Принцип работы токовой направленной защиты нулевой последовательности в электрических сетях 110 кВ
Токовая направленная защита нулевой последовательности (ТНЗНП) применяется при необходимости обеспечения защиты высоковольтных линий электропередач от однофазных коротких замыканий — замыканий на землю одного из фазных проводов в электросети. Данная защита используется в роли резервной защиты линий электропередач класса напряжения 110 кВ. Ниже приведем принцип работы данной защиты, рассмотрим каким образом и при помощи каких устройств реализуется ТНЗНП в электрических сетях 110 кВ.
В электротехнике есть понятие о симметричных и несимметричных системах фазных токов или напряжений. Симметричная система предусматривает равенство фазных токов (напряжений) трехфазной сети. При этом векторы фазных токов могут стоять относительно друг к другу в прямой, обратной, а также нулевой последовательности (НП).
При прямой последовательности векторы фазных токов идут в последовательности А, В, С, каждая из фаз отстает от другой на 120 гр. Обратная последовательность — чередование фаз А, С, В, угол сдвига фаз тот же – 120 гр. При нулевой последовательности векторы трех фаз совпадают по направлению. Несимметричная система представляется как значение тока — геометрическая сумма векторов всех составляющих прямой, обратной и нулевой последовательности.
В нормальном режиме работы участка электросети система токов и напряжений является симметричной, то же самое касается межфазных коротких замыканий. В данном случае, как напряжение, так и ток НП равны нулю. В случае возникновения однофазного замыкания на землю система становится несимметричной — возникает ток и напряжение НП.
В данном случае ток (напряжение) одной из фаз нулевой последовательности равен трети суммы векторов несимметричной системы, соответственно сумма векторов несимметричной системы – это тройной ток (напряжение) НП.
Результаты расчетов коротких замыканий в электрических сетях также показывают, что ток однофазного замыкания на землю в электрических сетях равен тройному значению тока НП – 3I0, а напряжение, возникающее между нейтралью трансформатора и точки короткого замыкания – тройному значению напряжения НП — 3U0.
Принцип работы токовой защиты нулевой последовательности заключается в контроле значения 3I0 на линии электропередач и в случае достижения его определенной величины – реализации автоматического отключения выключателя линии электропередач с определенной выдержкой времени.
На практике токи небаланса 3I0 получают на выходе так называемого фильтра токов нулевой последовательности. Данный фильтр получают путем электрического соединения между собой начал и концов обмоток трансформаторов тока каждой из фаз линии.
В нормальном режиме работы участка электрической сети на выходе фильтра токов НП отсутствует ток. В случае возникновения повреждения – падения одного из фазных проводов линии электропередач на землю, возникает небаланс – появляется некоторое значение тока 3I0, значение которого фиксируется на выходе фильтра токов НП.
ТНЗНП, как правило, многоступенчатая защита. Каждая из ступеней защиты имеют свою выдержку времени срабатывания. Для обеспечения селективности работы защит на смежных подстанциях участки электрической сети разделяют на участки (зоны действия). Таким образом, защита обеспечивает защиту линии электропередач, питающейся от подстанции, где установлен данный комплект защит, и выступает в роли резервирующей защиты смежных подстанций.
Существует такое явление, как качания в системе. Если защита от междуфазных КЗ, например, дистанционная защита, может ложно срабатывать при возникновении данного явления, то ложное срабатывание ТНЗНП исключено, так как данная защита реагирует исключительно на возникновение токов нулевой последовательности, возникновение которых нехарактерно для явления качаний в энергосистеме.
Рассматриваемая в статье защита, по сути, является защитой от замыканий на землю, поэтому данная защита имеет альтернативное название – земляная защита (ЗЗ) .
Какие устройства выполняют функцию направленной токовой защиты нулевой последовательности в электрических сетях
Для обеспечения защиты линий электропередач от всех видов повреждений (как однофазных, так и междуфазных коротких замыканий) токовая защита нулевой последовательности реализуется совместно с дистанционной защитой. Устройства, выполняющие функции данных защит, могут быть выполнены, как на реле электромеханического принципа работы, так и на современных устройствах – микропроцессорных терминалах защит.
