Плазма — виды, свойства и параметры
Плазмой называется четвертое агрегатное состояние вещества — сильно ионизированный газ, в котором электроны, а также положительно и отрицательно заряженные ионы, практически полностью уравновешивают электрические заряды друг друга. В результате, если попробовать вычислить суммарный заряд в любом малом объеме плазмы, он окажется равен нулю. Данная особенность отличает плазму от электронных и ионных пучков. Это свойство плазмы называется квазинейтральностью.
Соответственно (исходя из определения) плазма характеризуется, в зависимости от отношения количества заряженных частиц в ее объеме к полному количеству составляющих ее частиц, степенью ионизации:
- слабоионизированная плазма (доля процента объема частиц ионизировано) ;
- умеренноионизированная плазма (несколько процентов объема частиц ионизировано) ;
- сильноионизированная (почти 100% частиц объема газа ионизировано).
Виды плазмы — высокотемпературная и газоразрядная
Плазма бывает высокотемпературной и газоразрядной. Первая возникает только в условиях высокой температуры, вторая — при разряде в газе. Как известно, вещество может пребывать в одном из четырех агрегатных состояний: первое — твердое, второе — жидкое, третье — газообразное. А поскольку сильно нагретый газ переходит в следующее состояние — в состояние плазмы, поэтому именно плазма и считается четвертым агрегатным состоянием вещества.
Подвижные частицы газа в объеме плазмы обладают электрическим зарядом, следовательно есть все условия для того, чтобы плазма могла проводить электрический ток. В обычных условиях стационарная плазма экранирует постоянное внешнее электрическое поле, ибо в таком случае внутри ее объема происходит пространственное разделение электрических зарядов. Но так как заряженные частицы плазмы пребывают в условиях определенной, отличной от абсолютного нуля, температуры, есть минимальное расстояние, когда в масштабе меньше него квазинейтральность нарушается.
В ускоряющем электрическом поле заряженные частицы газоразрядной плазмы обладают различными средними кинетическими энергиями. Получается, что температура электронного газа отличается от температуры ионного газа внутри плазмы, поэтому газоразрядная плазма не является равновесной, и называется неравновесной или неизотермической плазмой.
С убыванием числа заряженных частиц газоразрядной плазмы в ходе их рекомбинации, новые заряженные частицы тут же образуются в процессе ударной ионизации электронами, ускоряемыми электрическим полем. Но стоит приложенное электрическое поле отключить — тут же исчезает газоразрядная плазма.
Высокотемпературная плазма — это изотермическая или равновесная плазма. В такой плазме убыль числа заряженных частиц из-за их рекомбинации восполняется благодаря термической ионизации. Это происходит при определенной температуре. Средние кинетические энергии частиц входящих в состав плазмы здесь равны. Из высокотемпературной плазмы (при температуре в десятки миллионов градусов) состоят звезды и Солнце.
Чтобы плазма могла начать существовать, необходима некоторая минимальная плотность заряженных частиц в ее объеме. Физика плазмы определяет это число из неравенства L>>D. Линейный размер заряженных частиц L много больше дебаевского радиуса экранирования D, представляющего собой расстояние, на котором происходит экранирование кулоновского поля любого заряда плазмы.
Свойства плазмы
Говоря об определяющих свойствах плазмы, следует упомянуть:
- высокую степень ионизации газа (максимум — полная ионизация);
- нулевой полный заряд плазмы;
- высокая электропроводность;
- свечение;
- сильное взаимодействие с электрическим и магнитным полями;
- высокая частота (порядка 100 МГц) колебаний электронов внутри плазмы, приводящая к вибрации всего объема плазмы;
- коллективное взаимодействие огромного числа заряженных частиц (а не парами, как обычном газе).
Знания об особенностях физических свойств плазмы позволяют ученым не только получать информацию о межзвездном пространстве (как раз и заполненным в основном плазмой), но дают основание рассчитывать на перспективы установок управляемого термоядерного синтеза (на базе высокотемпературной плазмы из дейтерия и трития).
