Почему именно электроны участвуют в создании электрического тока в проводниках
Перейти к содержимому

Почему именно электроны участвуют в создании электрического тока в проводниках

  • автор:

Электрический ток

Как известно электрический ток представляет собой упорядоченное движение
заряженных частиц(электронов) в проводнике под действием электрического поля,будем рассматривать именно проводник.
Например мы соединили лампочку и провода.Свободные электроны есть и в проводах и спирали лампы и движутся они так хаотично.
Но стоит нам подключить эту цепь к источнику тока с разностью потенциалов,т.е создать электрическое поле между концами цепи,
как сразу эти электроны( в проводах и спирали лампы) начнут двигаться упорядочено от одного полюса источника к другому(от «-» к «+» ),
что и будет являться ЭЛЕКТРИЧЕСКИЙ ТОК.
А вопрос в следующем:
Какие электроны участвуют в движении,только те (сводные), которые находятся в проводнике и спирали. Или по мере того,как они
смещаются на их место приходят электроны находящиеся на минусовой клеме источника?
Как например, если в трубе имеется вода, и мы будем с одной стороны трубы заливать другую воду,то та которая была в трубе будет вытекать
с другой стороны,а на её место притечёт новая,и так по кругу.Так или нет.

Лучший ответ

Источник напряжения — это, как бы насос, который стоит в водяном контуре. Насос за счёт внешней силы перекачивает по кругу воду. Примерно так же и источник электричества (генератор на электростанции, например, или батарейка) перекачивает электроны по замкнутому контуру. А эта энергия рассеивается в тепло, например.

Остальные ответы
Да. так. Ты прав.
да именно так

Надо сделать поправку. Вода которая вытекает должна возвратиться в русло. Представь что батарейка это водяная помпа которая находится в ведре. Так вот вытекать вода должна в это самое ведро. тогда модель верна. Ведь источник мы подключаем двумя полюсами к цепи. из минуса электроны вытекают, а в плюс они так сказать втекают. 🙂

Под действием поля движутся только электроны веществ из которых состоит цепь. А минусовая клемма источника является частью цепи. а по поводу труб — система же замкнутая и никакая дополнительная вода в неё не поступает.

Движение электронов

В металлических проводниках электроны, расположенные на внешних энергетических уровнях атома (валентные электроны), легко отрываются от ядра и свободно блуждают по всей массе металла. Эти свободные электроны отличаются большой подвижностью и находятся в состоянии беспорядочного (теплового) движения, двигаясь во всевозможных направлениях со скоростями, доходящими до миллионов метров в секунду. Число свободных электронов в единице объема металла равно числу атомов в единице объема, умноженному на валентность данного металла. В одном кубическом сантиметре металла содержится n·10 23 свободных электронов (n — валентность металла). Кристаллическая решетка металла построена из ионов, тепловое движение которых проявляется в небольших колебаниях вокруг положений равновесия. С увеличением температуры тепловые колебания ионов усиливаются и амплитуды их колебаний увеличиваются. Наоборот, с понижением температуры тепловые колебания уменьшаются. Электрический ток в металле возникает вследствие направленного упорядоченного движения свободных электронов под воздействием электрического поля. Положительные ноны, имеющие большую массу, в этом направленном движении не участвуют, и, следовательно, прохождение тока в проводнике не сопровождается переносом вещества проводника. Увеличение скорости направленного движения электронов в металле может быть достигнуто за счет увеличения напряженности электрического поля. Однако средняя скорость направленного движения электронов много меньше тепловой скорости хаотического их движения и оценивается десятыми долями метра в секунду. Быстрое возникновение тока в линиях большой протяженности объясняется большой скоростью распространения электрического поля, которое мгновенно приводит в движение свободные электроны по всей линии передачи. Количество свободных электронов определяет электрические свойства металла. Чем больше свободных электронов, тем больше удельная электропроводность — величина, обратная удельному сопротивлению.

Движение электронов в электрическом и магнитном полях

Электрический ток

Электрический ток

Электрический ток — направленное движение электрически заряженных частиц под воздействием электрического поля. Такими частицами могут являться: в проводниках – электроны , в электролитах – ионы (катионы и анионы), в полупроводниках – электроны и, так называемые, «дырки» («электронно-дырочная проводимость»). Также существует «ток смещения «, протекание которого обусловлено процессом заряда емкости, т.е. изменением разности потенциалов между обкладками. Между обкладками никакого движения частиц не происходит, но ток через конденсатор протекает.

В теории электрических цепей за ток принято считать направленное движение носителей заряда в проводящей среде под действием электрического поля.