Среди электромеханических защит приобрели наибольшую популярность комплекты типа ЭПЗ-1636, которые имеют несколько различных модификаций. В современных условиях, при строительстве новых распределительных подстанций или техническом переоснащении старых объектов, преимущество отдается микропроцессорным защитным устройствам. Для реализации резервных защит линий 110 кВ, в том числе и ТНЗНП, часто используются микропроцессорные терминалы производства компании ABB, например, многофункциональное устройство REL650.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Обслуживание устройств релейной защиты и автоматики — Токовая направленная защита нулевой последовательности
Нулевая последовательность фаз. Согласно теории симметричных составляющих любую несимметричную систему трех токов или напряжений — обозначим их А, В, С — можно представить в виде трех систем прямой, обратной и нулевой последовательностей фаз (рис. 7.9, а-в ). Первые две системы симметричны и уравновешены, последняя симметрична, но не уравновешена.
Система прямой последовательности (рис. 7.9, а ) состоит из трех вращающихся векторов A 1, B 1, C 1, равных по значению и повернутых на 120° относительно друг друга, причем вектор B1 следует за вектором А 1.
Рис. 7.8. Принципиальная схема максимальной токовой защиты с пуском от реле минимального напряжения:
КА — реле тока (токовый пусковой орган); КV — реле минимального напряжения (пусковой орган по напряжению); КТ — реле времени
Система обратной последовательности (рис. 7.9, б ) состоит также из трех векторов A 2, B 2, C 2, равных по значению и повернутых на 120° относительно друг друга, но при вращении в ту же сторону, что и векторы прямой последовательности, вектор B 2 опережает вектор A 2 на 120°.
Система нулевой последовательности (рис. 7.9, в ) состоит из трех векторов A 0, B 0, C 0, совпадающих по фазе.
Очевидно, что сложение одноименных векторов этих трех систем дает ту несимметричную систему, которая была разложена на, ее составляющие:
В качестве примера сложение векторов фазы С выполнено на рис. 7.9, г .
Существует и метод расчета симметричных составляющих, согласно которому составляющая нулевой последовательности
Рис. 7.9. Симметричные составляющие:
а, б, в — прямой, обратной и нулевой последовательности соответственно; г — сложение векторов трех последовательностей фазы С
Рис. 7.10. Однофазное КЗ на землю на ненагруженной линии с односторонним питанием:
а — схема линии; б — векторная диаграмма напряжения и тока для точки К ; в, г — векторные диаграммы напряжения и токов, построенные с помощью симметричных составляющих
Таким образом, для нахождения A 0 надо геометрически сложить три составляющие вектора и взять одну треть от суммы.
Целесообразность представления несимметричных систем тремя симметричными составляющими состоит в том, что анализ и расчеты напряжений и токов для системы нулевой последовательности могут выполняться независимо от систем прямой и обратной последовательностей, что во многих случаях упрощает расчеты.
Включение же защит на составляющие нулевой последовательности дает ряд преимуществ по сравнению с включением их на полные токи и напряжения фаз для действия при КЗ на землю.
Практическое использование составляющих нулевой последовательности. Рассмотрим металлическое замыкание фазы А на землю в сети с эффективно заземленной нейтралью (рис. 7.10, а ). Этот вид повреждения относится к несимметричным КЗ и характеризуется тем, что в замкнутом контуре действует ЭДС E A, под действием которой в поврежденной фазе А проходит ток IA=Ik отстающий от E A на 90°; напряжение фазы А относительно земли в месте повреждения (точка К ) UAк =0 , так как эта точка непосредственно соединена с землей; токи в неповрежденных фазах IB и IC отсутствуют. С учетом сказанного на рис. 7.10, б построена векторная диаграмма для точки К .
На рис. 7.10, в и г приведены векторные диаграммы напряжений и токов, построенные с помощью симметричных составляющих для того же случая однофазного КЗ.