Низкотемпературная плазма (с температурой менее 100000 К) уже сегодня находит применение в ракетных двигателях, газовых лазерах, термоэлектронных преобразователях и МГД-генераторах, преобразующих тепловую энергию в электрическую. В плазмотронах получают низкотемпературную плазму для сварки металлов и для химической промышленности, где галогениды инертных газов невозможно получить иными способами.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Плазма агрегатное состояние как получить
Всем, я думаю, известно 3 основных агрегатных состояния вещества: жидкое, твердое и газообразное. Мы сталкиваемся с этими состояниями вещества каждый день и повсюду. Чаще всего их рассматривают на примере воды. Жидкое состояние воды наиболее привычно для нас. Мы постоянно пьем жидкую воду, она течет у нас из крана, да и сами мы на 70% состоим из жидкой воды. Второе агрегатное состояние воды — это обычный лед, который зимой мы видим на улице. В газообразном виде воду тоже легко встретить в повседневной жизни. В газообразном состоянии вода — это, всем нам известный, пар. Его можно увидеть, когда мы, к примеру, кипятим чайник. Да, именно при 100 градусах вода переходит из жидкого состояния в газообразное.
Это три привычных для нас агрегатных состояния вещества. Но знаете ли вы, что их на самом деле 4? Я думаю, хоть раз каждый слышал слово «плазма». А сегодня я хочу, чтобы вы еще и узнали побольше о плазме — четвертом агрегатном состоянии вещества.
Плазма — это частично или полностью ионизированный газ с одинаковой плотностью, как положительных, так и отрицательных зарядов. Плазму можно получить из газа — из 3 агрегатного состояния вещества путем сильного нагревания. Агрегатное состояние вообще, по сути, полностью зависит от температуры. Первое агрегатное состояние — это самая низкая температура, при которой тело сохраняет твердость, второе агрегатное состояние — это температура при которой тело начинает плавиться и становиться жидким, третье агрегатное состояние — это наиболее высокая температура, при ней вещество становиться газом. У каждого тела, вещества температура перехода от одного агрегатного состояние к другому совершенно разная, у кого-то ниже, у кого-то выше, но у всех строго в такой последовательности. А при какой же температуре вещество становиться плазмой? Раз это четвертое состояние, значит, температура перехода к нему выше, чем у каждого предыдущего. И это действительно так. Для того, чтобы ионизировать газ необходима очень высокая температура. Самая низкотемпературная и низкоионизированная (порядка 1%) плазма характеризуется температурой до 100 тысяч градусов. В земных условиях такую плазму можно наблюдать в виде молний. Температура канала молнии может превышать 30 тысяч градусов, что в 6 раз больше, чем температура поверхности Солнца. Кстати, Солнце и все остальные звезды — это тоже плазма, чаще все-таки высокотемпературная. Наука доказывает, что около 99% всего вещества Вселенной — это плазма.
В отличие от низкотемпературной, высокотемпературная плазма обладает практически 100% ионизацией и температурой до 100 миллионов градусов. Это поистине звездная температура. На Земле такая плазма встречается только в одном случае — для опытов термоядерного синтеза. Контролируемая реакция достаточно сложна и энергозатратна, а вот неконтролируемая достаточно зарекомендовала себя как оружие колоссальной мощности – термоядерная бомба, испытанная СССР 12 августа 1953 года.
Плазму классифицируют не только по температуре и степени ионизации, но и по плотности, и по квазинейтральности. Словосочетание плотность плазмы обычно обозначает плотность электронов, то есть число свободных электронов в единице объёма. Ну, с этим, думаю, все понятно. А вот что такое квазинейтральность знают далеко не все. Квазинейтральность плазмы — это одно из важнейших ее свойств, заключающееся в практически точном равенстве плотностей входящих в её состав положительных ионов и электронов. В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний. Почти вся плазма квазинейтральна. Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счёт кулоновского отталкивания.
