отходами, обеспечивают миссии по экспертной оценке и консультационные услуги под руководством МАГАТЭ.
- Под управлением МАГАТЭ находится запас низкообогащенного урана (НОУ) в Казахстане, который может использоваться в случае крайней необходимости странами, срочно нуждающимися в поставках НОУ для мирных целей.
Материалы по теме
Ядерная энергетика доказала свою значимость как гибкий и надежный источник электроэнергии во время пандемии COVID-19
МАГАТЭ и АЯЭ-ОЭСР обсудили в ходе своего ежегодного совещания ключевые события в области атомной энергетики (на англ. языке)
Будущее ядерной энергетики в центре внимания совещания на уровне министров «Экологически чистая энергия» (на англ. языке)
Генеральный директор МАГАТЭ Гросси призывает использовать ядерную энергетику для достижения нулевых выбросов: у нас остается все меньше времени, а климат меняется
В прошлом году использовать ядерную энергию начали ОАЭ и Беларусь. Кто следующий?
МАГАТЭ и МЭА договорились активизировать сотрудничество в области ядерной энергетики в целях перехода к экологически чистой энергии (на англ. языке)
Ресурсы по теме
- Энергетика
- Ядерные энергетические реакторы
- Оценки в области энергетики, электроэнергетики и ядерной энергетики на период до 2050 года (на англ. языке)
- Прогнозы МАГАТЭ в отношении ядерной энергетики на период до 2050 года (на англ. языке)
- Ядерная энергия: путь к безуглеродной энергетике будущего (на англ. языке)
- Что есть что в ядерной сфере