Сравнение диаграммы, представленной на рис. 7.10, б , с диаграммами рис. 7.10, в и г показывает, что вектор I к равен вектору 3I0 , а –ЕА =U B к + U C к =3U0к . Значит, полный ток фазы в месте повреждения может быть представлен утроенным значением тока нулевой последовательности, а ЭДС — ЕА — утроенным значением напряжения нулевой последовательности.
Практически ток нулевой последовательности получают соединением вторичных обмоток трансформаторов тока в фильтр токов нулевой последовательности (рис. 7.11). Из схемы видно, что ток в реле КА равен геометрической сумме токов трех фаз:
Ток в реле появляется только при однофазном или двухфазном КЗ на землю. Короткие замыкания между фазами являются симметричными системами, и соответственно этому ток в реле Iр=0 .
Для получения напряжения нулевой последовательности вторичные обмотки трансформатора напряжения соединяют в разомкнутый треугольник (рис. 7.12) и обязательно заземляют нейтраль его первичной обмотки. В этом случае
Рис. 7.11. Соединение трансформаторов тока в фильтр токов нулевой последовательности
В нормальном режиме работы и КЗ между фазами (без земли) геометрическая сумма напряжений вторичных обмоток, соединенных в разомкнутый треугольник, равна нулю, и поэтому Up также равно нулю (рис. 7.12, б). И только при однофазных (или двухфазных) КЗ на землю на зажимах разомкнутого треугольника появляется напряжение Up=3U0 (рис. 7.12, в ).
Фазные напряжения систем прямой и обратной последовательностей образуют симметричные звезды, и поэтому суммы их векторов в схеме разомкнутого треугольника всегда равны нулю.
Рис. 7.12. Соединение однофазных трансформаторов напряжении в фильтр напряжения нулевой последовательности:
а — общая схема трансформатора напряжения; б — векторные диаграммы в нормальном режиме работы; с — то же при замыкании фазы А на землю в сети с заземленной нейтралью; PV — вольтметр контроля исправности цепей вторичной обмотки
В сетях с эффективным заземлением нейтрали около 80% повреждений связано с замыканиями на землю. Для защиты оборудования применяют устройства, реагирующие на составляющие нулевой последовательности.
Схема и некоторые вопросы эксплуатации токовой направленной защиты нулевой последовательности. Принципиальная схема защиты показана на рис. 7.13. Пусковое токовое реле КА , включенное на фильтр токов нулевой последовательности, реагирует на появление КЗ на землю, когда в нулевом проводе проходит ток 3I0 .
Реле мощности KW фиксирует направление мощности КЗ, обеспечивая селективность действия: защита работает при направлении мощности КЗ от шин подстанции в защищаемую линию. Напряжение 3U0 подводится к реле мощности от обмотки разомкнутого треугольника трансформатора напряжения (шинки EV, H, KV, K ).
Реле времени КТ создает выдержку времени, необходимую по условию селективности.
На рис. 7.14 показано размещение токовых направленных защит нулевой последовательности в сети, работающей с заземленными нейтралями с обеих сторон рассматриваемого участка. График характеристик выдержек времени построен по встречно-ступенчатому принципу. Из графика видно, что каждая защита отстраивается от защиты смежного участка ступенью времени Δt =t1-t3 .
Значение тока срабатывания пускового токового реле выбирается по условию надежного действия реле при КЗ в конце следующего (второго) участка сети, а также по условию отстройки от тока небаланса.
Появление тока небаланса в реле связано с погрешностью трансформаторов тока, неидентичностью трансформаторов тока, неидентичностью их характеристик намагничивания и имеет решающее значение. Чтобы не допустить действия пускового токового реле от тока небаланса, ток срабатывания реле принимают больше тока небаланса. Ток небаланса определяется для нормального рабочего режима или для режима трехфазного КЗ в зависимости от выдержки времени защиты.