Мы совсем мало рассмотрели земных примеров плазмы. А ведь их достаточно много. Человек научился применять плазму себе во благо. Благодаря четвертому агрегатному состоянию вещества мы можем пользоваться газоразрядными лампами, плазменными телевизорами, дуговой электросваркой, лазерами. Обычные газоразрядные лампы дневного света — это тоже плазма. Существует в нашем мире также плазменная лампа. Ее в основном используют в науке, чтобы изучить, а главное — увидеть некоторые из наиболее сложных плазменных явлений, включая филаментацию. Фотографию такой лампы можно увидеть на картинке ниже:
Кроме бытовых плазменных приборов, на Земле так же часто можно видеть природную плазму. Об одном из ее примеров мы уже говорили. Это молния. Но помимо молний плазменными явлениями можно назвать северное сияние, “огни святого Эльма”, ионосферу Земли и, конечно, огонь.
Заметьте, и огонь, и молния, и другие проявления плазмы, как мы это называем, горят. Чем обусловлено столь яркое испускание света плазмой? Свечение плазмы обусловлено переходом электронов из высокоэнергетического состояния в состояние с низкой энергией послерекомбинации с ионами. Этот процесс приводит к излучению со спектром, соответствующим возбуждаемому газу. Именно поэтому плазма светиться.
Хотелось бы так же немного рассказать об истории плазмы. Ведь когда-то плазмой назывались лишь такие вещества, как жидка составляющая молока и бесцветная составляющая крови. Все изменилось в 1879 году. Именно в тот год знаменитый английский ученый Уильям Крукс, исследуя электрическую проводимость в газах, открыл явление плазмы. Правда, назвали это состояние вещества плазмой лишь в 1928. И это совершил Ирвинг Ленгмюр.
В заключении хочу сказать, что такое интересное и загадочное явление, как шаровая молния, о которой я не раз писала на этом сайте, это, конечно же, тоже плазмойд, как и обычная молния. Это, пожалуй, самый необычный плазмойд из всех земных плазменных явлений. Ведь существует около 400 самых различных теорий на счет шаровой молнии, но не одна из них не была признана воистину правильной. В лабораторных условиях похожие, но кратковременные явления удалось получить несколькими разными способами, так что вопрос о природе шаровой молнии остаётся открытым.
Обычную плазму, конечно, тоже создавали в лабораториях. Когда-то это было сложным, но сейчас подобный эксперимент не составляет особого труда. Раз уж плазма прочно вошла в наш бытовой арсенал, то и в лабораториях над ней немало экспериментируют.
Интереснейшим открытием в области плазмы стали эксперименты с плазмой в невесомости. Оказывается, в вакууме плазма кристаллизуется. Это происходит так: заряженные частицы плазмы начинают отталкиваться друг от друга, и, когда у них есть ограниченный объем, они занимают то пространство, которое им отведено, разбегаясь в разные стороны. Это весьма похоже на кристаллическую решетку. Не означает ли это, что плазма являеться замыкающим звеном между первым агрегатным состоянием вещества и третьим? Ведь она становиться плазмой благодаря ионизации газа, а в вакууме плазма вновь становиться как бы твердой. Но это только мое предположение.
Кристаллики плазмы в космосе имеют также и достаточно странную структуру. Эту структуру можно наблюдать и изучать только в космосе, в настоящем космическом вакууме. Даже если создать вакуум на Земле и поместить туда плазму, то гравитация будет просто сдавливать всю «картину», образующуюся внутри. В космосе же кристаллы плазмы просто взлетают, образуя объемную трехмерную структуру странной формы. После отправления результатов наблюдения за плазмой на орбите земным ученым, выяснилось, что завихрения в плазме странным образом повторяют структуру нашей галактики. А это значит, что в будущем можно будет понять, как зародилась наша галактика путем изучения плазмы. Ниже на фотографиях показаны та самая кристаллизованная плазма.