Током проводимости (просто током) в теории электрических цепей называют количество электричества, протекающего за единицу времени через поперечное сечение проводника: i=q/ t , где i — ток. А; q = 1,6 · 10 9 — заряд электрона, Кл; t — время, с.

Это выражение справедливо для цепей постоянного тока. Для цепей переменного тока применяют так называемое мгновенное значение тока, равное скорости изменения заряда во времени: i(t)= dq/ dt .

Электрический ток возникает тогда, когда на участке электрической цепи появляется электрическое поле, или разность потенциалов между двумя точками проводника. Разность потенциалов между двумя точками электрической цепи называют напряжением или падением напряжения на этом участке цепи .

Электрический ток и напряжение

Вместо термина «ток» («величина тока») часто применяется термин «сила тока». Однако последний нельзя назвать удачным, так как сила тока не есть какая-либо сила в буквальном смысле этого слова, а только интенсивность движения электрических зарядов в проводнике, количество электричества, проходящего за единицу времени через площадь поперечного сечения проводника.
Ток характеризуется силой тока, которая в системе СИ измеряется в амперах (А), и плотностью тока , которая в системе СИ измеряется в амперах на квадратный метр.
Один ампер соответствует перемещению через поперечное сечение проводника в течение одной секунды (с) заряда электричества величиной в один кулон (Кл):

В общем случае, обозначив ток буквой i, а заряд q, получим:

Единица тока называется ампер (А) . Ток в проводнике равен 1 А, если через поперечное сечение проводника за 1 сек проходит электрический заряд, равный 1 кулон.

Направленное движение электронов в проводнике

Рис. 1. Направленное движение электронов в проводнике

Если вдоль проводника действует напряжение, то внутри проводника возникает электрическое поле. При напряженности поля Е на электроны с зарядом е действует сила f = Ее. Величины f и Е векторные. В течение времени свободного пробега электроны приобретают направленное движение наряду с хаотическим. Каждый электрон имеет отрицательный заряд и получает составляющую скорости, направленную противоположно вектору Е (рис. 1). Упорядоченное движение, характеризуемое некоторой средней скоростью электронов vcp, определяет протекание электрического тока.

Электроны могут иметь направленное движение и в разреженных газах. В электролитах и ионизированных газах протекание тока в основном обусловлено движением ионов. В соответствии с тем, что в электролитах положительно заряженные ионы движутся от положительного полюса к отрицательному, исторически направление тока было принято обратным направлению движения электронов.

За направление тока принимается направление, в котором перемещаются положительно заряженные частицы, т.е. направление, противоположное перемещению электронов.
В теории электрических цепей за направление тока в пассивной цепи (вне источников энергии) взято направление движения положительно заряженных частиц от более высокого потенциала к более низкому. Такое направление было принято в самом начале развития электротехники и противоречит истинному направлению движения носителей заряда — электронов, движущихся в проводящих средах от минуса к плюсу.

Направление электрического тока в электролите и свободных электронов в проводнике

Направление электрического тока в электролите и свободных электронов в проводнике

Величина, равная отношению тока к площади поперечного сечения S, называются плотностью тока (обозначается δ ): δ = I / S

При этом предполагается, что ток равномерно распределен по сечению проводника. Плотность тока в проводах обычно измеряется в А/мм2.

По типу носителей электрических зарядов и среды их перемещения различают токи проводимости и токи смещения . Проводимость делят на электронную и ионную. Для установившихся режимов различают два вида токов: постоянный и переменный.

Электрическим током переноса называют явление переноса электрических зарядов заряженными частицами или телами, движущимися в свободном пространстве. Основным видом электрического тока переноса является движение в пустоте элементарных частиц, обладающих зарядом (движение свободных электронов в электронных лампах), движение свободных ионов в газоразрядных приборах.

Электрическим током смещения (током поляризации) называют упорядоченное движение связанных носителей электрических зарядов. Этот вид тока можно наблюдать в диэлектриках.
Полный электрический ток — скалярная величина, равная сумме электрического тока проводимости, электрического тока переноса и электрического тока смещения сквозь рассматриваемую поверхность.