При наличии в защищаемой сети автотрансформаторов, электрически связывающих сети двух напряжений, однофазное или двухфазное замыкание на землю к сети среднего напряжения приводит к появлению тока I0 в линиях высшего напряжения. Чтобы избежать ложных срабатываний защит линий высшего напряжения, уставки их защит по току срабатывания и выдержкам времени согласуют с уставками защит в сети среднего напряжения. По указанной причине избегают, как правило, заземления нейтралей обмоток звезд высшего и среднего напряжений у одного трансформатора. Заметим также, что у трансформатора со схемой соединения звезда-треугольник замыкание на землю на стороне треугольника не вызывает появления тока I0 на стороне звезды.
Ток I0 появляется в линиях при неполнофазных режимах работы участков сетей. Такие режимы могут быть кратковременными и длительными. От кратковременных неполнофазных режимов, возникающих, например, в цикле ОАПВ линии, а также АПВ при неодновременном включении трех фаз выключателя защиты отстраиваются по току срабатывания или выдержки времени защит принимаются больше, чем время t ОАПВ. При возможных неполнофазных режимах работы линий (например, при пофазном ремонте под напряжением) токовые направленные защиты нулевой последовательности ремонтируемой линии и смежных участков должны проверяться и отстраиваться от несимметрии или выводиться из работы, так как они мало приспособлены для работы в таких условиях.
В процессе эксплуатации токовых защит нулевой последовательности должны строго учитываться все заземленные нейтрали автотрансформаторов и трансформаторов, являющиеся как бы источниками токов нулевой последовательности. Распределение тока I0 в сети определяется исключительно расположением заземленных нейтралей, а не генераторов электростанций.
Контроль исправности цепей напряжения разомкнутого треугольника осуществляется с помощью вольтметра, периодически подключаемого с помощью кнопки SB (см. рис. 7.12). Вольтметр измеряет напряжение небаланса, имеющего значение 1-3 В. При нарушении цепей показание вольтметра пропадает.
Наряду с рассмотренной токовой направленной защитой нулевой последовательности широкое распространение в сетях 110 кВ и выше получили направленные отсечки и ступенчатые защиты пулевой последовательности. Наиболее совершенными являются четырехступенчатые защиты, первая ступень которых обычно выполняется без выдержки времени. Первая и вторая ступени защиты предназначены для действий при замыканиях на землю в пределах защищаемой линии и на шинах противоположной подстанции. Последние ступени выполняют в основном роль резервирования.
Рис. 7.13. Схема токовой направленной защиты нулевой последовательности
Физический ток 3I0 в РАС
Доброго времени суток!
Чем полезна регистрация физического тока 3I0 присоединений с глухозаземленной нейтралью?
2 Ответ от Bogatikov 2021-09-30 06:50:01
Re: Физический ток 3I0 в РАС
Как минимум контролировать обрыв нуля токовых цепей в защите — РАС необходимо подключать в керн резервных защит. Ну и сравнивать расчётный 3Io с измеренным.
3 Ответ от Andrews28 2021-09-30 07:05:54
Re: Физический ток 3I0 в РАС
Bogatikov писал(а) : ↑
2021-09-30 06:50:01
Как минимум контролировать обрыв нуля токовых цепей в защите — РАС необходимо подключать в керн резервных защит. Ну и сравнивать расчётный 3Io с измеренным.
Да, эти очевидные вещи приходят сразу на ум. Может быть что-то ещё?
4 Ответ от Bogatikov 2021-09-30 07:56:09
Re: Физический ток 3I0 в РАС
Есть ещё ГОСТ по регистраторам.
Post’s attachments
Автономные регистраторы аварийных событий. ГОСТ Р 58601-2019.pdf 280.49 Кб, 7 скачиваний с 2021-09-30
You don’t have the permssions to download the attachments of this post.
5 Ответ от nkulesh 2021-09-30 09:57:02
Re: Физический ток 3I0 в РАС
Как раз в РАС токи нулевой последовательности часто включены с обратной полярностью (см. записи с Ключевой при спорном отключении линии Сулус этим летом), проверку рабочим током для них обычно не делают — не защита же. В ЭКРА, к слову, и входа для тока Io нет. Раньше в РАС ток нулевой не измеряли иногда — в целях экономии, входов мало было.