Это все, что мне бы хотелось сказать на тему плазмы. Надеюсь, она вас заинтересовала и удивила. Ведь это воистину удивительное явление, а точнее состояние — 4 агрегатное состояние вещества.
- vribinek’s блог
- Войдите на сайт для отправки комментариев
- 18050 просмотров
Опубликовано zhvictorm в вс, 22/06/2014 — 20:29.
Валерия! Хороший материал. Действительно, плазма — наиболее распространенное агрегатное состояние вещества во Вселенной. Из плазмы состоят звезды, и межзвездные просторы в основном заполнены плазмой. Огонь, который мы видим в газовых комфорках и кострах, — это тоже плазма. Но, поскольку плазма возникает в столь различных по условиям ситуациях, то она сильно различается и по своим свойствам в разных условиях.
Ты в основном обратила внимание на различие в температуре плазмы. Это несомненно так. Но свойства плазмы определяются вместе с температурой еще давлением, свойствами частиц ее образующих, и концентрацией этих частиц в единице объема. Это похоже на то, что свойства идеального газа определяются температурой, давлением и молярной массой.
Но в отличие от газа движение плазмы еще очень сильно зависит от магнитного поля, в котором плазма движется. Плазма может подчинять себе внешнее поле, а может, наоборот, целиком следовать за силовыми линиями магнитного поля. В первом случае говорят о вмороженности магнитного поля в плазму, а во втором — о вмороженности плазмы в магнитное поле. Такая связь с магнитным полем обусловлена тем, что плазма — это набор относительно свободно движущихся заряженных частиц, в то время как газ и все остальные агрегатные состояния, образуются нейтральными атомами.
Я бы предложил тебе написать о плазме, которая выбрасывается с поверхности Солнца и звезд. Это солнечный (звездный) ветер и солнечные космические лучи. Напиши об этих явлениях. И это дополнит общее представление о плазме в твоем материале. Можно написать это в отдельной статье.
Кроме того, еще обращу внимание на то, что когда говорят о плазменных кристаллах, то сравнение с твердым телом не совсем правильно. Плазма не может стать твердой — это удел другого агрегатного состояния. Хотя в центре Солнца плазма имеет плотность в восемь раз большую, чем плотность золота, тем не менее твердостью она не обладает. Важным в плазменных кристаллах является именно пространственная упорядоченность распределения в пространстве плотности плазмы. Часто на небе можно видеть упорядоченные гряды облаков. Это внутренние волны в атмосфере. Твердостью они не обладают, но имеют периодическую структуру. Так и плазма — в определенных условиях в ней появляется регулярная структура, подобная кристаллической структуре твердых тел.
- Войдите на сайт для отправки комментариев
Опубликовано vribinek в пн, 23/06/2014 — 18:35.
Спасибо, что прочитали мою статью, и спасибо, что написали отзыв, указав на достоинства и недостатки моего материала. В следующих своих статьях я постараюсь исправить ошибки. Если говорить о плазме, выбрасываемой с поверхности солнца, т.е. о солнечном ветре, то я как раз сейчас начинаю писать научную работу о солнечной активности, где будет рассматриваться и тема солнечного ветра. Это несомненно интереснейшая тема!
- Войдите на сайт для отправки комментариев
Опубликовано Полина в вс, 22/06/2014 — 21:04.
Валерия, я надеюсь услышать твоё выступление на семинаре в УлГУ и тогда более внимательно вникну в содержание. А пока меня заинтересовала одна иллюстрация в твоей статье. Она похожа на загадочную картинку в статье на сайте Загадка для всех любителей исследовательского поиска. Эту загадку придумал талантливый человек, тогда он ещё учился в школе, но сделал Космофизический практикум «Спутник — на урок!», которым пользуются в некоторых школах учителя (в экспериментальном режиме).