Постоянным называют ток, который может изменяться по величине, но не изменяет своего знака сколь угодно долгое время. Подробнее об этом читайте здесь: Постоянный ток

Переменным называют ток, который периодически изменяется как по величине, так и по знаку. Величиной, характеризующей переменный ток, является частота (в системе СИ измеряется в герцах), в том случае, когда его сила изменяется периодически. Переменный ток высокой частоты вытесняется на поверхность проводника. Токи высокой частоты применяется в машиностроении для термообработки поверхностей деталей и сварки, в металлургии для плавки металлов. Переменные токи подразделяют на синусоидальные и несинусоидальные . Синусоидальным называют ток, изменяющийся по гармоническому закону:

где Im, — амплитудное (наибольшее) значение тока, А,

Скорость изменения переменного тока характеризуется его частотой, определяемой как число полных повторяющихся колебаний в единицу времени. Частота обозначается буквой f и измеряется в герцах (Гц). Так, частота тока в сети 50 Гц соответствует 50 полным колебаниям в секунду. Угловая частота ω — скорость изменения тока в радианах в секунду и связана с частотой простым соотношением:

Установившиеся (фиксированные) значения постоянного и переменного токов обозначают прописной буквой I неустановившиеся (мгновенные) значения — буквой i. Условно положительным направлением тока считают направление движения положительных зарядов.

Переменный ток — это ток, который изменяется по закону синуса с течением времени.

Под переменным током также подразумевают ток в обычных одно- и трёхфазных сетях. В этом случае параметры переменного тока изменяются по гармоническому закону.

Поскольку переменный ток изменяется во времени, простые способы решения задач, пригодные для цепей постоянного тока, здесь непосредственно неприменимы. При очень высоких частотах заряды могут совершать колебательное движение — перетекать из одних мест цепи в другие и обратно. При этом, в отличие от цепей постоянного тока, токи в последовательно соединённых проводниках могут оказаться неодинаковыми. Ёмкости, присутствующие в цепях переменного тока, усиливают этот эффект. Кроме того, при изменении тока сказываются эффекты самоиндукции, которые становятся существенными даже при низких частотах, если используются катушки с большой индуктивностью. При сравнительно низких частотах цепи переменного тока можно по-прежнему рассчитывать с помощью правил Кирхгофа, которые, однако, необходимо соответствующим образом модифицировать.

Электрический ток

Цепь, в которую входят разные резисторы, катушки индуктивности и конденсаторы, можно рассматривать, как если бы она состояла из обобщённых резистора, конденсатора и катушки индуктивности, соединённых последовательно.

Рассмотрим свойства такой цепи, подключённой к генератору синусоидального переменного тока. Чтобы сформулировать правила, позволяющие рассчитывать цепи переменного тока, нужно найти соотношение между падением напряжения и током для каждого из компонентов такой цепи.

Конденсатор играет совершенно разные роли в цепях переменного и постоянного токов. Если, например, к цепи подключить электрохимический элемент, то конденсатор начнёт заряжаться, пока напряжение на нём не станет равным ЭДС элемента. Затем зарядка прекратится и ток упадёт до нуля. Если же цепь подключена к генератору переменного тока, то в один полупериод электроны будут вытекать из левой обкладки конденсатора и накапливаться на правой, а в другой — наоборот. Эти перемещающиеся электроны и представляют собой переменный ток, сила которого одинакова по обе стороны конденсатора. Пока частота переменного тока не очень велика, ток через резистор и катушку индуктивности также одинаков.

В устройствах-потребителях переменного тока переменный ток часто выпрямляется выпрямителями для получения постоянного тока.

Проводники электрического тока

Материал, в котором течёт ток, называется проводником. Некоторые материалы при низких температурах переходят в состояние сверхпроводимости. В таком состоянии они не оказывают почти никакого сопротивления току, их сопротивление стремится к нулю. Во всех остальных случаях проводник оказывает сопротивление течению тока и в результате часть энергии электрических частиц превращается в тепло. Силу тока можно рассчитать по закону Ома для участка цепи и закону Ома для полной цепи.

Скорость движения частиц в проводниках зависит от материала проводника, массы и заряда частицы, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света. Несмотря на это, скорость распространения собственно электрического тока равна скорости света в данной среде, то есть скорости распространения фронта электромагнитной волны.

Как ток влияет на организм человека

Ток, пропущенный через организм человека или животного, может вызвать электрические ожоги, фибрилляцию или смерть. С другой стороны, электрический ток используют в реанимации, для лечения психических заболеваний, особенно депрессии, электростимуляцию определённых областей головного мозга применяют для лечения таких заболеваний, как болезнь Паркинсона и эпилепсия, водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии. В организме человека и животных ток используется для передачи нервных импульсов.

По технике безопасности, минимально ощутимый человеком ток составляет 1 мА. Опасным для жизни человека ток становится начиная с силы примерно 0,01 А. Смертельным для человека ток становится начиная с силы примерно 0,1 А. Безопасным считается напряжение менее 42 В.