6 Ответ от Andrews28 2021-09-30 10:04:51 (2021-09-30 14:30:28 отредактировано Andrews28)
Re: Физический ток 3I0 в РАС
nkulesh писал(а) : ↑
2021-09-30 09:57:02
Как раз в РАС токи нулевой последовательности часто включены с обратной полярностью (см. записи с Ключевой при спорном отключении линии Сулус этим летом), проверку рабочим током для них обычно не делают — не защита же. В ЭКРА, к слову, и входа для тока Io нет. Раньше в РАС ток нулевой не измеряли иногда — в целях экономии, входов мало было.
Включены не правильно, да.
Требование СО ЕЭС измерять регистрировать 3I0 увеличивает требуемое количество аналоговых входов и тянет за собой увеличение кол-ва терминалов РАС.
Сами знаете, строек у нас сейчас много и везде это требование очень мешает.
Релейная защита и автоматика: Что такое 3I0 и 3U0?
Пожалуйста, разъясните подробнее чайнику о том, что такое 3I0 и 3U0? Для чего они нужны, как их рассчитывать и т. п.
Находил кучу статей на форумах об этом, но там столько информации, что в голове не укладывается. Хотелось бы просто: 3I0 — это. 3U0 — это.
Лучший ответ
3U0 (3I0) — это утроенное значение U0(I0). Любой не симметричный режим можно представить как геометрическую сумму симметричных составляющих (U1 (I1))-напряжение (ток) прямой последовательности (U2(I2)) — напряжение (ток) обратной последовательности и напряжение U0(ток I0) нулевой последовательности .Находят симметричные составляющие и нулевую последовательность через фазные или линейные величины по громоздким формулам или выделяются в сети техническими решениями. Если сложить три фазных или линейных напряжения (тока) то получим 3U0 (3I0), так как симметричные составляющие в сумме дадут нуль. Разомкнутый треугоульник ТН на выводах имеет напряжение 3U0.Трансформаторы тока собранные в D дадут 3I0.Напряжение нейтрали относительно земли это U0. Ток вызываемый U0 — это I0.
Петро ХрiнВысший разум (103426) 8 лет назад
Трансформатор тока, включенный в нулевой провод (при его наличии) измерит I0. Трансформатор тока нулевой последовательности (на кабеле без нулевого провода) измерит 3I0.
Остальные ответы
Недавно переучивался- у нас положено повышать ( подтверждать) квалификацию каждые 5 лет. насколько помню- аббревиатурой IO-обозначают защиту по ВВОДу (Input\ Output)ВЫХОДу. а UO1\UO2. и т. д. =это классы защиты.
Появление напряжений и токов нулевой (и обратной U2, I2) последовательности U0, I0 приводит к дополнительным потерям мощности и энергии, а также потерям напряжения в сети, что ухудшает режимы и технико-экономические показатели ее работы. Токи нулевой последовательностей I0 увеличивают потери в продольных ветвях сети, а напряжения и токи этих же последовательностей — в поперечных ветвях.
Наложение U2 и U0 приводит к разным дополнительным отклонениям напряжения в различных фазах. В результате напряжения могут выйти за допустимые пределы. Наложение I2 и I0 приводит к увеличению суммарных токов в отдельных фазах элементов сети. При этом ухудшаются условия их нагрева и уменьшается пропускная способность. Нессимметрия отрицательно сказывается на рабочих и технико-экономических характеристик вращающихся электрических машин. Ток прямой последовательности в статоре создает магнитное поле, вращающееся с синхронной частотой в направлении вращения ротора. Токи обратной последовательности в статоре создают магнитное поле, вращающееся относительно ротора с двойной синхронной частотой в направлении, противоположном вращению. Из- за этих токов двойной частоты в электрической машине возникают тормозной электромагнитный момент и дополнительный нагрев, главным образом ротора, приводящие к сокращению срока службы изоляции.
Расчет ТЗ: studopedia.org/8-37337.html