- Войдите на сайт для отправки комментариев
Опубликовано vribinek в пн, 23/06/2014 — 18:48.
Конечно, я буду выступать на семинаре, но со своей научно-исследователькой работой об оптических явлениях, вызванных химическими реакциями в верхней атмосфере. Хотя я подумываю над тем, чтобы написать НИР на тему плазмы, но не сейчас. Пока что у меня уже есть пару запланированных тем, касающихся непосредственно астрофизики.
На счет иллюстрации: это весьма распространенная фотография — фотография плазменной лампы. О плазменной лампе я тоже упомянула в данной статье.
Загадку посмотрела. Интересно! Благодарю за ссылку и за то, что прочли мою статью.
- Войдите на сайт для отправки комментариев
Состояние плазмы
Состояние плазмы практически единогласно признается научным сообществом как четвертое агрегатное состояние. Вокруг данного состояния даже образовалась отдельная наука, изучающая это явление – физика плазмы. Состояние плазмы или ионизованный газ представляется как набор заряженных частиц, суммарный заряд которых в любом объеме системы равен нулю – квазинейтральный газ.
Получение плазмы
Получить высокотемпературную плазму можно двумя способами: посредством сильного нагрева газа, либо при помощи сильного сжатия вещества. При таких условиях электроны не способны удерживаться на орбитах в атомах вещества, в результате чего «сходят» с них. Таким образом возникает набор отдельных положительных частиц (протонов или ядер атомов — ионов) и электронов. Посредством дальнейшего увеличения давления или температуры из состояния плазмы также можно получить кварк-глюонную плазму.
Плазма как четвертое агрегатное состояние
Также существует газоразрядная плазма, которая возникает при газовом разряде. При прохождении электрического тока через газ, первый ионизирует газ, ионизированные частицы которого являются переносчиками тока. Так в лабораторных условиях получают плазму, степень ионизации которой можно контролировать при помощи изменения параметров тока. Однако, в отличие от высокотемпературной плазмы, газоразрядная нагревается за счет тока, и потому быстро охлаждается при взаимодействии с незаряженными частицами окружающего газа.
Электрическая дуга — ионизированный квазинейтральный газ
Свойства и параметры плазмы
В отличие от газа вещество в состоянии плазмы обладает очень высокой электрической проводимостью. И хотя суммарный электрический заряд плазмы обычно равен нулю, она значительно подвержена влиянию магнитного поля, которое способно вызывать течение струй такого вещества и разделять его на слои, как это наблюдается на Солнце.
Спикулы — потоки солнечной плазмы
Другое свойство, которое отличает плазму от газа – коллективное взаимодействие. Если частицы газа обычно сталкиваются по двое, изредка лишь наблюдается столкновение трех частиц, то частицы плазмы, в силу наличия электромагнитных зарядов, взаимодействуют одновременно с несколькими частицами.
В зависимости от своих параметров плазму разделяют по следующим классам:
- По температуре: низкотемпературная – менее миллиона кельвин, и высокотемпературная – миллион кельвин и более. Одна из причин существования подобного разделения заключается в том, что лишь высокотемпературная плазма способна участвовать в термоядерном синтезе.
- Равновесная и неравновесная. Вещество в состоянии плазмы, температура электронов которого значительно превышает температуру ионов, называется неравновесной. В случае же когда температура электронов и ионов одинаковая говорят о равновесной плазме.
- По степени ионизации: высокоионизационная и плазма с низкой степенью ионизации. Дело в том, что даже ионизированный газ, 1% частиц которого ионизированы, проявляет некоторые свойства плазмы. Однако, обычно плазмой называют полностью ионизированный газ (100%). Примером вещества в таком состоянии является солнечное вещество. Степень ионизации напрямую зависит от температуры.