Категории товаров

  • Буры и сверла
  • Инструменты
    • Инструмент WITTE
      • Отвертки
      • Рулетки
      • Уровни
      • Отвертки
      • Ключи,клещи
      • ИНСТРУМЕНТ ДЛЯ СНЯТИЯ ИЗОЛЯЦИИ
      • ПАССАТИЖИ, БОКОРЕЗЫ
      • Шпилька
      • Дюбель
        • Дюбель металлический для газобетона
        • Дюбель складной пружинный,крючок
        • Дюбель пластиковый
        • Черные /частый шаг/
        • Черные /редкий шаг/
        • Рамные
        • Забивной
        • Анкерный болт
        • Уголки
          • Анкерные
          • Усиленные
          • Скользящие
          • Ровносторонние
          • Уголки под 135 градусов
          • Обычные
          • Ассиметричные
          • Z-образные
          • tekfor
          • ВЫСОКОТЕМПЕРАТУРНЫЕ ВЕНТИЛЯТОРЫ ДЛЯ БАНИ И САУНЫ
          • ВЫСОКОТЕМПЕРАТУРНЫЕ ВЕНТИЛЯТОРЫ
          • КРЫШНЫЕ ВЕНТИЛЯТОРЫ
          • ПОТОЛОЧНЫЕ ВЕНТИЛЯТОРЫ
          • ЦЕНТРОБЕЖНЫЕ ВЕНТИЛЯТОРЫ (РАДИАЛЬНЫЕ ВЕНТИЛЯТОРЫ)
          • ПЛАСТИКОВЫЕ ВОЗДУХОВОДЫ
          • АВТОМАТИКА ДЛЯ ВЕНТИЛЯЦИИ
          • ГИБКИЕ ВОЗДУХОВОДЫ ИЗ ПВХ
          • ВЫТЯЖНЫЕ ВЕНТИЛЯТОРЫ
          • ОКОННЫЕ ВЕНТИЛЯТОРЫ
          • ОСЕВЫЕ ВЕНТИЛЯТОРЫ
          • КАНАЛЬНЫЕ ВЕНТИЛЯТОРЫ
            • ПРОМЫШЛЕННЫЕ И КОММЕРЧЕСКИЕ ВЕНТИЛЯТОРЫ
            • ВЕНТИЛЯТОРЫ ДЛЯ КРУГЛЫХ КАНАЛОВ
            • УВЛАЖНИТЕЛИ ВОЗДУХА, МОЙКИ ВОЗДУХА
            • СУШКИ ДЛЯ РУК
            • ОТОПИТЕЛЬНЫЕ АГРЕГАТЫ
            • ИНФРАКРАСНЫЕ ОБОГРЕВАТЕЛИ
            • АВТОМАТИКА ДЛЯ ТЕПЛОВЫХ ЗАВЕС
            • ГАЗОВЫЕ ОБОГРЕВАТЕЛИ
            • ТЕПЛОВЫЕ ЗАВЕСЫ
            • АРОМАТИЗАТОРЫ, ИОНИЗАТОРЫ
            • ВОЗДУХООЧИСТИТЕЛИ
            • ЭЛЕКТРИЧЕСКИЕ ОБОГРЕВАТЕЛИ
              • ТЕПЛОВЕНТИЛЯТОРЫ
              • КОНВЕКТОРЫ
              • ПАТРОНЫ
              • ПОДРОЗЕТНИКИ
              • АВТОМАТИЧЕСКИЕ ВЫКЛЮЧАТЕЛИ
                • ASD
                • Дифференциальные автоматы ABB
                • ABB
                • EATON
                • EKF
                • LEGRAND
                • EKF
                • Кабель ШВВП
                • Кабель ПВС
                  • ПВС 3-жилы
                  • ПВС 2-жилы
                  • КГ 5-жил
                  • КГ 4-жилы
                  • КГ 3-жилы
                  • КГ 2-жилы
                  • КГ 1-жила
                  • ВВГ 4-жилы
                  • ВВГ 3-жилы
                  • ВВГ 2-жилы
                  • ПРЕДОХРАНИТЕЛИ
                  • МИНИ ВЫКЛЮЧАТЕЛИ
                  • BYLECTRICA
                    • РОЗЕТКИ ШТЕПСЕЛЬНЫЕ
                    • БЛОКИ ЭЛЕКТРОУСТАНОВОЧНЫЕ
                    • РАМКИ
                    • ВЫКЛЮЧАТЕЛИ
                      • ВСТРАИВАЕМЫЕ
                      • НАКЛАДНЫЕ
                      • ВСТРАИВАЕМЫЕ
                      • НАКЛАДНЫЕ
                      • Выключатели
                      • Рамки
                      • Розетки
                      • РОЗЕТКИ
                      • РАМКИ
                      • ВЫКЛЮЧАТЕЛИ
                      • ПОДЗЕМНЫЕ СВЕТИЛЬНИКИ
                      • ФИТОСВЕТ
                      • ПРОЖЕКТОРЫ
                        • СВЕТОДИОДНЫЕ
                        • ПАНЕЛИ ASD
                        • KRAULER LED
                        • LED ASD
                        • LED ЭРА
                        • МЕТАЛЛОГАЛОГЕННЫЕ ЛАМПЫ
                        • LED ЛАМПЫ
                          • LED ЭРА
                          • LED ASD
                          • УДЛИНИТЕЛИ, СЕТЕВЫЕ ФИЛЬТРЫ
                          • ПЛИТКИ ЭЛЕКТРИЧЕСКИЕ
                          • Реле напряжения
                            • RBUZ
                            • Осциллограф
                            • TESTBOY
                            • ОДНОФАЗНЫЕ СТАБИЛИЗАТОРЫ ИНВЕРТОРНОГО ТИПА
                            • ТРЕХФАЗНЫЕ СТАБИЛИЗАТОРЫ ЭЛЕКТРОМЕХАНИЧЕСКОГО ТИПА
                            • БЫТОВЫЕ ОДНОФАЗНЫЕ ЦИФРОВЫЕ СТАБИЛИЗАТОРЫ
                            • ОДНОФАЗНЫЕ ЦИФРОВЫЕ СТАБИЛИЗАТОРЫ ПОНИЖЕННОГО НАПРЯЖЕНИЯ
                            • ОДНОФАЗНЫЕ ЦИФРОВЫЕ НАСТЕННЫЕ СТАБИЛИЗАТОРЫ
                            • СТАБИЛИЗАТОРЫ ЭЛЕКТРОМЕХАНИЧЕСКИЕ
                            • СТАБИЛИЗАТОРЫ РЕЛЕЙНЫЕ С ЦИФРОВЫМ ДИСПЛЕЕМ
                            • НАКОПИТЕЛЬНЫЕ
                            • ПРОТОЧНЫЕ
                            • НАГРЕВАТЕЛЬНЫЕ МАТЫ
                            • ОБОГРЕВ КРОВЛИ
                            • ТЕРМОРЕГУЛЯТОРЫ
                            • НАГРЕВАТЕЛЬНЫЙ КАБЕЛЬ
                            • ПЛЕНОЧНЫЙ ПОЛ