Применение
Наибольшее применение плазма нашла в светотехнике: в газоразрядных лампах, экранах и различных газоразрядных приборах, вроде стабилизатора напряжения или генератора сверхвысокочастотного (микроволнового) излучения. Возвращаясь к освещению – все газоразрядные лампы основаны на протекании тока через газ, что вызывает ионизацию последнего. Популярный в технике плазменный экран представляет собой набор газоразрядных камер, заполненных сильно ионизированным газом. Электрический разряд, возникающий в этом газе порождает ультрафиолетовое излучение, которое поглощается люминифором и далее вызывает его свечение в видимом диапазоне.
Устройство плазменного экрана
Вторая область применения плазмы – космонавтика, а конкретнее – плазменные двигатели. Такие двигатели работают на основе газа, обычно ксенона, который сильно ионизируется в газоразрядной камере. В результате этого процесса тяжелые ионы ксенона, которые к тому же ускоряются магнитным полем, образуют мощный поток, создающий тягу двигателя.
Наибольшее же надежды возлагаются на плазму – как на «топливо» для термоядерного реактора. Желая повторить процессы синтеза атомных ядер, протекающие на Солнце, ученые работают над получением энергии синтеза из плазмы. Внутри такого реактора сильно разогретое вещество (дейтерий, тритий или даже гелий-3) находится в состоянии плазмы, и в силу своих электромагнитных свойств, удерживается за счет магнитного поля. Формирование более тяжелых элементов из исходной плазмы происходит с выделением энергии.
Устройство термоядерного реактора
Также плазменные ускорители используются в экспериментах по физике высоких энергий.
Что такое плазма и зачем она нужна? Разбор
Что такое плазма и зачем она нужна? Что значит четвертое агрегатное состояние и какие свойства появляются у вещества в состоянии плазмы?
aka_opex 10 декабря 2022 в 01:28
Начнем сегодняшний ролик с неочевидного вопроса: как вы думаете, а можно ли поджечь воду? Большинство скажут, что конечно же нет! Это же две разные стихии — огонь и вода. Обычно воду как раз используют, чтобы огонь тушить!
Но это не совсем так — да вода тушит огонь, но только если огонь относительно холодный! А вот если огонь очень горячий, то можно поджечь и воду, и даже металл! Но как?!
Сегодня во всем разберемся, расскажем вам о том, что такое плазма и почему плазмы на самом деле гораздо больше вокруг нас, чем мы о ней думаем. Ну и вообще выясним? зачем нам нужна плазма и где мы ее применяем. А главное разберемся с физикой и тем как плазма образуется! Все как вы любите — подробно и понятно!
Введение
А что такое плазма? Идем на Википедию и просто смотрим определение.
Она говорит нам, что это Ионизированный газ, одно из классических агрегатных состояний.
Подождите, прямо в определении же написано, что это газ? Так почему вообще мы считаем что это отдельное агрегатное состояние?
Давайте сначала вообще разобраться какие бывают состояния вещества. Итак, вокруг нас существуют четыре, как мы их называем, основных агрегатных состояния вещества.
Классические состояния, а именно — Твердое, жидкое, газ. И последнее — плазма!
В чем же между ними разница? И почему одно и тоже химическое соединение, в нашем случае вода, может быть и твердой, и жидкой и газом. Все дело в давлении и температуре. То есть в энергии или можно еще сказать в скорости молекул вещества!
Если энергия, то есть скорость, слишком низкая, то молекулы H2O хотят образовывать кристаллическую решетку, и образуется твердое вещество. И оно такое до 0 градусов по Цельсию. При нормальных условиях! То есть лед.
Дальше энергия системы становится больше, чем энергия связи молекул между собой и вода переходит в жидкое состояние где она остается до 100 градусов цельсия. То есть это некоторое промежуточное состояние когда скорость молекул такая, что образуется жидкость.
И вот уже после 100 градусов энергия системы становится достаточно большой, чтобы молекулы воды начали грубо говоря вылетать. Это и есть превращение в газ!
Но надо сказать кое-что важное, что все, что мы тут описали для воды это в нормальных условиях, то есть при давлении в одну атмосферу. Поднимитесь высоко в горы, и вода будет уже кипеть при гораздо более низких температурах. Если вы не знали, то на вершине Эвереста вода кипит всего при 68 градусах! Тут даже яйцо не сварить, так как белок сворачивается только при 85! Так вот для каждого вещества есть свои законы так называемых фазовых переходов, который зависит не только от температуры но и от давления.
Можно посмотреть на график для воды и тут много чего интересного!
Например, при давлении в 1 миллион атмосфер вода остается льдом даже при 500 градусах! Как вам такое — на льду можно и стейк поджарить! В центре нашей Земли давление кстати почти в 4 раза больше. Кроме того можно найти еще пару необычных мест. Например, точка где сходятся все три состояния около 0 градусов и при пониженном давлении около 10-ти милибар. Тут вообще вода одновременно и жидкость и газ и твердое вещество.
Или например при низком давлении можно перевести воду сразу изо льда в пар минуя жидкое состояние.
И для каждого такого фазового перехода есть свое определение — кристаллизация, плавление, испарение, конденсация и так далее!
Плазма
Но что случится если взять водяной пар и продолжить его нагревать?
В начале ничего особенного не произойдет, будет просто горячий газ, как в бане, когда камни поливаете водой. А что случилось бы если бы камни в парилке были бы температурой несколько десятков тысяч градусов? И вот тут мы наконец-то приходим к новому состоянию, то есть к плазме.
Давайте для простоты возьмем водяной пар в каком-то воображаемом замкнутом объеме. Сначала если нагреть водяной пар до достаточной температуры то молекулы воды сначала начнут разваливаться на кислород и водород! А если нагреть дальше, то уже скорость самих атомов становится такой большой, что они начинают как бы разваливается. Точнее не совсем разваливаться, от атомов начинают отделяться электроны.
И получается очень интересная ситуация, когда в некотором объеме появляется облако плазмы, которое содержит в себе кучу свободно летающих электронов, а так же положительно и отрицательно заряженных ионов.
Но как же происходит образование плазмы?
Все дело в так называемом лавинном эффекте. Возьмем уже упомянутый ранее объем газа. У нас там есть в основном свободно летающие атомы, которые сталкиваются друг с другом…
Так вот если нагревать, то скорость, а соответственно и энергию, этих свободных электронов и ионов увеличивается. Энергию конечно же можно вносить и не просто нагревом, а другим способои, например с помощью магнитного или электрического поля.
Представьте себе бильярдные шары, если они просто сталкиваются от удара кием, то они просто разлетаются и иногда попадаюь в лузы. Но вот если этому шару дать достаточно энергии, например выстрелить им из пушки, то все шары начинают разваливаться.
В результате, когда энергия, или скорость этих атомов становится больше какого-то порогового значения, то при столкновении с другими атомами газа, и из них рождаются ионы.
И получается настоящая цепная реакция, когда одни ионы начинают рождать все больше и больше себе подобных! Ну и в результате плазма как бы зажигается. И этот процесс называется ионизацией.
А энергия необходимая для ионизации плазмы индивидуальна для каждого конкретного химического элемента. Плазму можно поджечь не только из привычных нам газов вроде кислорода, или аргона, а например можно даже поджечь плазму из урана!
Ну а если вы помните наш крутой ролик о экстремальной ультрафиолетовой литографии, то там для получения нужного излучения с длинной в 13.5 нанометров нужно было получать плазму олова!
И для того чтобы поджечь плазму олова в установках ASML лазер стрелял огромной энергией в жидкую каплю олова таким образом сразу ее ионизируя, то есть превращая в плазму.
И ровно таким же образом можно в теории поджечь воду! Только это будут именно молекулы воды. Всего-то надо нагреть ее до примерно 10 тысяч градусов!
Квазинейтральность
А вот тут мы зададим вам еще один интересный вопрос! Как вы думаете может огонь от обычной свечки проводить электричество?
При первом взгляде кажется, что нет, ведь обычно мы привыкли, что электричество проводят разные металлы — медь, алюминий и другие. Но при чем тут вообще огонь от свечки?
Но тот факт, что плазма — это фактически облако заряженных частиц дает плазме еще одно удивительное свойство.
В отличие от обычного газа, наличие в ней кучи свободных электронов и ионов позволяет плазме проводить электрический ток! И это рождает очень интересные явления. Это позволяет этой плазмой управлять!
Например, если поместить горящую свечку между двумя пластинами конденсатора, то через огонь спички начинает проскакивать искра! Более того сама форма пламени меняется — и оно как бы растягивается между пластинами конденсатора. Это именно следствие того, что там есть и положительные и отрицательные частички. Соответственно отрицательные притягиваются к положительной пластине конденсатора и наоборот. При этом если вы посмотрите на какие-то внутренние крошечные участки плазмы, то там может быть или много положительных или много отрицательных заояженных частиц. Однако, если вы возьмете плазму в большом объеме, и посчитаете все частицы, то заряд получится ноль. Это свойство называется квазинейтральностью плазмы.
И казалось бы обычный газ ведь тоже нейтральный, соответственно разницы особенно нет! Но квазинейтральность это уникальное для плазмы и именно оно отличает плазму от других систем, и в особенности от обычного газа!
И она открыла нам множество технологических возможностей. Вспоминайте наш материал о травлении и осаждении! Плазменное травление почти всегда используется в производстве процессоров именно благодаря возможности направлять и ускорять поток заряженных частиц.
Ну и конечно же нельзя забывать о старых добрых плазменных телевизорах,
где в каждом пикселе поджигали небольшой плазменный разряд смеси неона и ксенона. Интересно что в этих телевизорах плазма была источником ультрафиолетового света, который позволял пикселю, который был покрыт фосфором начинать светиться.
А сам материал был подобран таким образом, что какие-то пиксели светились красным, а какие-то синим и зеленым. Получается классический РГБ.
Или например неоновые трубки. В них используется определенные газы, которые светятся определенным светом.
Так что настоящий плазменный киберпанк уже очень давно был у нас у всех дома и на улицах!
В общем, плазма нашла очень широкое применение вообще во всех сферах человеческой жизни! Без нашего понимания того что такое плазма небыло бы никаких современных процессоров например.
Ну а в скором времени надеюсь, что и ITER запустят — Международный экспериментальный термоядерный реактор! Ведь там будет плазма температурой в 150 млн градусов!
Распространение и выводы
Но на самом деле плазма гораздо распространеннее в природе чем принято думать. Мы привыкли что в основном вокруг нас только 3 основных состояния вещества.
Ну окей иногда можно видеть плазму в виде огоня костра, или вспышку молнии, а кому-то из наших зрителей посчастливелось увидеть например северное сияние!
Но это все такие мелочи по сравнению с объемом жидкости или газа вокруг нас!
Оказывается во всей вселенной 99.9% всего вещества находится именно в состоянии плазмы! И все из-за звезд. Каждая звезда — это просто огромный плазменный бульон разной массы, плотности и температуры!
И именно благодаря плазме, в конце концов мы с вами появились на Земле!
Сегодня мы с вами посмотрели на плазму, да и вообще глянули на другие основные агрегатные состояния вещества! Но вообще есть и другие! И они вообще взрывают мозг.
Мы ведь обсуждали что будет если нагреть пар, а что будет если уже нагреть саму плазму! Всего-то на 7 триллионов градусов.
Тут энергия становится так велика что начинают уже разваливаться сами ядра атомов на кварки! И получается кварк-глюонная плазма. И вы не поверите, но ее человечество тоже научилось получать!