                            Почему возникает электрический ток — Основы электротехники

                            Посмотрите наши проекты за 2007-2018 г

                            Из школьного курса физики известно, что ток в цепи представляет собой направленное движение частиц, которые электрически заряжены. Такое движение возникает при определенных условиях. Они следующие – должны быть носители зарядов, цепь должна быть замкнутой и должен быть источник ЭДС.

                            Техническими характеристика электротока являются 2 показателя — сила и плотность тока.

                            Первый показатель представляет собой отношение электрического заряда, который переносится через сечение проводника в определенную единицу времени. Измеряют силу тока, как известно, в амперах. При этом происходит взаимодействие со средой, окружающей его. Это сопровождается выделением большого количества тепла.

                            Источник ЭДС в этой цепи выполняют компенсирующую роль — он сглаживает потери.

                            Носителями зарядов в средах являются электроны или ионы. Они обеспечивают возникновение тока в неметаллах и металлах. В лампах электронного типа носителями являются электроны, которые покидают катод, устремляясь к аноду, происходит это в результате термоэлектронной эмиссии.

                            В электролитических веществах носителями этих зарядов выступают ионы. Именно наличие свободно движущихся зарядов, которые способных перемещаться под действием электрополя является и есть условием возникновения тока в разных веществах и средах.

                            Еще одно важное условие — создание этого электрического поля. Именно его энергия упорядочивает движении электронов иди ионов. Возникнет разница потенциалов, приводящая их в движение.

                            Перемещаются они по направлению поля – от минуса к плюсу, что увеличивает их энергию, как магнитную так и кинетическую.

                            В металлах ток преобразуется в тепловую или механическую энергию. В вакууме, как известно, ток не возникает из-за отсутствия зарядов, способных свободно двигаться. И все же некоторые вещества при особых условиях испускают свободнодвижущиеся заряды со своей поверхности.

                            Это сделало возможным возникновение тока. Такое явление ранее использовалось в устройствах вакуумного типа для выпрямления тока переменной величины, которые сейчас заменены полупроводниковыми.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *